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Discrete space mean field model

Population of N objects

Each object evolves in a finite state-space Sn(t) ∈ S.

Evolution of one object : Markov kernel Q(X ).

Xi = fraction of objects in state i

Qij(X ) = rate/proba of one object of jumping from i to j .

Q could represent:

Game theory: Replicator dynamic, Best-response dynamics

Biology: interactions between cells

Computer Systems: decentralized allocations, cache management.
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Some examples

Load Balancing
(Mitzenmacher 98, Vvedenskaya 96)

Infection/information
propagation
SIR / SIS
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Mean field approximation

When the number of objects is large, objects become independent :

In the synchronous case1:

X (t + 1) = X (t)Q(X (t))

In the asynchronous case2.:

d

dt
X (t) = X (t)Q(X (t))

In this talk, I will focus on the latter.

1
Gomes, Mohr, Souza, 2010 : Discrete time, finite state space mean field games

2
Gomes,Mohr,Souza 2013: Continuous time finite state mean field game
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This talk: compare finite N models and mean field
approximation

lim
N→∞
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Mean field approximation ẋ = xQ(x)

P [Sn(t) = i ] ≈ Xi (t) ≈ xi (t).
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Outline

1 Classical Mean Field Limits

2 The Refined Mean Field

3 Extensions and Limits of the Approach
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Example: the supermarket model (SQ(d) load-balancing)

Arrival at each server ρ.

Sample d − 1 other
queues.

Allocate to the
shortest queue

Service rate=1.
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SQ(d): state representation

Let Sn(t) be the queue length of the nth queue at time t.

S = (1, 3, 1, 0, 2)

Alternative representation:

Xi (t) =
1

N

N∑
n=1

1{Sn(t)≥i},

which is the fraction of queues with queue length ≥ i .

X = (1, 0.8, 0.4, 0.2, 0, 0, 0, . . . )
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SQ(d) : state transitions

Arrival: x 7→ x +
1

N
ei.

Departures: x 7→ x − 1

N
ei.

Recall that xi is the fraction of servers with i jobs or more. Pick two
servers at random, what is the probability the least loaded has i − 1 jobs?

x2
i−1 − x2

i when picked with replacement

xi−1
Nxi−1 − 1

N − 1
− xi

Nxi − 1

N − 1
when picked without replacement

Note: this becomes asymptotically the same as N goes to infinity.
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Transitions and mean field approximation

State changes on x :

x 7→ x +
1

N
ei at rate Nρ(xdi−1 − xdi )

x 7→ x − 1

N
ei at rate N(xi − xi+1)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

ẋi = ρ(xdi−1 − xdi )︸ ︷︷ ︸
Arrival

− (xi − xi+1)︸ ︷︷ ︸
Departure
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The model can be easily modified
Variants = push-pull model, centralized solution

At rate r , each server that has i ≥ 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

x 7→ x +
1

N
(−ei + e1) at rate Nr(xi−1 − xi )(1− x1)

At rate Nγ, a centralized server serves a job from the longests queue.
Transitions is:

x 7→ x − 1

N
ei at rate Nγxi1{xi+1=0}

The mean field approximation becomes (for i > 1):

ẋi = ρ(xdi−1 − xdi )︸ ︷︷ ︸
Arrival

− (xi − xi+1)︸ ︷︷ ︸
Departure

− r(xi−1 − xi )(1− x1)︸ ︷︷ ︸
Push

−Nγxi1{xi+1=0}︸ ︷︷ ︸
Centralized

ẋ1 = ρ(xd0 − xd1 )︸ ︷︷ ︸
Arrival

− (x1 − x2)︸ ︷︷ ︸
Departure

+
∞∑
i=2

r(xi−1 − xi )(1− x1)︸ ︷︷ ︸
Push

−Nγx11{x2=0}︸ ︷︷ ︸
Centralized

Refs: Push-pull (Minnebo and Van Houdt. 2014), Centralized (Xu,Tsitsiklis, 2011).
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These models are examples of density dependent
population processes (Introduced by (Kurtz, 70s))

A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EN ⊂ E and transitions (for ` ∈ L):

X 7→ X +
`

N
at rate Nβ`(X ).

The drift is f (x) =
∑

`β`(x) and the mean field approximation is the

solution of the ODE

ẋ = f (x).

Example: SQ(d) load balancing: ẋi = ρ(xdi−1 − xdi )− (xi − xi+1). This

ODE has a unique attractor: πi = ρ(d i−1)/(d−1).
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Convergence result as N goes to infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If
XN(0) converges to x0, then for any finite T :

sup
0≤t≤T

∥∥∥XN(t)− x(t)
∥∥∥→ 0.

where x(t) is the unique solution of the ODE ẋ = f (x).

Theorem If the mean field approximation as a unique attractor x(∞), then∥∥∥XN(∞)− x(∞)
∥∥∥→ 0
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Theorem If the mean field approximation as a unique attractor x(∞), then∥∥∥XN(∞)− x(∞)
∥∥∥→ 0

Nicolas Gast – 14 / 29



SQ(d) load balancing (d = 2)

Simulation (steady-state ave. queue length) Fixed point
N 10 20 50 100 ∞ (mean field)

ρ = 0.70 1.2194 1.1735 1.1471 1.1384 1.1301

ρ = 0.90 2.8040 2.5665 2.4344 2.3931 2.3527

ρ = 0.95 4.2952 3.7160 3.4002 3.3047 3.2139

Fairly good accuracy for N = 100 servers.
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Pull-push model (servers with ≥ 2 jobs push to empty)

Simulation (steady-state ave. queue length) Fixed point
N 10 20 50 100 ∞ (mean field)

ρ = 0.80 1.5569 1.4438 1.3761 1.3545 1.3333

ρ = 0.90 2.3043 1.9700 1.7681 1.7023 1.6364

ρ = 0.95 3.4288 2.6151 2.1330 1.9720 1.8095

Fairly good accuracy for N = 100 servers.
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Outline

1 Classical Mean Field Limits

2 The Refined Mean Field

3 Extensions and Limits of the Approach
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Mean Field Accuracy
Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous:

XN(t) ≈ x(t) +
1√
N
Gt

If in addition the ODE has a
unique attractor π:

E
[
XN(∞)− π

]
= O(1/

√
N)

0 1 2 3 4 5
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ODE (N = )
N=10
N=100
N=1000
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with ρ = 0.9):
N 10 100 1000 ∞

Average queue length (simulation) 2.8040 2.3931 2.3567 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error seems to decrease as 1/N

Theorem (Kolokoltsov 2012, G. 2017& 2018). If the drift f is C 2 and has
a unique exponentially stable attractor, then for any t ∈ [0,∞) ∪ {∞},
there exists a constant Vt such that:

E
[
h(XN(t))

]
= h(x(t)) +

V (t)

N
+ O(1/N2)
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The refined mean field approximation...
... is defined as the classic mean field plus the 1/N correction term:

E
[
XN
]

= x(t) +
V (t)

N︸ ︷︷ ︸
Refined mf approx

+O(1/N2),

where V (t) is computed analytically.

To compute V (t), we need:

Derivative of the drifts:

F i
j (t) =

∂fi
∂xj

(x(t)) and F i
jk(t) =

∂2fi
∂xj∂xk

(x(t))

A variance term:

Q(t) =
∑
`

`⊗ `β`(X (t))
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Computational methods
Theorem (G, Van Houdt 2018) Given a density dependent process with
twice-differentiable drift. Let h : E → R be a twice-differentiable function,
then for t > 0:

E
[
h(XN(t))

]
=h(x(t))+

1

N

(∑
i

∂h(x(t))

∂xi
Vi (t)+

1

2

∑
ij

h(x(t))

∂xi∂xj
Wij(t)

)
+O(

1

N2
),

where

d

dt
V i =

∑
j

F i
j V

j +
∑
jk

F i
j ,kW

j ,k

d

dt
W j ,k = Q jk +

∑
m

F j
mW

m,k +
∑
m

W j ,mF k
m

Theorem (G, Van Houdt 2018) The previous theorem also holds for the
stationary regime (t = +∞) if the ODE has a unique exponentially stable
attractor.

Nicolas Gast – 21 / 29



The supermarket model (SQ(2))

N 10 20 30 50 100 ∞
ρ = 0.7

Simulation 1.2194 1.1735 1.1584 1.1471 1.1384 –
Refined mf 1.2150 1.1726 1.1584 1.1471 1.1386 1.1301

ρ = 0.9
Simulation 2.8040 2.5665 2.4907 2.4344 2.3931 –
Refined mf 2.7513 2.5520 2.4855 2.4324 2.3925 2.3527

ρ = 0.95
Simulation 4.2952 3.7160 3.5348 3.4002 3.3047 –
Refined mf 4.1017 3.6578 3.5098 3.3915 3.3027 3.2139

Mean field approximation

Average queue length: Refined mean field approximation gives a
significant improvement.
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Pull-push model (servers with ≥ 2 jobs push to empty)

N 10 20 50 100 ∞
ρ = 0.8

Simulation 1.5569 1.4438 1.3761 1.3545 –
Refined mean field 1.5473 1.4403 1.3761 1.3547 1.3333

ρ = 0.90
Simulation 2.3043 1.9700 1.7681 1.7023 –

Refined mean field 2.2945 1.9654 1.7680 1.7022 1.6364

ρ = 0.95
Simulation 3.4288 2.6151 2.1330 1.9720 –

Refined mean field 3.4369 2.6232 2.1350 1.9723 1.8095

Mean field approximation

Average queue length: Refined mean field approximation is remarkably
accurate
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Outline

1 Classical Mean Field Limits

2 The Refined Mean Field

3 Extensions and Limits of the Approach
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Recap and extensions

If x 7→ xQ(x) is C 2, then :

1 The accuracy of the classical mean field approximation is O(1/N).

2 We can use this to define a refined approximation.

3 The refined approximation is often accurate for N = 10:

Extensions:

Transient regime

Discrete-time systems

We can also compute the next term in 1/N2.
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Limit 1: it applies to object properties but not to
populations

Population’s state: X (t) =
1

N

N∑
n=1

δSn(t) One object has state Sn(t)

X (t) = x(t) +
G (t)√

N
E [X (t)] = x(t) +

C

N

0 1 2 3 4 5
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ODE (N = )
N=10
N=100
N=1000

Average queue length
(N = 10 and ρ = 0.9)

Simu Refined M.F. M.F.

2.804 2.751 2.353
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Limit 2: It can fail when the mean field approximation has
limiting cycles

0.0 0.2 0.4
D(t)

0.1

0.2

0.3

0.4

0.5

0.6

A(
t)

Mean field approximation
Fixed point

Transition Rate

(D,A,S) 7→ (D − 1

N
,A +

1

N
,S) N(0.1 + 10XA)XD

(D,A,S) 7→ (D,A− 1

N
,S +

1

N
) N5XA

(D,A,S) 7→ (D +
1

N
,A,S − 1

N
) N(1 +

10XA

XD + δ
)XS
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Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively “easy” to work with.

Forward equation : ODE.

Backward equation : MDP (Markov decision process)

Open question : Do the Nash equilibria of the finite games converge to a
mean field equilibria? What is the rate of convergence?

The value of the game does not always converge (Doncel et al. 2017)

When it does, convergence seems to be O(1/
√
N).
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