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Discrete space mean field model

Population of N objects

@ Each object evolves in a finite state-space S,(t) € S.
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Discrete space mean field model

Population of N objects

@ Each object evolves in a finite state-space S,(t) € S.

Evolution of one object : Markov kernel Q(X).

X; = fraction of objects in state /

Qjj(X) = rate/proba of one object of jumping from i to ;.

Q could represent:
@ Game theory: Replicator dynamic, Best-response dynamics
o Biology: interactions between cells

@ Computer Systems: decentralized allocations, cache management.
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Some examples

Load Balancing

(Mitzenmacher 98, Vvedenskaya 96)

Observe d — 1 other nodes and chooses the shortest queue

Infection /information
propagation
SIR / SIS

1 + 10x; 5

TN

«10xs + 10—3-@
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Mean field approximation

When the number of objects is large, objects become independent :

@ In the synchronous case':

X(t+1) = X(1)Q(X(1))

e In the asynchronous case®.:

—X
dt

In this talk, | will focus on the latter.

1
Gomes, Mohr, Souza, 2010 : Discrete time, finite state space mean field games

Gomes,Mohr,Souza 2013: Continuous time finite state mean field game
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This talk: compare finite N models and mean field
approximation

0.3{ — N=100 0.3 —— ODE (N =)
0.2 A 0.2 A
lim =
N— o0 0.1 A 0.1
0.0 T 0.0 T
0 2 4 0 2 4
Time Time

Mean field approximation x = xQ(x)

P [Sa(t) = i] = Xi(t) ~ xi(t).
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Outline

@ Classical Mean Field Limits

© The Refined Mean Field

© Extensions and Limits of the Approach
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Outline

@ Classical Mean Field Limits

Nicolas Gast — 7 / 29



Example: the supermarket model (SQ(d) load-balancing)

| .O Arrival at each server p.
) ey = = 2> | ...O e Sample d — 1 other
Vo .O queues.
X @ Allocate to the
3 I O shortest queue
| ..O Service rate=1.
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SQ(d): state representation

o Let S,(t) be the queue length of the nth queue at time t.

p——od

Y

—0)

a0 S$=(1,3,1,0,2)

1O
=0
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SQ(d): state representation

o Let S,(t) be the queue length of the nth queue at time t.

E— o)
P o> [T
LW S=1(1,3,1,0,2)
L] —
—0)

o Alternative representation:

N
1
Xi(t) = 5 > Ls,(o=i
n=1

which is the fraction of queues with queue length > J.

X =(1,0.8,0.4,0.2,0,0,0,...)
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SQ(d) : state transitions

C———— =0 . 1
PR = @ Arrival: X — X+ Nei.
*—1O @ Departures: x — x — Ne;.
T )
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SQ(d) : state transitions

p—p oy |

C—— 0 . 1
| = @ Arrival: X+ X+ —€.

HEN N

N 1
FY
C——1O @ Departures: x — x — —e;.

T O) N

Recall that

x; is the fraction of servers with i/ jobs or more. Pick two

servers at random, what is the probability the least loaded has / — 1 jobs?
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SQ(d) : state transitions

C———— =0 . 1
PR = @ Arrival: X — X+ Nei.
*—1O @ Departures: x — x — Ne;.
T )

Recall that x; is the fraction of servers with i jobs or more. Pick two
servers at random, what is the probability the least loaded has / — 1 jobs?
x? | — x? when picked with replacement

Nxi_1 —1 Nx; — 1

Xi_1 N1 — Xj N1 when picked without replacement

Note: this becomes asymptotically the same as N goes to infinity.
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Transitions and mean field approximation
State changes on x:

1
X = X+ i at rate Np(x? ; — x7)

1
X X = e at rate N(x; — xj41)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

X = p(xy = xf') = (% — Xit1)

Arrival Departure
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The model can be easily modified
Variants = push-pull model, centralized solution
o At rate r, each server that has i > 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

1
X = X+ N(—e; + e1) at rate Nr(xi—1 — x;)(1 — x1)
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The model can be easily modified
Variants = push-pull model, centralized solution
o At rate r, each server that has i > 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

1
X = x + N(_ei + e1) at rate Nr(xi—1 — x;)(1 — x1)

o At rate N+, a centralized server serves a job from the longests queue.
Transitions is:

1
X X — N at rate Nyx;1y,, —oy
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The model can be easily modified
Variants = push-pull model, centralized solution
o At rate r, each server that has i > 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

1
X — X+ N(—e; + e1) at rate Nr(xi_1 — x;)(1 — x1)
o At rate N+, a centralized server serves a job from the longests queue.
Transitions is:

1
X X — N at rate Nyx;1y,, —oy

The mean field approximation becomes (for i > 1):

X = p(xfly = x) = (xi = xi41) = r(xi-1 = x)(1 = x1) = Nyxilyy,,—o)
Arrival Departure Push Centralized
00
1= p0§ =) = 0a =)+ r(xiz = xi)(1 = x1) = Nyxalpg—o)
—_— —— o
Arrival Departure - Push Centralized
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These models are examples of density dependent
population processes (introduced by (Kurtz, 70s))

A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EN  E and transitions (for £ € L)

14
X=X+ N at rate N, (X).
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These models are examples of density dependent
population processes (introduced by (Kurtz, 70s))

A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EN  E and transitions (for £ € L)

1
X=X+ N at rate Nj3(X).

The drift is f(x) = Zﬁﬁg(x) and the mean field approximation is the
solution of the ODE

x = f(x).
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These models are examples of density dependent
population processes (introduced by (Kurtz, 70s))

A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EN  E and transitions (for £ € L):

1
X=X+ N at rate Nj3(X).

The drift is f(x) = Zﬁﬁg(x) and the mean field approximation is the
solution of the ODE

x = f(x).

Example: SQ(d) load balancing: %; = p(x¢ 9) — (x; — xi+1). This

i-1 X i
ODE has a unique attractor: 7; = p(dl_l)/(d_l).
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Convergence result as N goes to infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If
XM(0) converges to xg, then for any finite T:

sup HXN(t) — X(t)” — 0.

0<t<T

where x(t) is the unique solution of the ODE x = f(x).
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Convergence result as N goes to infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If
XM(0) converges to xg, then for any finite T:

sup HXN(t) — x(t)” — 0.
0<t<T

where x(t) is the unique solution of the ODE x = f(x).

Theorem If the mean field approximation as a unique attractor x(cc), then

HXN(OO) - X(oo)H -0
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SQ(d) load balancing (d = 2)

Simulation (steady-state ave. queue length) Fixed point
N 10 20 50 100 oo (mean field)
p=20.70| 12194 1.1735 1.1471 1.1384 1.1301
p=0.90 ‘ 2.8040 2.5665 2.4344 2.3931 ‘ 2.3527
p=0.95] 42952 3.7160 3.4002 33047 | 3.2139

Fairly good accuracy for N = 100 servers.

Nicolas Gast — 15 / 29



SQ(d) load balancing (d = 2)

Simulation (steady-state ave. queue length) | _Fixed point
N 10 20 50 . 100 oo (mean field)
p=20.70]1.2194 1.1735 1.1471 :1.1384 1.1301
p=0.90 | 2.8040 2.5665 2.4344 1 2.3031 \ 2.3527

p=0095] 42052 37160 3.4002  *33047 | __ 32139

Fairly good accuracy for N = 100 servers.
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Pull-push model (servers with > 2 jobs push to empty)

Simulation (steady-state ave. queue length) | _ Fixed point

N 10 20 50 ' 100 5 (mean fidld)

p=0.80] 15569 1.4438 1.3761 + 1.3545 1.3333 :
p = 0.90 \ 2.3043 19700 1.7681 1 1.7023 \ 1.6364 *
p=0.95]34288 26151 2.1330 119720 | ..1.8095 :

Fairly good accuracy for N = 100 servers.
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Outline

© The Refined Mean Field

Nicolas Gast — 17 / 29



Mean Field Accuracy
Theorem (Kurtz (1970s), Ying (2016)):
If the drift f is Lipschitz-continuous:

[f in addition the ODE has a
unique attractor 7:
1

N+ ~
XA~ e+ 56 E [X¥(00) - 7] = 0(1/VA)
0.35
0.30 A
0.25
0.20 A
0.15 A
0.101 —— ODE (N=w) |
—— N=10
0.05 A —— N=100
—— N=1000
0.00 T T T : :
0 1 2 3 4 5
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with p = 0.9):
N | 10 100 1000 | oo
Average queue length (simulation) | 2.8040 2.3931 2.3567 | 2.3527
Error of mean field 0.4513 0.0404 0.0040 0
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with p = 0.9):

N | 10 100 1000 | oo
Average queue length (simulation) | 2.8040 2.3931 2.3567 | 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error seems to decrease as 1/N
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with p = 0.9):

N | 10 100 1000 | oo
Average queue length (simulation) | 2.8040 2.3931 2.3567 | 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error seems to decrease as 1/N

Theorem (Kolokoltsov 2012, G. 2017& 2018). If the drift f is C? and has

a unique exponentially stable attractor, then for any t € [0,00) U {o0},
there exists a constant V; such that:

V(t)

E [h(X"(1))] = h(x(£) + = + O(1/N?)
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The refined mean field approximation...
. is defined as the classic mean field plus the 1/N correction term:

E [X’V] - x(t)+V,E/t) +O(1/N?),

Refined mf approx

where V/(t) is computed analytically.
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The refined mean field approximation...

. is defined as the classic mean field plus the 1/N correction term:

E [X’V] - x(t)+V,E/t) +O(1/N?),

Refined mf approx

where V/(t) is computed analytically.

To compute V/(t), we need:
@ Derivative of the drifts:

of i

Fi

@ A variance term:

Q(t) =) L@ LBe(X(t))
l

(6)= 5, (x(0) and () = 5 ()
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Computational methods

Theorem (G, Van Houdt 2018) Given a density dependent process with

twice-differentiable drift. Let h: E — R be a twice-differentiable function
then for t > 0:

£ [h(X" ()] =h<x(t>>+%<§_j P vty 3 ';;;ggjw,,-(t))wwg)

where

—V’—ZF VJ+ZF’ Wk

%Wf’k =QF 4+ F{;, W™k 4y " wimEk

Theorem (G, Van Houdt 2018) The previous theorem also holds for the

stationary regime (t = +o00) if the ODE has a unique exponentially stable
attractor.
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The supermarket model (SQ(2))

N 10 20 30 50 100 00
p=07
Simulation | 1.2194 1.1735 1.1584 1.1471 1.1384 -
Refined mf | 1.2150 1.1726 1.1584 1.1471 1.1386 | 1.1301
p=209
Simulation | 2.8040 2.5665 2.4907 2.4344 23931 -
Refined mf | 2.7513 2.5520 2.4855 2.4324 2.3925 | 2.3527
p=0.95
Simulation | 4.2952 3.7160 3.5348 3.4002 3.3047 -
Refined mf | 4.1017 3.6578 3.5098 3.3915 3.3027 | 3.2139

Average queue length: Refined mean field approximation gives a
significant improvement.
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The supermarket model (SQ(2))

N 10

20

30

50

100

p=0.7
Simulation | 1.2194
Refined mf | 1.2150

1.1735
1.1726

1.1584
1.1584

1.1471
1.1471

1.1384
1.1386

1.1301

p=0.9
Simulation | 2.8040
Refined mf | 2.7513

2.5665
2.5520

2.4907
2.4855

2.4344
2.4324

2.3931
2.3925

2.3527

p=0.95
Simulation | 4.2952
Refined mf | 4.1017

3.7160
3.6578

3.5348
3.5098

3.4002
3.3915

3.3047
3.3027

3.2139

Average queue length: Refined mean field approximation gives a

significant improvement.
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The supermarket model (SQ(2))

N 10 20 30 50 100 00
p=0.7
Simulation | 1.2194 1.1735 1.1584 1.1471 1.1384 -
i Refined mf | 1.2150 1.1726 1.1584 1.1471 1.1386 | 1.1301
E p=20.9 Mean field approxim%tion
v Simulation || 2.8040 | 2.5665 2.4907 2.4344 2.3931 = :
i+ Refined mf [| 2.7513 | 2.5520 2.4855 2.4324 2.3925 ||2.3527 E
' p=0.95
Simulation | 4.2952 3.7160 3.5348 3.4002 3.3047 -
Refined mf | 4.1017 3.6578 3.5098 3.3915 3.3027 | 3.2139

Average queue length: Refined mean field approximation gives a

significant improvement.
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Pull-push model (servers with > 2 jobs push to empty)

N 10 20 50 100 00
p=20.8
Simulation 1.5569 1.4438 1.3761 1.3545 -
=efined meap figld L. L0831 4803, 13700, L 130dl . L 13333, .
: p = 0.90 Mean field approxim?tion
. Simulation 2.3043| 1.9700 1.7681 1.7023 = .
E Refined mean field [|2.2945] 1.9654 1.7680 1.7022 | 1.6364| :
T Tp=095 T T '
Simulation 3.4288 2.6151 2.1330 1.9720 -
Refined mean field | 3.4369 2.6232 2.1350 1.9723 | 1.8095

Average queue length: Refined mean field approximation is remarkably
accurate
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Outline

© Extensions and Limits of the Approach
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Recap and extensions

If x — xQ(x) is C2, then :
@ The accuracy of the classical mean field approximation is O(1/N).
@ We can use this to define a refined approximation.

© The refined approximation is often accurate for N = 10:
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Recap and extensions

If x — xQ(x) is C2, then :
@ The accuracy of the classical mean field approximation is O(1/N).
@ We can use this to define a refined approximation.

© The refined approximation is often accurate for N = 10:

Extensions:
@ Transient regime
@ Discrete-time systems

@ We can also compute the next term in 1/N?.
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Limit 1: it applies to object properties but not to
populations

Population's state: X(t

X(t) = x(t) +

Z 95,6

L
VN

\_/

—— ODE (N =) |

—— N=10
—— N=100
—— N=1000

One object has state S,(t)

E[X(8)] = x(t)

L C
N

Average queue length
(N=10and p=10.9)

Simu | Refined M.F.

M.F.

2.804 2.751

2.353
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Limit 2: It can fail when the mean field approximation has
limiting cycles

064 4

0.54

0.4 4

Alt)

0.34

0.24

0.14

—— Mean field approximation

Fixed point

0.0 0.2 0.4

Transition

(D,A,S) — (D,

(D,A,S)— (D

1 1

A— = il
1 N,5+/¥)
+N’A’5_N)

Rate
N(0.1 + 10Xa)Xp
N5X4

10X,
Xp+4§

N(l + )Xs
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Limit 2: It can fail when the mean field approximation has
limiting cycles

1.2 4 —— mean-field

——— simulation (N =50)
1.0 A
0.8
0.6
0.4

0.2 A /\ A

0.01

E[A(t)]

—-0.2 1

—0.4 1

Time t
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Limit 2: It can fail when the mean field approximation has
limiting cycles

1.2 4 —— mean-field
——— simulation (N =50)
—==- 1/N-expansion

1.0 1

E[A(t)]

—0.4 1
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Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively “easy” to work with.
e Forward equation : ODE.

@ Backward equation : MDP (Markov decision process)

Open question : Do the Nash equilibria of the finite games converge to a
mean field equilibria? What is the rate of convergence?
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Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively “easy” to work with.
e Forward equation : ODE.

@ Backward equation : MDP (Markov decision process)

Open question : Do the Nash equilibria of the finite games converge to a
mean field equilibria? What is the rate of convergence?

@ The value of the game does not always converge (Doncel et al. 2017)
@ When it does, convergence seems to be O(1/V'N).
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Some References

http://polaris.imag.fr/nicolas.gast

nicolas.gast@inria.fr

A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)

Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis Gast, Bortolussi, Tribastone
Expected Values Estimated via Mean Field Approximation are O(1/N)-accurate by Gast. SIGMETRICS 2017.
https://github.com/ngast/rmf_tool/
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