How to use mean field approximation for 10 players?

Nicolas Gast
Inria, Grenoble, France

ISCIS 2019 - Conférence Internationale sur les Méthodes de Modélisation des Systèmes et Réseaux Informatiques et Bio-Informatiques, October 2019

Discrete space mean field model

Population of N objects

- Each object evolves in a finite state-space $S_{n}(t) \in \mathcal{S}$.

Discrete space mean field model

Population of N objects

- Each object evolves in a finite state-space $S_{n}(t) \in \mathcal{S}$.

Evolution of one object: Markov kernel $Q(X)$.
$X_{i}=$ fraction of objects in state i
$Q_{i j}(X)=$ rate/proba of one object of jumping from i to j.
Q could represent:

- Game theory: Replicator dynamic, Best-response dynamics
- Biology: interactions between cells
- Computer Systems: decentralized allocations, cache management.

Some examples

Load Balancing

(Mitzenmacher 98, Vvedenskaya 96)

Observe $d-1$ other nodes and chooses the shortest queue

Infection/information propagation SIR / SIS

Mean field approximation

When the number of objects is large, objects become independent :

- In the synchronous case ${ }^{1}$:

$$
X(t+1)=X(t) Q(X(t))
$$

- In the asynchronous case ${ }^{2}$.:

$$
\frac{d}{d t} X(t)=X(t) Q(X(t))
$$

In this talk, I will focus on the latter.

[^0]
This talk: compare finite N models and mean field approximation

$\mathbf{P}\left[S_{n}(t)=i\right] \approx X_{i}(t) \approx x_{i}(t)$.

Outline

(1) Classical Mean Field Limits

(2) The Refined Mean Field
(3) Extensions and Limits of the Approach

Outline

(1) Classical Mean Field Limits

Example: the supermarket model ($S Q(d)$ load-balancing)

Arrival at each server ρ.

- Sample d-1 other queues.
- Allocate to the shortest queue Service rate $=1$.

$S Q(d)$: state representation

- Let $S_{n}(t)$ be the queue length of the nth queue at time t.

$S Q(d)$: state representation

- Let $S_{n}(t)$ be the queue length of the nth queue at time t.

$$
S=(1,3,1,0,2)
$$

- Alternative representation:

$$
X_{i}(t)=\frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{\left\{S_{n}(t) \geq i\right\}},
$$

which is the fraction of queues with queue length $\geq i$.

$$
X=(1,0.8,0.4,0.2,0,0,0, \ldots)
$$

$S Q(d)$: state transitions

- Arrival: $\quad x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.
- Departures: $x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.

$S Q(d)$: state transitions

- Arrival: $\quad x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.
- Departures: $x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.

Recall that x_{i} is the fraction of servers with i jobs or more. Pick two servers at random, what is the probability the least loaded has $i-1$ jobs?

$S Q(d)$: state transitions

- Arrival: $\quad x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.
- Departures: $x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.

Recall that x_{i} is the fraction of servers with i jobs or more. Pick two servers at random, what is the probability the least loaded has $i-1$ jobs?

$$
\begin{array}{lr}
x_{i-1}^{2}-x_{i}^{2} & \text { when picked with replacement } \\
x_{i-1} \frac{N x_{i-1}-1}{N-1}-x_{i} \frac{N x_{i}-1}{N-1} & \text { when picked without replacement }
\end{array}
$$

Note: this becomes asymptotically the same as N goes to infinity.

Transitions and mean field approximation

State changes on x :

$$
\begin{aligned}
& x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}} \text { at rate } N \rho\left(x_{i-1}^{d}-x_{i}^{d}\right) \\
& x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}} \text { at rate } N\left(x_{i}-x_{i+1}\right)
\end{aligned}
$$

The mean field approximation is to consider the ODE associated with the drift (average variation):

$$
\dot{x}_{i}=\underbrace{\rho\left(x_{i-1}^{d}-x_{i}^{d}\right)}_{\text {Arrival }}-\underbrace{\left(x_{i}-x_{i+1}\right)}_{\text {Departure }}
$$

The model can be easily modified

Variants $=$ push-pull model, centralized solution

- At rate r, each server that has $i \geq 2$ or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$
x \mapsto x+\frac{1}{N}\left(-e_{i}+e_{1}\right) \text { at rate } \operatorname{Nr}\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)
$$

The model can be easily modified

Variants $=$ push-pull model, centralized solution

- At rate r, each server that has $i \geq 2$ or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$
x \mapsto x+\frac{1}{N}\left(-e_{i}+e_{1}\right) \text { at rate } \operatorname{Nr}\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)
$$

- At rate $N \gamma$, a centralized server serves a job from the longests queue. Transitions is:

$$
x \mapsto x-\frac{1}{N} e_{i} \text { at rate } N \gamma x_{i} \mathbf{1}_{\left\{x_{i+1}=0\right\}}
$$

The model can be easily modified

Variants $=$ push-pull model, centralized solution

- At rate r, each server that has $i \geq 2$ or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$
x \mapsto x+\frac{1}{N}\left(-e_{i}+e_{1}\right) \text { at rate } \operatorname{Nr}\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)
$$

- At rate $N \gamma$, a centralized server serves a job from the longests queue. Transitions is:

$$
x \mapsto x-\frac{1}{N} e_{i} \text { at rate } N \gamma x_{i} \mathbf{1}_{\left\{x_{i+1}=0\right\}}
$$

The mean field approximation becomes (for $i>1$):

$$
\dot{x}_{i}=\underbrace{\rho\left(x_{i-1}^{d}-x_{i}^{d}\right)}_{\text {Arrival }}-\underbrace{\left(x_{i}-x_{i+1}\right)}_{\text {Departure }}-\underbrace{r\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)}_{\text {Push }}-\underbrace{N \gamma x_{i} \mathbf{1}_{\left\{x_{i+1}=0\right\}}}_{\text {Centralized }}
$$

$$
\dot{x}_{1}=\underbrace{\rho\left(x_{0}^{d}-x_{1}^{d}\right)}_{\text {Arrival }}-\underbrace{\left(x_{1}-x_{2}\right)}_{\text {Departure }}+\sum_{i=2}^{\infty} \underbrace{r\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)}_{\text {Push }}-\underbrace{N \gamma x_{1} \mathbf{1}_{\left\{x_{2}=0\right\}}}_{\text {Centralized }}
$$

These models are examples of density dependent

 population processes (Introduced by (Kurtz, 70s))A population process is a sequence of CTMCs $X^{N}(t)$ indexed by the population size N, with state space $E^{N} \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

These models are examples of density dependent

 population processes (Introduced by (Kurtz, 70s))A population process is a sequence of CTMCs $X^{N}(t)$ indexed by the population size N, with state space $E^{N} \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

The drift is $f(x)=\sum \ell \beta_{\ell}(x)$ and the mean field approximation is the solution of the ODE

$$
\dot{x}=f(x) .
$$

These models are examples of density dependent population processes (Introduced by (Kurtz, 70s))
A population process is a sequence of CTMCs $X^{N}(t)$ indexed by the population size N, with state space $E^{N} \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

The drift is $f(x)=\sum \ell \beta_{\ell}(x)$ and the mean field approximation is the solution of the ODE

$$
\dot{x}=f(x)
$$

Example: $\mathrm{SQ}(\mathrm{d})$ load balancing: $\dot{x}_{i}=\rho\left(x_{i-1}^{d}-x_{i}^{d}\right)-\left(x_{i}-x_{i+1}\right)$. This ODE has a unique attractor: $\pi_{i}=\rho^{\left(d^{i}-1\right) /(d-1)}$.

Convergence result as N goes to infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If $X^{N}(0)$ converges to x_{0}, then for any finite T :

$$
\sup _{0 \leq t \leq T}\left\|X^{N}(t)-x(t)\right\| \rightarrow 0
$$

where $x(t)$ is the unique solution of the ODE $\dot{x}=f(x)$.

Convergence result as N goes to infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If $X^{N}(0)$ converges to x_{0}, then for any finite T :

$$
\sup _{0 \leq t \leq T}\left\|X^{N}(t)-x(t)\right\| \rightarrow 0
$$

where $x(t)$ is the unique solution of the ODE $\dot{x}=f(x)$.
Theorem If the mean field approximation as a unique attractor $x(\infty)$, then

$$
\left\|x^{N}(\infty)-x(\infty)\right\| \rightarrow 0
$$

SQ (d) load balancing $(d=2)$

	Simulation (steady-state ave. queue length)				Fixed point
N	10	20	50	100	∞ (mean field)
$\rho=0.70$	1.2194	1.1735	1.1471	1.1384	1.1301
$\rho=0.90$	2.8040	2.5665	2.4344	2.3931	2.3527
$\rho=0.95$	4.2952	3.7160	3.4002	3.3047	3.2139

Fairly good accuracy for $N=100$ servers.

SQ (d) load balancing $(d=2)$

	Simulation (steady-state ave. queue length)				Fixed point
N	10	20	50	100	∞ (mean field)
$\rho=0.70$	1.2194	1.1735	1.1471	1.1384	1.1301
$\rho=0.90$	2.8040	2.5665	2.4344	2.3931	2.3527
$\rho=0.95$	4.2952	3.7160	3.4002	3.3047	3.2139

Fairly good accuracy for $N=100$ servers.

Pull-push model (servers with ≥ 2 jobs push to empty)

| | Simulation (steady-state ave. queue length) | | | | Fixed point |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 10 | 20 | 50 | 100 | ∞ (mean fielld) |
| $\rho=0.80$ | 1.5569 | 1.4438 | 1.3761 | 1.3545 | 1.3333 |
| $\rho=0.90$ | 2.3043 | 1.9700 | 1.7681 | 1.7023 | 1.6364 |
| $\rho=0.95$ | 3.4288 | 2.6151 | 2.1330 | 1.9720 | 1.8095 |

Fairly good accuracy for $N=100$ servers.

Outline

(1) Classical Mean Field Limits

(2) The Refined Mean Field

(3) Extensions and Limits of the Approach

Mean Field Accuracy

Theorem (Kurtz (1970s), Ying (2016)):
If the drift f is Lipschitz-continuous:
If in addition the ODE has a unique attractor π :

$$
\begin{array}{l|l}
X^{N}(t) \approx x(t)+\frac{1}{\sqrt{N}} G_{t} & \mathbb{E}\left[X^{N}(\infty)-\pi\right]=O(1 / \sqrt{N})
\end{array}
$$

Expected values estimated by mean field are $1 / \mathrm{N}$-accurate

Some experiments (for $\mathrm{SQ}(2)$ with $\rho=0.9$):

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean field	0.4513	0.0404	0.0040	0

Expected values estimated by mean field are $1 / \mathrm{N}$-accurate

Some experiments (for $\mathrm{SQ}(2)$ with $\rho=0.9$):

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean field	0.4513	0.0404	0.0040	0

Error seems to decrease as $1 / N$

Expected values estimated by mean field are $1 / \mathrm{N}$-accurate

Some experiments (for $\mathrm{SQ}(2)$ with $\rho=0.9$):

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean field	0.4513	0.0404	0.0040	0

Error seems to decrease as $1 / \mathrm{N}$

Theorem (Kolokoltsov 2012, G. 2017\& 2018). If the drift f is C^{2} and has a unique exponentially stable attractor, then for any $t \in[0, \infty) \cup\{\infty\}$, there exists a constant V_{t} such that:

$$
\mathbb{E}\left[h\left(X^{N}(t)\right)\right]=h(x(t))+\frac{V(t)}{N}+O\left(1 / N^{2}\right)
$$

The refined mean field approximation...

... is defined as the classic mean field plus the $1 / N$ correction term:

$$
\mathbb{E}\left[X^{N}\right]=\underbrace{x(t)+\frac{V(t)}{N}}_{\text {Refined mf approx }}+O\left(1 / N^{2}\right)
$$

where $V(t)$ is computed analytically.

The refined mean field approximation...

... is defined as the classic mean field plus the $1 / N$ correction term:

$$
\mathbb{E}\left[X^{N}\right]=\underbrace{x(t)+\frac{V(t)}{N}}_{\text {Refined } \mathrm{mf} \text { approx }}+O\left(1 / N^{2}\right)
$$

where $V(t)$ is computed analytically.
To compute $V(t)$, we need:

- Derivative of the drifts:

$$
F_{j}^{i}(t)=\frac{\partial f_{i}}{\partial x_{j}}(x(t)) \text { and } F_{j k}^{i}(t)=\frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}(x(t))
$$

- A variance term:

$$
Q(t)=\sum_{\ell} \ell \otimes \ell \beta_{\ell}(X(t))
$$

Computational methods

Theorem (G, Van Houdt 2018) Given a density dependent process with twice-differentiable drift. Let $h: E \rightarrow \mathbb{R}$ be a twice-differentiable function, then for $t>0$:
$\mathbb{E}\left[h\left(X^{N}(t)\right)\right]=h(x(t))+\frac{1}{N}\left(\sum_{i} \frac{\partial h(x(t))}{\partial x_{i}} V_{i}(t)+\frac{1}{2} \sum_{i j} \frac{h(x(t))}{\partial x_{i} \partial x_{j}} W_{i j}(t)\right)+O\left(\frac{1}{N^{2}}\right)$
where

$$
\begin{aligned}
\frac{d}{d t} V^{i} & =\sum_{j} F_{j}^{i} V^{j}+\sum_{j k} F_{j, k}^{i} W^{j, k} \\
\frac{d}{d t} W^{j, k} & =Q^{j k}+\sum_{m} F_{m}^{j} W^{m, k}+\sum_{m} W^{j, m} F_{m}^{k}
\end{aligned}
$$

Theorem (G, Van Houdt 2018) The previous theorem also holds for the stationary regime $(t=+\infty)$ if the ODE has a unique exponentially stable attractor.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\rho=0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	-
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.1301
$\rho=0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	-
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\rho=0.95$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	-
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\underline{\rho}=0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	-
Refined mf $1.2150 \quad 1.17261 .1584 .114711 .1386$						
$\rho=0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	-
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
" $-\overline{-7}=0.95$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	-
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\rho=0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	-
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.1301
$\rho=0.9$	Mean field approx					
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\bar{\rho}=-\overline{0} .95$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	-
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

Pull-push model (servers with ≥ 2 jobs push to empty)

N	10	20	50	100	∞
$\rho=0.8$					
Simulation	1.5569	1.4438	1.3761	1.3545	-
Refined mean field	1.5473 - - 1.4403 - - 1.3761- - 1.354.7.				approxim
$\rho=0.90$	Mean field				
Simulation	2.3043	1.9700	1.7681	1.7023	
Refined mean field	2.2945	1.9654	1.7680	1.7022	1.6364
- $-=0=0.95^{\circ}$					
Simulation	3.4288	2.6151	2.1330	1.9720	-
Refined mean field	3.4369	2.6232	2.1350	1.9723	1.8095

Average queue length: Refined mean field approximation is remarkably accurate

Outline

(1) Classical Mean Field Limits

(2) The Refined Mean Field
(3) Extensions and Limits of the Approach

Recap and extensions

If $x \mapsto x Q(x)$ is C^{2}, then :
(1) The accuracy of the classical mean field approximation is $O(1 / N)$.
(2) We can use this to define a refined approximation.
(3) The refined approximation is often accurate for $N=10$:

Recap and extensions

If $x \mapsto x Q(x)$ is C^{2}, then :
(1) The accuracy of the classical mean field approximation is $O(1 / N)$.
(2) We can use this to define a refined approximation.
(3) The refined approximation is often accurate for $N=10$:

Extensions:

- Transient regime
- Discrete-time systems
- We can also compute the next term in $1 / N^{2}$.

Limit 1: it applies to object properties but not to populations

Population's state: $X(t)=\frac{1}{N} \sum_{n=1}^{N} \delta_{S_{n}(t)}$

$$
X(t)=x(t)+\frac{G(t)}{\sqrt{N}}
$$

One object has state $S_{n}(t)$

$$
\mathbb{E}[X(t)]=x(t)+\frac{C}{N}
$$

Average queue length ($N=10$ and $\rho=0.9$)

Simu	Refined M.F.	M.F.
2.804	2.751	2.353

Limit 2: It can fail when the mean field approximation has limiting cycles

Transition
$(D, A, S) \mapsto\left(D-\frac{1}{N}, A+\frac{1}{N}, S\right)$
$(D, A, S) \mapsto\left(D, A-\frac{1}{N}, S+\frac{1}{N}\right)$
$(D, A, S) \mapsto\left(D+\frac{1}{N}, A, S-\frac{1}{N}\right)$
$N\left(1+\frac{10 X_{A}}{X_{D}+\delta}\right) X_{S}$

Limit 2: It can fail when the mean field approximation has limiting cycles

Limit 2: It can fail when the mean field approximation has limiting cycles

Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively "easy" to work with.

- Forward equation: ODE.
- Backward equation : MDP (Markov decision process)

Open question: Do the Nash equilibria of the finite games converge to a mean field equilibria? What is the rate of convergence?

Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively "easy" to work with.

- Forward equation : ODE.
- Backward equation : MDP (Markov decision process)

Open question: Do the Nash equilibria of the finite games converge to a mean field equilibria? What is the rate of convergence?

- The value of the game does not always converge (Doncel et al. 2017)
- When it does, convergence seems to be $O(1 / \sqrt{N})$.

Some References

http://polaris.imag.fr/nicolas.gast

nicolas.gast@inria.fr

- A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)
- Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis Gast, Bortolussi, Tribastone
- Expected Values Estimated via Mean Field Approximation are $\mathrm{O}(1 / \mathrm{N})$-accurate by Gast. SIGMETRICS 2017.
- https://github.com/ngast/rmf_tool/

[^0]: ${ }^{1}$ Gomes, Mohr, Souza, 2010 : Discrete time, finite state space mean field games
 ${ }^{2}$ Gomes, Mohr,Souza 2013: Continuous time finite state mean field game

