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We want to study large stochastic systems composed of
many interacting objects

Example: (computer networks, biological models,...)...
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Markovian models suffers from the curse of dimensionality.

The state space grows exponentially with the number of objects.
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Dynamic systems can be modeled by using stochastic or

deterministic models

0 packets
1 packets
2 packets
3 packets
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0 packets
1 packets
2 packets
3 packets

ODE
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Outline

© Mean-field interaction model

@ Finite time-horizon: convergence to ODE

© Infinite time-horizon: steady-state and fixed-point method
@ Example: application to bike sharing systems

© Conclusion
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Outline

© Mean-field interaction model
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Mean-field interaction model

Time is discrete

N objects

Object n as state X,(t)

(X1(t) ... Xn(t)) is Markov

Objects are observable through their state only.

“Occupancy measure”: MV(t) = distribution of object states at time t.
Theorem [G2012a]. MN(t) is Markov.
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Example: Epidemics (SIR model)

@ Direct Infection:
Mobile nodes are:

@ S: susceptible S

@ |: Infected @ Infection by others:
@ R: Recovered

S+1—=1+1
Occupancy measure is @ Recovery:
M(t) : (S(t), I(t), R(t)) | R
with S(t) + I(t) + R(t) = 1. o
R—S
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Example: Epidemics (SIR model)

Each time, a node is chosen:
@ If the node is in state 'S’:
1 He becomes | with probability o
2 With probability BNI(t)/(N — 1) and
becomes |I.
o If the node is 'I':
2 With probability SNS(t)/(N — 1), he
meets an S and the S becomes I.
3 With probability -, he becomes R
o If the node is 'R’":
4 With probability §, he becomes S.

@ Direct Infection:
S—1

@ Infection by others:

S+l —=1+1
© Recovery:
I - R
o
R—S
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Simulation with N = 100
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Simulation with N = 1000
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When are these approximation valid?

@ Asymptotic for large N:
» Fluid limit
» Fast-simulation

@ Asymptotic for large time-horizon:
» Fixed-point method

Nicolas Gast — 10 / 38



Outline

© Finite time-horizon: convergence to ODE
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We can construct the ODE by using the drift

The drift is fN(m) =
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The mean-field limit

Under very general condition
(given later), the occupancy
measure MN(t) converges (in
probability) to a determinis-
tic process, m(t), called the
mean-field limit:

MN(Nt) — m(t),

Finite state space = ODE
dm/dt = f(m).
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Sufficient convergence as verifiable by inspection

Theorem (Benaim-Le Boudec 2008)

Assume that:

@ The number of object that change state has a bounded second
moment.

o The drift converges uniformly to a Lipschitz function: fN — f
@ The state space is finite.
Then, uniformly for all t:

MN(Nt) — m(t),

in probability.
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The proof is based on stochastic approximation
(Xn+1 = Xp+¢€ (f(Xn) + Un+1))

N

MN(t+1) = /\//"’(t)+l (fN(MN(t)) + N (MM(t4+1)-M"(t)) fN(l\/IN(t)))

E[-|F:]=0
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The computation of the drift can be automated

Drift = Z Delta to MN(transition) x Proba(transition)

transitions

Proba | Effect on MV = (S, 1, R) ds S —28SI + 4R
05 pCLLO o -
2SI n(=1,1,0) al
o 5(0.-1,1) d = TR
T — R

dt
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What is the relation between mean-field and the
decoupling assumption?

@ Decoupling = Objects are asymptotically independent.
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What is the relation between mean-field and the
decoupling assumption?

@ Decoupling = Objects are asymptotically independent.

“Theorem” [Snitman 91]: For a mean-field interaction model, decoupling
= MN(t) converges to a deterministic limit.
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The two sides of mean-field limit
Side 1 : fluid limit
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Side 1 : fluid limit
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The two sides of mean-field limit
Side 1 : fluid limit Side 2: decoupling

o

%

An object is considered in the
mean field created by the rest (its
dynamics is represented as a time-
inhomogeneous CTMC.)

Nicolas Gast — 18 / 38



Outline

© Infinite time-horizon: steady-state and fixed-point method
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The fixed-point method

Method classically used:
e We solve f(m*) = 0.
@ The steady-state is =~ m*.

Active
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The fixed-point method does not work in general

Method classically used:
e We solve f(m*) = 0.

@ The steady-state is =~ m*.
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The fixed-point method does not work in general

03
03 A
0.7
Method classically used: gm, ’
33 05|
e We solve f(m*) = 0. g
04
@ The steady-state is =~ m*. .
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When the fixed point method fails, the decoupling assumption does
not hold. : if we observe one node “active”, then we are likely to be in
region A. Another node is likely to be active.
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A positive result

Theorem

If the ODE has a unique fixed point m* to which each trajectory
converges, then the stationary measure concentrates on m*

Nicolas Gast — 21 / 38



Problem: the asymptotic behavior of an ODE cannot be
predicted from its structure.
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Mean-field approximation in short

Finite-horizon : In general: M"(t) converges to dm/dt = f(m).
@ Conditions can be verified by a direct inspection.

e Works for discontinuous f (differential inclusion m € F(m)
[Gast2012b])

@ Works for controlled dynamics (HJB and Bellman equation
[Gast2012a,Gast2014])

e Speed of convergence: O(1/v/N)

Infinite horizon : conditions are hard to verify.
@ Fixed point works very well in practice but no guarantee.
@ Fixed point always work when the process is reversible.

@ No speed of convergence.
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Outline

@ Example: application to bike sharing systems
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Bike-sharing are large stochastic systems

Example of Velib':
@ 20000 bikes
@ 1200 stations.

— o

Map of Velib’ stations in Paris (France).

Nicolas Gast — 25 / 38



The main problem is the lack of resource

(a) Empty station (b) Full station

Problematic states

The system’s operator want to anticipate and avoid those states.
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State of the art

Visualization of existing systems

@ Traces analysis, clustering (Borgnat et al. 10, Vogel et al. 11, Nair et
al. 11, Come et al. 13...)

Short-term / mid-term prediction of availability
o (Ji Won Yoon et al. 12, Guenther et al. 12)

Bike re-positioning (classical RO problem)
@ Redistribution based of forecast [Raviv et al. 11, Chemla et al. 13,

Pfrommer 13,...]

Planing using macroscopic data
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Visualizing the data: usage varies (data from paris, 2014)

Example : temporal variation
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Visualizing the data: usage varies (data from paris, 2014)

Example: spatial variation
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Source: http://www.bicyclette-app.com/fr/
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Uniform Bike-sharing systems as closed-queuing networks
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Uniform Bike-sharing systems as closed-queuing networks

oXo)

X
15

o_~

o

take an object

/\

Use it for K Expo(1/)1)

a while
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Uniform Bike-sharing systems as closed-queuing networks

R

~l¢)\ take an object

o -
o o))
o Use it for % Expo(1/11)

a while

A .
s1e if station full
e

~
,l, Uniform routing

R

Scaling: N — oo stations, s objects per station.

return i
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By using independence, the model boils down to the study

of a single queue
Moving bikes

arrival of bikes
"""""" »> oo

departure of bikes
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By using independence, the model boils down to the study
of a single queue

Moving bikes
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Distribution of x;, the fraction of station with /i bikes
Theorem

There exists p, such that in steady state, as N goes to infinity
xj < p'.

p<1liffs< 5 + — where s be the average number of bikes per stations
7

C A —C A
5<§—|‘ﬁ _2+M

S
p<l1

s>£+A
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Consequences: optimal performance for s ~ C/2
y-axis: Prop. of problematic stations. x-axis: number of bikes/station s.
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Number of bikes per station: s

Figure : Capacity of 30 bikes

Fraction of problematic stations (=empty-+full) minimal for s=\/u + C/2
@ Prop. of problematic stations is at least 2/(C + 1) (6.5% for C = 30)
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Two-choice improvement

,,,,,,,,,,,,,,,,,

| FoFO®

Pick two /‘r 7777777777777777
at random e o e
=0

Arrival N\ ——
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Two-choice improvement

,,,,,,,,,,,,,,,,,

| FoFO®

Pick two /‘r 7777777777777777
at random e o e
=0

If x; is the proportion of stations with j bikes.

Arrival N\ ——

(i—i—1)atratel
oo
(i~ i+1)atrate A\(x; + 2 Z Xj)

j=it1

Note: the rate of change of x; has to be multiplied by x;.
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With no geometry, we can solve the equation in close-form
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With no geometry, we can solve the equation in close-form

2i+1
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To take geometry into account, we can use
pair-approximation
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To take geometry into account, we can use
pair-approximation

frequency (z;)

=—a Simulation, ring
-7
107 | = Simulation, Fix D(2)
o—e

108 Pair Approximation
10° % = One choice
- - mean-field approx.
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queue length (i)
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Outline

© Conclusion
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Take-away message

uLMean-fieId approximation makes possible the study of large
systems. Beware of the decoupling assumption.
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Take-away message

uLMean-fieId approximation makes possible the study of large
systems. Beware of the decoupling assumption.

/ 4
2

8BE performance of bike-sharing is poor, even for homogeneous
scenarios (1/C of problematic stations). Incentives or frustration can help.

If an ideal symmetric system works poorly, do not expect perfect service in
a real system ;)
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To learn more: the slides are online
http://mescal.imag.fr/membres/nicolas.gast/
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