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Markov models do not scale

An agent evolves in a finite state-space: S(t) ∈ S. The system is
described by a Kolmogorov equation:

d

dt
P [S(t) = s] =

∑
s′

P
[
S(t) = s ′

]
Qs′,s .

Works well if |S| is “small”

Problem with population: state space explosion
S states per agent, N agents ⇒ SN states

Main problem: correlations

P [A,B] 6= P [A]P [B]
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Solution: Mean field approximation, Propagation of Chaos

When a population becomes “large”:
(mean field) a single agent has a minor influence on the mass.

S1 ⊥⊥
1

N

N∑
n=1

δSn (as N →∞)

(prop. of chaos) Any finite subset of objects become independent:

P [S1, . . .Sk ] ≈ P [S1] . . .P [Sk ] (as N →∞)

Good. Reduces the complexity from SN equations to SN!

Bad. Why should this be OK? (or when?)
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Discrete space mean field model
Population of N agents

Each agent evolves in a finite state-space Sn(t) ∈ S.

Mean Field Interaction Model

Evolution of one agent : Markov kernel Q(X ).

Xi = fraction of agents in state i

Qij(X ) = rate/proba of one agent of jumping from i to j .

Q(.) is supposed given and can represent:

Replicator dynamic, Best-response dynamics

Effect of environment

Result of centralized/decentralized optimization
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Mean field approximation

When the number of agents is large, agents become independent :

In the synchronous case1:

X (t + 1) = X (t)Q(X (t))

In the asynchronous case2.:

d

dt
X (t) = X (t)Q(X (t))

In this talk, I will focus on the latter.

1
Gomes, Mohr, Souza, 2010 : Discrete time, finite state space mean field games

2
Gomes,Mohr,Souza 2013: Continuous time finite state mean field game
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This talk: relation between finite N models and mean field
approximation

lim
N→∞

 0 2 4
Time
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0.3 N = 100


=

0 2 4
Time

0.0

0.1

0.2

0.3 ODE (N = )

︸ ︷︷ ︸
Mean field approximation ẋ = xQ(x)

P [Sn(t) = i ] ≈ Xi (t) ≈ xi (t).
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Some examples

Information propagation
x = fraction of “informed”
people

Outdated Informed

(1 + x)

1

Load balancing (super-
market model)
(Mitzenmacher 98, Vvedenskaya 96)

Cache
G.,Van Houdt 2015

Out In the cache

pk

∑
n

(1− pnxn)/m

802.11 (wireless)
Bianchi 2000, Le Boudec, Cho 2011
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Outline

1 Population Processes

2 Moment closure and refined mean field approximation

3 Conclusion : Does it always work?
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Before studying a generic model, let us look at a simple
example

Outdated Informed

(1 + x)

1

Transitions:

X 7→ X +
1

N
rate N(1− X )(1 + X )

X 7→ X − 1

N
rate NX

Drift:

d

dt
E [X (t)] = E

[
1

N
N(1− X )(1 + X )− 1

N
NX

]
= E

[
1− X − X 2

]
Mean field approximation:

ẋ = 1− x − x2
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We study a population of N interchangeable agents
where O(1) agents change states at the same time

X denotes the empirical measure.

Xi (t) = fraction of agents in state i

Transitions are :

X 7→ X +
`

N
at rate Nβ`(X ).

The mean field-approximation is the solution of ẋ = f (x) where

f (x) =
∑
`

`β`(x)

3(E, ‖·‖) is a subset of a Banach space, typically Rd .
Nicolas Gast – 10 / 29



Population processes become deterministic as N →∞
Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous:

XN(t) ≈ x(t) +
1√
N
Gt

If in addition the ODE has a
unique attractor π:

E
[
XN(∞)− π

]
= O(1/

√
N)

N = 10 N = 100 N = 1000
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Take-home message

For a population process with homogeneous interactions:

The mean field approximation is asymptotically exact
I Functional law of large number

The population X is at distance 1/
√
N from the mean field.

I Functional central limit theorem
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Outline

1 Population Processes

2 Moment closure and refined mean field approximation

3 Conclusion : Does it always work?
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What changes when one focus on performance evaluation?

Simulations results (ρ = 0.9)
N 10 100 1000 ∞ (mean field)

Average queue length (simu.) 2.8040 2.3931 2.3567 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error seems to decrease as 1/N

Theorem (Kolokoltsov 2012, G. 2017& 2018). If the drift f is C 2 and has
a unique exponentially stable attractor, then for any t ∈ [0,∞) ∪ {∞},
there exists a constant Vt such that:

E
[
h(XN(t))

]
= h(x(t)) +

V (t)

N
+ O(1/N2)
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Where does the 1/N-term comes from?
The moment closure approach

Going back to the information propagation example (and writing X
instead of X (t), we get:

d

dt
E [X ] = E

[
1− X − X 2

]
= 1− E [X ]− E

[
X 2
]

Problem: this equation is not closed because we need E
[
X 2
]
.

Hence, there are two choices:

1 Assume E
[
X 2
]
≈ E [X ]2. This gives the mean field approximation:

ẋ = 1− x − x2.

2 Obtain an equation for E
[
X 2
]
.

X 2 7→ (X +
1

N
)2 at rate N(1− X 2)

X 2 7→ (X − 1

N
)2 at rate X
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The moment closure approach (continued)
Hence on average:

d

dt
E
[
X 2
]

= E
[

(
2X

N
+

1

N2
)N(1− X 2) + (−2X

N
+

1

N2
)NX )

]
= E

[
2X − 2X 3 − 2X 2 +

1

N
(1− X 2 + X )

]
= 2E [X ]− 2E

[
X 3
]
− 2E

[
X 2
]

+
1

N
(1− E

[
X 2
]

+ E [X ])

Problem: this equation is not closed because we need E
[
X 3
]
.

Hence, there are two choices:
1 Assume E

[
X 3
]
≈ 3E

[
X 2
]
E [X ]− 2E [X ]3. This gives the second

order moment closure approximation:

ẋ = 1− x − y

ẏ = 2x − (3xy − 2x3)− 2y +
1

N
(1− y + x)

2 Obtain an equation for E
[
X 3
]

(that will involve E
[
X 4
]
...)
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Using this approach, we can derive 1/Nk-expansions
Theorem. Assume that f is C 2 and let x be the solution of

d

dt
x = f (x).

d

dt
E [X (t)] = x(t) + O(1/N).

Let Y (t) = X (t)− x(t). Then :

E [Y (t)] =
1

N
V (t)+

E [Y (t)⊗ Y (t)] =
1

N
W (t) +

espY (t)⊗3 =
1

N2
C(t) + O(1/N3)

espY (t)⊗4 =
1

N2
D(t) + O(1/N3)

where
d

dt
V i = f ij V

j + f ij,kW
j,k

d

dt
W j,k = f j`W

`,k + f k` W
j,`

d

dt
Ai = f ij A

j + f ij,kB
j,k + f ij,k,`C

j,k,` + f ij,k,`,mD
j,k,`,m

d

dt
B i,j = f ikB

k,j + f jkB
k,j +

3

2

[
f ik,`C

k,`,j + f jk,`C
k,`,i

]
+ 2(f ik,`,mD

k,`,m,j + f jk,`,mD
k,`,m,i ) +

1

2
Q i,j

k V k +
1

2
Q i,j

k,`W
k,`

. . .

Nicolas Gast – 17 / 29



Using this approach, we can derive 1/Nk-expansions
Theorem. Assume that f is C 2 and let x be the solution of

d

dt
x = f (x).

d

dt
E [X (t)] = x(t) +

1

N
V (t) + O(1/N2).

Let Y (t) = X (t)− x(t). Then :

E [Y (t)] =
1

N
V (t) + O(1/N2)

E [Y (t)⊗ Y (t)] =
1

N
W (t) + O(1/N2)

espY (t)⊗3 =
1

N2
C(t) + O(1/N3)

espY (t)⊗4 =
1

N2
D(t) + O(1/N3)

where
d

dt
V i = f ij V

j + f ij,kW
j,k

d

dt
W j,k = f j`W

`,k + f k` W
j,`

d

dt
Ai = f ij A

j + f ij,kB
j,k + f ij,k,`C

j,k,` + f ij,k,`,mD
j,k,`,m

d

dt
B i,j = f ikB

k,j + f jkB
k,j +

3

2

[
f ik,`C

k,`,j + f jk,`C
k,`,i

]
+ 2(f ik,`,mD

k,`,m,j + f jk,`,mD
k,`,m,i ) +

1

2
Q i,j

k V k +
1

2
Q i,j

k,`W
k,`

. . .

Nicolas Gast – 17 / 29



Using this approach, we can derive 1/Nk-expansions
Theorem. Assume that f is C 2 and let x be the solution of

d

dt
x = f (x).

d

dt
E [X (t)] = x(t) +

1

N
V (t) +

1

N2
A(t) + O(1/N3).

Let Y (t) = X (t)− x(t). Then :

E [Y (t)] =
1

N
V (t) +

1

N2
A(t) + O(1/N3)

E [Y (t)⊗ Y (t)] =
1

N
W (t) +

1

N2
B(t) + O(1/N3)

espY (t)⊗3 =
1

N2
C(t) + O(1/N3)

espY (t)⊗4 =
1

N2
D(t) + O(1/N3)

where
d

dt
V i = f ij V

j + f ij,kW
j,k

d

dt
W j,k = f

j
`
W `,k + f k` W j,`

d

dt
Ai = f ij A

j + f ij,kB
j,k + f ij,k,`C

j,k,` + f ij,k,`,mD j,k,`,m

d

dt
B i,j = f ikB

k,j + f
j
k
Bk,j +

3

2

[
f ik,`C

k,`,j + f
j
k,`

Ck,`,i
]

+ 2(f ik,`,mDk,`,m,j + f
j
k,`,m

Dk,`,m,i ) +
1

2
Q

i,j
k

V k +
1

2
Q

i,j
k,`

W k,`

. . . Nicolas Gast – 17 / 29



Computational issues

Recall that x(t) be the mean field approximation and Y (t) = X (t)− x(t).

You can close the equations by assuming that Y (k) = 0 for k > K .

For K = 0, this gives the mean field approximation (1/N-accurate)

For K = 2, this gives the refined mean field (1/N2-accurate).

For K = 4, this gives a second order expansion (1/N3-accurate).

For a system of dimension d , Y (t)(k) has dk equations.
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Computational issues

The mean field is a system of non-linear ODE of dimension d (where
d = |S| if all agents have the same parameters and N|S| if they are
all different)

The 1/N term adds two systems of time-inhomogeneous linear
ODEs of dimension d2 and d .

The 1/N2 term adds four systems of time-inhomogeneous linear
ODEs of dimension d4, d3, d2 and d .

To compute, you essentially need up to the second (for the 1/N-term) or
the fourth (for the 1/N2-term) derivatives of the drifts.
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We implemented this is a numerical library
https://github.com/ngast/rmf_tool/

The transitions are
(for i ∈ {1 . . .K}):

+
1

N
ei rate Nρ(x2

i−1 − x2
i )

− 1

N
ei rate N(xi − xi+1)

Nicolas Gast – 20 / 29
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The refined mean field approximation is very accurate
... when predicting steady-state performance

Arrival at each server ρ.

Sample d − 1 other
queues.

Allocate to the
shortest queue

Service rate=1.

N = 10 N = 20 N = 50 N = 100

Mean Field 2.3527 2.3527 2.3527 2.3527
1/N-expansion 2.7513 2.5520 2.4324 2.3925

1/N2-expansion 2.8045 2.5653 2.4345 2.3930
Simulation 2.8003 2.5662 2.4350 2.3931
Steady-state average queue length (ρ = 0.9).
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The refined mean field approximation is very accurate
... to evaluate the transient performance

0 10 20 30 40 50 60 70 80
Time

2.4

2.5

2.6

2.7

2.8

Av
er

ag
e 

qu
eu

e 
le

ng
th

Mean Field Approximation
Simulation (N = 1000)

Remark about computation time :

10min/1h (simulation N = 1000/N = 10), C++ code. Requires many simulations,
confidence intervals,...

80ms (mean field), 700ms (1/N-expansion), 9s (1/N2-expansion), Python numpy
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The refined approximation can also account for behaviors
that are indistinguishable by classical mean field methods
Example: choosing with or without replacement

Let xi be the fraction of servers with i or more
jobs. Pick two servers, what is the probability
that the least loaded has exactly i jobs?

If picked with replacement: x2
i − x2

i+1.

If picked without replacement: xi
Nxi − 1

N − 1
− xi+1

Nxi+1 − 1

N − 1
The two coincide as N →∞.

N = 10 servers Simulation Refined mean field Mean field

ρ = 0.9 with 2.820 2.751 2.3527
without 2.705 2.630 2.3527

with-without 0.115 0.121 –
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Recap and extensions

If you fix a control policy such that x 7→ xQ(x) is C 2, then :
1 The accuracy of the classical mean field approximation is O(1/N).

I Mean field approximation = propagation of chaos (= independence)

2 We can use this to define a refined approximation.
I Refined mean field approximation = look at covariance

3 The refined approximation is often accurate for N = 10:

Extensions:

Transient regime

Discrete-time systems

We can also compute the next term in 1/N2.
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Limit 1: it applies to agent properties but not to
populations

Population’s state: X (t) =
1

N

N∑
n=1

δSn(t) One agent has state Sn(t)

X (t) = x(t) +
G (t)√

N
E [X (t)] = x(t) +

C

N

0 1 2 3 4 5
Time

0.00
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0.10
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0.20
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0.35

ODE (N = )
N=10
N=100
N=1000

Average queue length
(N = 10 and ρ = 0.9)

Simu Refined M.F. M.F.

2.804 2.751 2.353
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Limit 2: It can fail when the mean field approximation has
limiting cycles
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N
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N
) N5XA

(D,A,S) 7→ (D +
1

N
,A,S − 1

N
) N(1 +

10XA

XD + δ
)XS
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Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively “easy” to work with.

Forward equation : ODE.

Backward equation : MDP (Markov decision process)

Open question : Do the Nash equilibria of the finite games converge to a
mean field equilibria? What is the rate of convergence?

There are examples with refined-1/N equilibrium (see Gueant et al.
“when does the meeting start”)

The value of the game does not always converge (Doncel et al. 2017)

When it does, convergence is often at rate O(1/
√
N).
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