How to use mean field approximation for 10 players?

Nicolas Gast

Inria, Grenoble, France

ISCIS 2019 – Conférence Internationale sur les Méthodes de Modélisation des Systèmes et Réseaux Informatiques et Bio-Informatiques, October 2019

Discrete space mean field model

Population of N objects

• Each object evolves in a finite state-space $S_n(t) \in S$.

Discrete space mean field model

Population of N objects

• Each object evolves in a finite state-space $S_n(t) \in S$.

Evolution of one object : Markov kernel Q(X).

 X_i = fraction of objects in state *i*

 $Q_{ij}(X) = \text{rate/proba of one object of jumping from } i \text{ to } j.$

Q could represent:

- Game theory: Replicator dynamic, Best-response dynamics
- Biology: interactions between cells
- Computer Systems: decentralized allocations, cache management.

Some examples

Observe d-1 other nodes and chooses the shortest queue

Infection/information propagation SIR / SIS

Mean field approximation

When the number of objects is large, objects become independent :

• In the synchronous case¹:

X(t+1) = X(t)Q(X(t))

• In the asynchronous case².:

$$\frac{d}{dt}X(t) = X(t)Q(X(t))$$

In this talk, I will focus on the latter.

Gomes, Mohr, Souza, 2010 : Discrete time, finite state space mean field games

Gomes,Mohr,Souza 2013: Continuous time finite state mean field game

This talk: compare finite N models and mean field approximation

Mean field approximation $\dot{x} = xQ(x)$

 $\mathbf{P}[S_n(t)=i]\approx X_i(t)\approx x_i(t).$

Outline

1 Classical Mean Field Limits

Outline

2 The Refined Mean Field

Example: the supermarket model (SQ(d) load-balancing)

Arrival at each server ρ .

- Sample *d* 1 other queues.
- Allocate to the shortest queue

Service rate=1.

SQ(d): state representation

• Let $S_n(t)$ be the queue length of the *n*th queue at time t.

$$S = (1, 3, 1, 0, 2)$$

SQ(d): state representation

• Let $S_n(t)$ be the queue length of the *n*th queue at time t.

Alternative representation:

$$X_i(t) = \frac{1}{N} \sum_{n=1}^N \mathbf{1}_{\{S_n(t) \ge i\}},$$

which is the fraction of queues with queue length $\geq i$.

$$X = (1, 0.8, 0.4, 0.2, 0, 0, 0, \dots)$$

SQ(d) : state transitions

• Arrival:
$$x \mapsto x + \frac{1}{N}\mathbf{e}_i$$
.
• Departures: $x \mapsto x - \frac{1}{N}\mathbf{e}_i$.

SQ(d) : state transitions

Recall that x_i is the fraction of servers with *i* jobs or more. Pick two servers at random, what is the probability the least loaded has i - 1 jobs?

SQ(d) : state transitions

Recall that x_i is the fraction of servers with *i* jobs or more. Pick two servers at random, what is the probability the least loaded has i - 1 jobs?

$$\begin{aligned} x_{i-1}^2 - x_i^2 & \text{when picked with replacement} \\ x_{i-1} \frac{Nx_{i-1} - 1}{N - 1} - x_i \frac{Nx_i - 1}{N - 1} & \text{when picked without replacement} \end{aligned}$$

Note: this becomes asymptotically the same as N goes to infinity.

Transitions and mean field approximation

State changes on x:

$$x \mapsto x + \frac{1}{N} \mathbf{e}_{i}$$
 at rate $N \rho(x_{i-1}^{d} - x_{i}^{d})$
 $x \mapsto x - \frac{1}{N} \mathbf{e}_{i}$ at rate $N(x_{i} - x_{i+1})$

The mean field approximation is to consider the ODE associated with the drift (average variation):

$$\dot{x}_i = \underbrace{\rho(x_{i-1}^d - x_i^d)}_{\text{Arrival}} - \underbrace{(x_i - x_{i+1})}_{\text{Departure}}$$

The model can be easily modified

Variants = push-pull model, centralized solution

 At rate r, each server that has i ≥ 2 or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$x\mapsto x+rac{1}{N}(-e_i+e_1)$$
 at rate $Nr(x_{i-1}-x_i)(1-x_1)$

The model can be easily modified

Variants = push-pull model, centralized solution

 At rate r, each server that has i ≥ 2 or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$x\mapsto x+rac{1}{N}(-e_i+e_1)$$
 at rate $Nr(x_{i-1}-x_i)(1-x_1)$

 At rate Nγ, a centralized server serves a job from the longests queue. Transitions is:

$$x\mapsto x-rac{1}{N}e_i$$
 at rate $N\gamma x_i \mathbf{1}_{\{x_{i+1}=0\}}$

The model can be easily modified

Variants = push-pull model, centralized solution

 At rate r, each server that has i ≥ 2 or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$x\mapsto x+rac{1}{N}(-e_i+e_1)$$
 at rate $Nr(x_{i-1}-x_i)(1-x_1)$

 At rate Nγ, a centralized server serves a job from the longests queue. Transitions is:

$$x\mapsto x-rac{1}{N}e_i$$
 at rate $N\gamma x_i \mathbf{1}_{\{x_{i+1}=\mathbf{0}\}}$

The mean field approximation becomes (for i > 1):

$$\dot{x}_{i} = \underbrace{\rho(x_{i-1}^{d} - x_{i}^{d})}_{\text{Arrival}} - \underbrace{(x_{i} - x_{i+1})}_{\text{Departure}} - \underbrace{r(x_{i-1} - x_{i})(1 - x_{1})}_{\text{Push}} - \underbrace{N\gamma x_{i} \mathbf{1}_{\{x_{i+1}=0\}}}_{\text{Centralized}}$$
$$\dot{x}_{1} = \underbrace{\rho(x_{0}^{d} - x_{1}^{d})}_{\text{Arrival}} - \underbrace{(x_{1} - x_{2})}_{\text{Departure}} + \sum_{i=2}^{\infty} \underbrace{r(x_{i-1} - x_{i})(1 - x_{1})}_{\text{Push}} - \underbrace{N\gamma x_{1} \mathbf{1}_{\{x_{2}=0\}}}_{\text{Centralized}}$$

These models are examples of density dependent population processes (Introduced by (Kurtz, 70s))

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

These models are examples of density dependent population processes (Introduced by (Kurtz, 70s))

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The drift is $f(x) = \sum \ell \beta_{\ell}(x)$ and the mean field approximation is the solution of the ODE

 $\dot{x} = f(x).$

These models are examples of density dependent population processes (Introduced by (Kurtz, 70s))

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The drift is $f(x) = \sum \ell \beta_{\ell}(x)$ and the mean field approximation is the solution of the ODE

$$\dot{x} = f(x).$$

Example: SQ(d) load balancing: $\dot{x}_i = \rho(x_{i-1}^d - x_i^d) - (x_i - x_{i+1})$. This ODE has a unique attractor: $\pi_i = \rho^{(d^i-1)/(d-1)}$.

Convergence result as N goes to infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If $X^{N}(0)$ converges to x_{0} , then for any finite T:

$$\sup_{0\leq t\leq T}\left\|X^{N}(t)-x(t)\right\|\to 0.$$

where x(t) is the unique solution of the ODE $\dot{x} = f(x)$.

Convergence result as N goes to infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If $X^{N}(0)$ converges to x_{0} , then for any finite T:

$$\sup_{0\leq t\leq T}\left\|X^{N}(t)-x(t)\right\|\to 0.$$

where x(t) is the unique solution of the ODE $\dot{x} = f(x)$.

Theorem If the mean field approximation as a unique attractor $x(\infty)$, then

$$\left\|X^N(\infty)-x(\infty)\right\|\to 0$$

SQ(d) load balancing (d = 2)

	Simulati	ion (steac	ly-state ave.	queue length)	Fixed point
Ν	10	20	50	100	∞ (mean field)
$\rho = 0.70$	1.2194	1.1735	1.1471	1.1384	1.1301
$\rho = 0.90$	2.8040	2.5665	2.4344	2.3931	2.3527
$\rho = 0.95$	4.2952	3.7160	3.4002	3.3047	3.2139

Fairly good accuracy for N = 100 servers.

SQ(d) load balancing (d = 2)

	Simulati	ion (steac	ly-state ave.	queue length)	Fixed point
Ν	10	20	50	100	∞ (mean field)
$\rho = 0.70$	1.2194	1.1735	1.1471	1.1384	1.1301
$\rho = 0.90$	2.8040	2.5665	2.4344	2.3931	2.3527
$\rho = 0.95$	4.2952	3.7160	3.4002	3.3047	3.2139

Fairly good accuracy for N = 100 servers.

Pull-push model (servers with ≥ 2 jobs push to empty)

	Simulati	ion (steac	Fixed point		
Ν	10	20	50	100	∞ (mean field)
$\rho = 0.80$	1.5569	1.4438	1.3761	1.3545	1.3333
$\rho = 0.90$	2.3043	1.9700	1.7681	1.7023	1.6364
$\rho = 0.95$	3.4288	2.6151	2.1330	1.9720	1.8095

Fairly good accuracy for N = 100 servers.

Outline

1 Classical Mean Field Limits

Mean Field Accuracy

Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous: $X^{N}(t) \approx x(t) + \frac{1}{\sqrt{N}}G_{t}$ If in addition the ODE has a unique attractor π : $\mathbb{E}\left[X^{N}(\infty) - \pi\right] = O(1/\sqrt{N})$

Nicolas Gast - 18 / 29

Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with $\rho = 0.9$): 100 1000 Ν 10 ∞ Average queue length (simulation) 2.8040 2.3931 2.3567 2.3527 Error of mean field 0.4513 0.0404 0.0040 0

Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with $\rho = 0.9$):							
N	10	100	1000	∞			
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527			
Error of mean field	0.4513	0.0404	0.0040	0			
Error seems to decrease as $1/N$							

Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with $\rho = 0.9$):						
N	10	100	1000	∞		
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527		
Error of mean field	0.4513	0.0404	0.0040	0		
Error seems to decrease as $1/N$						

Theorem (Kolokoltsov 2012, G. 2017& 2018). If the drift f is C^2 and has a unique exponentially stable attractor, then for any $t \in [0, \infty) \cup \{\infty\}$, there exists a constant V_t such that:

$$\mathbb{E}\left[h(X^N(t))\right] = h(x(t)) + \frac{V(t)}{N} + O(1/N^2)$$

Nicolas Gast - 19 / 29

The refined mean field approximation...

... is defined as the classic mean field plus the 1/N correction term:

$$\mathbb{E}\left[X^{N}\right] = \underbrace{x(t) + \frac{V(t)}{N}}_{\text{Refined mf approx}} + O(1/N^{2}),$$

where V(t) is computed analytically.

The refined mean field approximation...

... is defined as the classic mean field plus the 1/N correction term:

$$\mathbb{E}\left[X^{N}\right] = \underbrace{x(t) + \frac{V(t)}{N}}_{\text{Refined mf approx}} + O(1/N^{2}),$$

where V(t) is computed analytically.

To compute V(t), we need:

• Derivative of the drifts:

$$F_j^i(t) = rac{\partial f_i}{\partial x_j}(x(t)) ext{ and } F_{jk}^i(t) = rac{\partial^2 f_i}{\partial x_j \partial x_k}(x(t))$$

A variance term:

$$Q(t) = \sum_\ell \ell \otimes \ell eta_\ell(X(t))$$

Computational methods

Theorem (G, Van Houdt 2018) Given a density dependent process with twice-differentiable drift. Let $h : E \to \mathbb{R}$ be a twice-differentiable function, then for t > 0:

$$\mathbb{E}\left[h(X^{N}(t))\right] = h(x(t)) + \frac{1}{N} \left(\sum_{i} \frac{\partial h(x(t))}{\partial x_{i}} V_{i}(t) + \frac{1}{2} \sum_{ij} \frac{h(x(t))}{\partial x_{i} \partial x_{j}} W_{ij}(t)\right) + O(\frac{1}{N^{2}})$$

where

$$\frac{d}{dt}V^{i} = \sum_{j} F_{j}^{i}V^{j} + \sum_{jk} F_{j,k}^{i}W^{j,k}$$
$$\frac{d}{dt}W^{j,k} = Q^{jk} + \sum_{m} F_{m}^{j}W^{m,k} + \sum_{m} W^{j,m}F_{m}^{k}$$

Theorem (G, Van Houdt 2018) The previous theorem also holds for the stationary regime $(t = +\infty)$ if the ODE has a unique exponentially stable attractor.

The supermarket model (SQ(2))

Ν	10	20	30	50	100	∞
$\rho = 0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	_
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.1301
$\rho = 0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	_
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\rho = 0.95$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	_
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\rho = 0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	_
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.130 1
$\rho = 0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	- :
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
ho = 0.95	_ 					
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	_
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.213 9

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

	N	10	20	30	50	100	∞	
	$\rho = 0.7$							
	Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	—	
_	Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.130 1	_
f	$\rho = 0.9$				Me	an field	approxim	ation
i	Simulation	2.8040	2.5665	2.4907	2.4344	2.3931		
ł	Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527	
ľ	$\rho = 0.95$							-
	Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	_	
	Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.213 9	

Average queue length: Refined mean field approximation gives a significant improvement.

Pull-push model (servers with ≥ 2 jobs push to empty)

Average queue length: Refined mean field approximation is remarkably accurate

Outline

1 Classical Mean Field Limits

2 The Refined Mean Field

Recap and extensions

If $x \mapsto xQ(x)$ is C^2 , then :

- **()** The accuracy of the classical mean field approximation is O(1/N).
- 2 We can use this to define a refined approximation.
- **③** The refined approximation is often accurate for N = 10:

Recap and extensions

If $x \mapsto xQ(x)$ is C^2 , then :

- **()** The accuracy of the classical mean field approximation is O(1/N).
- We can use this to define a refined approximation.
- Solution The refined approximation is often accurate for N = 10:

Extensions:

- Transient regime
- Discrete-time systems
- We can also compute the next term in $1/N^2$.

Limit 1: it applies to object properties but not to populations

One object has state $S_n(t)$

$$\mathbb{E}\left[X(t)\right] = x(t) + \frac{C}{N}$$

Average queue length					
(${\it N}=10$ and $ ho=0.9$)					
Simu	Refined M.F.	M.F.			
2.804	2.751	2.353			

Limit 2: It can fail when the mean field approximation has limiting cycles

Transition	Rate
$(D,A,S)\mapsto (D-\frac{1}{N},A+\frac{1}{N},S)$	$N(0.1+10X_A)X_D$
$(D,A,S)\mapsto (D,A-\frac{1}{N},S+\frac{1}{N})$	$N5X_A$
$(D,A,S)\mapsto (D+\frac{1}{N},A,S-\frac{1}{N})$	$N(1+rac{10X_A}{X_D+\delta})X_S$

Limit 2: It can fail when the mean field approximation has limiting cycles

Limit 2: It can fail when the mean field approximation has limiting cycles

Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively "easy" to work with.

- Forward equation : ODE.
- Backward equation : MDP (Markov decision process)

Open question : Do the Nash equilibria of the finite games converge to a mean field equilibria? What is the rate of convergence?

Limit 3: What about games and/or optimal control?

Discrete-state mean field games are relatively "easy" to work with.

- Forward equation : ODE.
- Backward equation : MDP (Markov decision process)

Open question : Do the Nash equilibria of the finite games converge to a mean field equilibria? What is the rate of convergence?

- The value of the game does not always converge (Doncel et al. 2017)
- When it does, convergence seems to be $O(1/\sqrt{N})$.

Some References

http://polaris.imag.fr/nicolas.gast

nicolas.gast@inria.fr

• A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)

• Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis Gast, Bortolussi, Tribastone

Expected Values Estimated via Mean Field Approximation are O(1/N)-accurate by Gast. SIGMETRICS 2017.

https://github.com/ngast/rmf_tool/