Mean-field Methods for Large Stochastic Systems with application to bike-sharing systems

Nicolas Gast (Inria, Grenoble)

Inria Nancy seminar - May 7, 2015

Nicolas Gast - 1 / 38

We want to study large stochastic systems composed of many interacting objects

**Example:** (computer networks, biological models,...)...

We want to study large stochastic systems composed of many interacting objects

**Example:** (computer networks, biological models,...)... bike-sharing systems



## Markovian models suffers from the curse of dimensionality.

The state space grows exponentially with the number of objects.



## Dynamic systems can be modeled by using stochastic or deterministic models



## Outline



- 2 Finite time-horizon: convergence to ODE
- Infinite time-horizon: steady-state and fixed-point method
- Example: application to bike sharing systems

#### 5 Conclusion

## Outline

#### Mean-field interaction model

- 2 Finite time-horizon: convergence to ODE
- Infinite time-horizon: steady-state and fixed-point method
- 4 Example: application to bike sharing systems
- 5 Conclusion

## Mean-field interaction model

- Time is discrete
- N objects
- Object *n* as state  $X_n(t)$
- $(X_1(t) \dots X_N(t))$  is Markov
- Objects are observable through their state only.

"Occupancy measure":  $M^{N}(t) =$  distribution of object states at time t. Theorem [G2012a].  $M^{N}(t)$  is Markov.

## Example: Epidemics (SIR model)

Mobile nodes are:

- S: susceptible
- I: Infected
- R: Recovered

Occupancy measure is

M(t):(S(t),I(t),R(t))

with S(t) + I(t) + R(t) = 1.

Direct Infection:  $S \rightarrow I$ Infection by others:  $S + I \rightarrow I + I$ 8 Recovery:  $I \rightarrow R$ 4

 $R \rightarrow S$ 

Example: Epidemics (SIR model)

#### Each time, a node is chosen:

- If the node is in state 'S':
  - 1~ He becomes I with probability  $\alpha$
  - 2 With probability  $\beta NI(t)/(N-1)$  and becomes I.
- If the node is 'I':
  - 2 With probability  $\beta NS(t)/(N-1)$ , he meets an S and the S becomes I.
  - 3 With probability  $\gamma$ , he becomes R
- If the node is 'R':
  - 4 With probability  $\delta$ , he becomes *S*.

Direct Infection:

$$S \rightarrow I$$

- Infection by others:
  - $S + I \rightarrow I + I$
- In the second second
- $I \rightarrow R$

 $R \rightarrow S$ 

Simulation with N = 100



Simulation with N = 1000



### When are these approximation valid?

- Asymptotic for large N:
  - Fluid limit
  - Fast-simulation
- Asymptotic for large time-horizon:
  - Fixed-point method

## Outline



#### 2 Finite time-horizon: convergence to ODE

Infinite time-horizon: steady-state and fixed-point method

#### 4 Example: application to bike sharing systems

#### 5 Conclusion

We can construct the ODE by using the drift

The drift is 
$$f^N(m) = rac{1}{N} \mathsf{E} \left[ M^N(t+1) - M^N(t) | M^N(t) = m 
ight].$$



#### The mean-field limit

Under very general condition (given later), the occupancy measure  $M^N(t)$  converges (in probability) to a deterministic process, m(t), called the mean-field limit:

$$M^N(Nt) \rightarrow m(t),$$

Finite state space = ODE dm/dt = f(m).



## Sufficient convergence as verifiable by inspection

#### Theorem (Benaïm-Le Boudec 2008)

Assume that:

- The number of object that change state has a bounded second moment.
- The drift converges uniformly to a Lipschitz function:  $f^N \to f$
- The state space is finite.

Then, uniformly for all t:

 $M^N(Nt) \rightarrow m(t),$ 

in probability.

The proof is based on stochastic approximation  $(x_{n+1} = x_n + \varepsilon (f(x_n) + u_{n+1}))$ 

$$M^{N}(t+1) = M^{N}(t) + \frac{1}{N} \left( f^{N}(M^{N}(t)) + \underbrace{N\left(M^{N}(t+1) - M^{N}(t)\right) - f^{N}(M^{N}(t))}_{\mathbf{E}[\cdot|\mathcal{F}_{t}] = 0} \right)$$

The computation of the drift can be automated

$$Drift = \sum_{transitions} Delta \text{ to } M^{N}(transition) \times Proba(transition)$$

| Proba                     | Effect on $M^N = (S, I, R)$ | dS |   |                                                                        |
|---------------------------|-----------------------------|----|---|------------------------------------------------------------------------|
| $\alpha S$                | $\frac{1}{N}(-1,1,0)$       | dt | = | $-\alpha S - 2\beta SI + \delta R$                                     |
| $\beta 2SI \frac{N}{N-1}$ | $\frac{1}{N}(-1,1,0)$       | dl | _ | $\alpha S \pm 2\beta SI = \alpha I$                                    |
| $\gamma$ I                | $rac{1}{N}(0,-1,1)$        | dt | _ | $\alpha \mathbf{J} + 2\beta \mathbf{J} \mathbf{I} = \gamma \mathbf{I}$ |
| $\delta R$                | $rac{1}{N}(1,0,-1)$        | dR | = | $\gamma I - \delta R$                                                  |
|                           |                             | dt |   | /· •··                                                                 |

What is the relation between mean-field and the decoupling assumption?

• Decoupling = Objects are asymptotically independent.

What is the relation between mean-field and the decoupling assumption?

• Decoupling = Objects are asymptotically independent.

"Theorem" [Snitman 91]: For a mean-field interaction model, decoupling  $\equiv M^{N}(t)$  converges to a deterministic limit.

#### The two sides of mean-field limit Side 1 : fluid limit





### The two sides of mean-field limit

Side 1 : fluid limit



## The two sides of mean-field limit

Side 1 : fluid limit







An object is considered in the mean field created by the rest (its dynamics is represented as a time-inhomogeneous CTMC.)

## Outline



2 Finite time-horizon: convergence to ODE

#### Infinite time-horizon: steady-state and fixed-point method

4 Example: application to bike sharing systems

#### 5 Conclusion

## The fixed-point method

Method classically used:

- We solve  $f(m^*) = 0$ .
- The steady-state is  $\approx m^*$ .



#### The fixed-point method does not work in general

Method classically used:

- We solve  $f(m^*) = 0$ .
- The steady-state is  $\approx m^*$ .



#### The fixed-point method does not work in general

Method classically used:

- We solve  $f(m^*) = 0$ .
- The steady-state is  $\approx m^*$ .



When the fixed point method fails, **the decoupling assumption does not hold**. : if we observe one node "active", then we are likely to be in region A. Another node is likely to be active.

#### A positive result

#### Theorem

If the ODE has a unique fixed point  $m^*$  to which each trajectory converges, then the stationary measure concentrates on  $m^*$ 

Problem: the asymptotic behavior of an ODE cannot be predicted from its structure.



## Mean-field approximation in short

**Finite-horizon** : In general:  $M^{N}(t)$  converges to dm/dt = f(m).

- Conditions can be verified by a direct inspection.
- Works for discontinuous f (differential inclusion ṁ ∈ F(m) [Gast2012b])
- Works for controlled dynamics (HJB and Bellman equation [Gast2012a,Gast2014])
- Speed of convergence:  $O(1/\sqrt{N})$

Infinite horizon : conditions are hard to verify.

- Fixed point works very well in practice but no guarantee.
- Fixed point always work when the process is reversible.
- No speed of convergence.

## Outline

- Mean-field interaction model
- 2 Finite time-horizon: convergence to ODE
- Infinite time-horizon: steady-state and fixed-point method
- Example: application to bike sharing systems
  - 5 Conclusion

## Bike-sharing are large stochastic systems



Map of Velib' stations in Paris (France).

Example of Velib':

- 20000 bikes
- 1200 stations.

## The main problem is the lack of resource



(a) Empty station



(b) Full station

Problematic states

The system's operator want to anticipate and avoid those states.

## State of the art

#### Visualization of existing systems

 Traces analysis, clustering (Borgnat et al. 10, Vogel et al. 11, Nair et al. 11, Côme et al. 13...)

Short-term / mid-term prediction of availability

• (Ji Won Yoon et al. 12, Guenther et al. 12)

Bike re-positioning (classical RO problem)

• Redistribution based of forecast [Raviv et al. 11, Chemla et al. 13, Pfrommer 13,...]

Planing using macroscopic data

## Visualizing the data: usage varies (data from paris, 2014)

#### Example : temporal variation



## Visualizing the data: usage varies (data from paris, 2014)

#### Example: spatial variation



Source: http://www.bicyclette-app.com/fr/

### Uniform Bike-sharing systems as closed-queuing networks





### Uniform Bike-sharing systems as closed-queuing networks



### Uniform Bike-sharing systems as closed-queuing networks



**Scaling:**  $N \rightarrow \infty$  stations, *s* objects per station.

#### By using independence, the model boils down to the study of a single queue Moving bikes



By using independence, the model boils down to the study of a single queue Moving bikes



$$i \mapsto i + 1$$
 at rate  $\mu Z$   $(i < K)$   
 $i \mapsto i - 1$  at rate  $\lambda$   $(i > 0)$ 

Nicolas Gast - 30 / 38

## Distribution of $x_i$ , the fraction of station with *i* bikes

#### Theorem

There exists  $\rho$ , such that in steady state, as N goes to infinity:

 $x_i \propto \rho^i$ .

 $ho \leq 1$  iff  $s \leq rac{C}{2} + rac{\lambda}{\mu}$  where s be the average number of bikes per stations.



#### Consequences: optimal performance for $s \approx C/2$

y-axis: Prop. of problematic stations. x-axis: number of bikes/station s.



Figure : Capacity of 30 bikes

Fraction of problematic stations (=empty+full) minimal for  $s=\lambda/\mu + C/2$ • Prop. of problematic stations is at least 2/(C + 1) (6.5% for C = 30)

## Two-choice improvement



### Two-choice improvement



If  $x_j$  is the proportion of stations with j bikes.

$$(i\mapsto i-1)$$
 at rate 1 $(i\mapsto i+1)$  at rate  $\lambda(x_i+2\sum_{j=i+1}^\infty x_j)$ 

Note: the rate of change of  $x_i$  has to be multiplied by  $x_i$ .

With no geometry, we can solve the equation in close-form

$$x_i = \lambda^{2^i} - \lambda^{2^{i+1}}$$



Nicolas Gast - 34 / 38

With no geometry, we can solve the equation in close-form

$$x_i = \lambda^{2^i} - \lambda^{2^{i+1}}$$



For velib, choosing two stations at random, improves perf. from 1/C to  $\sqrt{C}2^{-C/2}$ 

Nicolas Gast - 34 / 38

# To take geometry into account, we can use pair-approximation



# To take geometry into account, we can use pair-approximation



## Outline

- Mean-field interaction model
- 2 Finite time-horizon: convergence to ODE
- Infinite time-horizon: steady-state and fixed-point method
- 4 Example: application to bike sharing systems



## Take-away message

Mean-field approximation makes possible the study of large systems. Beware of the decoupling assumption.

## Take-away message

Mean-field approximation makes possible the study of large systems. Beware of the decoupling assumption.

Performance of bike-sharing is poor, even for homogeneous scenarios (1/C of problematic stations). Incentives or frustration can help.

If an ideal symmetric system works poorly, do not expect perfect service in a real system ;)

## To learn more: the slides are online

http://mescal.imag.fr/membres/nicolas.gast/

#### Mean-field models for performance evaluation

[Benaïm, Le Boudec, 2012] A class of mean field interaction models for computer and communication systems, Performance evaluation 2008

[G2012a] Mean Field for Markov Decision Processes: from Discrete to Continuous Optimization Nicolas Gast, Bruno Gaujal and Jean-Yves Le Boudec, Transaction on Automatic Control, 2012

[G2012b] Markov chains with discontinuous drifts have differential inclusion limits Nicolas Gast, Bruno Gaujal, Performance Evaluation, 2012.

[Sznitman 91]. Topic in Propagation of Chaos, 1991.

#### Bike-sharing systems

[Fricker Gast, 2014] – Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO Journal on Transportation.

[Fricker, Gast, Mohamed (2012)]. Mean field analysis for inhomogeneous bike sharing systems DMTCS Proc.

[Waserhole, Jost (2012)] - Vehicle Sharing System Pricing Regulation : A Fluid Approximation

[Malyshev and Yakovlev]. Condensation in large closed Jackson networks. Ann. Appl. Proba. 1996.

[Côme et al (2013)] - Spatio-temporal analysis of Dynamic Origin-Destination data using Latent Dirichlet Allocation.

Application to the Vélib' Bike Sharing System of Paris

[Ji Won Yoon et al. (2012)] Cityride: a predictive bike sharing journey advisor

#### Smart-grids

[G2013] Gast, Le Boudec, Proutière, Tomozei – Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets. ACM e-Energy '13,

[G2013b] Gast, Le Boudec, Tomozei – Impact of demand-response on the efficiency and prices in real-time electricity markets. ACM e-Energy '14,