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We want to study large stochastic systems composed of
many interacting objects

Example: (computer networks, biological models,...)...

bike-sharing
systems
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Markovian models suffers from the curse of dimensionality.

The state space grows exponentially with the number of objects.

1 object 10 objects 60 objects
3 states 310 ≈ 105 states 360 ≈ 1028 states
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Dynamic systems can be modeled by using stochastic or
deterministic models

CTMC ODE
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Mean-field interaction model

Time is discrete

N objects

Object n as state Xn(t)

(X1(t) . . .XN(t)) is Markov

Objects are observable through their state only.

“Occupancy measure”: MN(t) = distribution of object states at time t.
Theorem [G2012a]. MN(t) is Markov.
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Example: Epidemics (SIR model)

Mobile nodes are:

S: susceptible

I: Infected

R: Recovered

Occupancy measure is

M(t) : (S(t), I (t),R(t))

with S(t) + I (t) + R(t) = 1.

1 Direct Infection:

S → I

2 Infection by others:

S + I → I + I

3 Recovery:

I → R

4

R → S
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Example: Epidemics (SIR model)

Each time, a node is chosen:

If the node is in state ’S’:

1 He becomes I with probability α
2 With probability βNI (t)/(N − 1) and

becomes I.

If the node is ’I’:

2 With probability βNS(t)/(N − 1), he
meets an S and the S becomes I.

3 With probability γ, he becomes R

If the node is ’R’:

4 With probability δ, he becomes S .

1 Direct Infection:

S → I

2 Infection by others:

S + I → I + I

3 Recovery:

I → R

4

R → S
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Simulation with N = 100
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Simulation with N = 1000
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When are these approximation valid?

Asymptotic for large N:
I Fluid limit
I Fast-simulation

Asymptotic for large time-horizon:
I Fixed-point method
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We can construct the ODE by using the drift

The drift is f N(m) =
1

N
E
[
MN(t + 1)−MN(t)|MN(t) = m

]
.
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The mean-field limit

Under very general condition
(given later), the occupancy
measure MN(t) converges (in
probability) to a determinis-
tic process, m(t), called the
mean-field limit:

MN(Nt)→ m(t),

Finite state space = ODE
dm/dt = f (m).
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fluid approximation
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Sufficient convergence as verifiable by inspection

Theorem (Benäım-Le Boudec 2008)

Assume that:

The number of object that change state has a bounded second
moment.

The drift converges uniformly to a Lipschitz function: f N → f

The state space is finite.

Then, uniformly for all t:

MN(Nt)→ m(t),

in probability.
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The proof is based on stochastic approximation
(xn+1 = xn + ε (f (xn) + un+1))

MN(t+1) = MN(t)+
1

N

f N(MN(t)) + N
(
MN (t+1)−MN (t)

)
−f N (MN (t))︸ ︷︷ ︸

E[·|Ft ]=0


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The computation of the drift can be automated

Drift =
∑

transitions

Delta to MN(transition)× Proba(transition)

Proba Effect on MN = (S , I ,R)

αS 1
N (−1, 1, 0)

β2SI N
N−1

1
N (−1, 1, 0)

γI 1
N (0,−1, 1)

δR 1
N (1, 0,−1)

dS

dt
= −αS − 2βSI + δR

dI

dt
= αS + 2βSI − γI

dR

dt
= γI − δR
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What is the relation between mean-field and the
decoupling assumption?

Decoupling = Objects are asymptotically independent.

“Theorem” [Snitman 91]: For a mean-field interaction model, decoupling
≡ MN(t) converges to a deterministic limit.
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The two sides of mean-field limit
Side 1 : fluid limit

Z!

%!

An object is considered in the
mean field created by the rest (its
dynamics is represented as a time-
inhomogeneous CTMC.)
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The two sides of mean-field limit
Side 1 : fluid limit Side 2: decoupling

Z!

%!

An object is considered in the
mean field created by the rest (its
dynamics is represented as a time-
inhomogeneous CTMC.)
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The fixed-point method

does not work in general

Method classically used:

We solve f (m∗) = 0.

The steady-state is ≈ m∗.

When the fixed point method fails, the decoupling assumption does
not hold. : if we observe one node “active”, then we are likely to be in
region A. Another node is likely to be active.
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A positive result

Theorem

If the ODE has a unique fixed point m∗ to which each trajectory
converges, then the stationary measure concentrates on m∗
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Problem: the asymptotic behavior of an ODE cannot be
predicted from its structure.

β = 0.01,
δA = 0.005,
δD = 0.00001,
α = α0 = 0.00001,
r = 0.1, λ = 0.0001

h = 0.3 h = 0.1

Nicolas Gast – 22 / 38



Mean-field approximation in short

Finite-horizon : In general: MN(t) converges to dm/dt = f (m).

Conditions can be verified by a direct inspection.

Works for discontinuous f (differential inclusion ṁ ∈ F (m)
[Gast2012b])

Works for controlled dynamics (HJB and Bellman equation
[Gast2012a,Gast2014])

Speed of convergence: O(1/
√

N)

Infinite horizon : conditions are hard to verify.

Fixed point works very well in practice but no guarantee.

Fixed point always work when the process is reversible.

No speed of convergence.
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Bike-sharing are large stochastic systems

Map of Velib’ stations in Paris (France).

Example of Velib’:

20000 bikes

1200 stations.
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The main problem is the lack of resource

(a) Empty station (b) Full station

Problematic states

The system’s operator want to anticipate and avoid those states.
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State of the art

Visualization of existing systems

Traces analysis, clustering (Borgnat et al. 10, Vogel et al. 11, Nair et
al. 11, Côme et al. 13. . . )

Short-term / mid-term prediction of availability

(Ji Won Yoon et al. 12, Guenther et al. 12)

Bike re-positioning (classical RO problem)

Redistribution based of forecast [Raviv et al. 11, Chemla et al. 13,
Pfrommer 13,. . . ]

Planing using macroscopic data
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Visualizing the data: usage varies (data from paris, 2014)

Example : temporal variation

moving
bikes

weekday

weekend

time of the day
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Visualizing the data: usage varies (data from paris, 2014)

Example: spatial variation

Solution:
clustering?

Source: http://www.bicyclette-app.com/fr/
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Uniform Bike-sharing systems as closed-queuing networks

Use it for
a while

λ take an object

Use it for
a while

Expo(1/µ)

return it

Uniform routing

if station full

Scaling: N →∞ stations, s objects per station.
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By using independence, the model boils down to the study
of a single queue

Moving bikes

arrival of bikes

departure of bikes

i 7→ i + 1 at rate µZ (i < K )

i 7→ i − 1 at rate λ (i > 0)
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By using independence, the model boils down to the study
of a single queue

Moving bikes

NZ
µZ

λ

i 7→ i + 1 at rate µZ (i < K )

i 7→ i − 1 at rate λ (i > 0)
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Distribution of xi , the fraction of station with i bikes

Theorem

There exists ρ, such that in steady state, as N goes to infinity:

xi ∝ ρi .

ρ ≤ 1 iff s ≤ C

2
+
λ

µ
where s be the average number of bikes per stations.

s < C
2 + λ

µ s = C
2 + λ

µ s > C
2 + λ

µ

ρ < 1 ρ = 1 ρ < 1
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Consequences: optimal performance for s ≈ C/2

y -axis: Prop. of problematic stations. x-axis: number of bikes/station s.
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Figure : Capacity of 30 bikes

Fraction of problematic stations (=empty+full) minimal for s=λ/µ+ C/2

Prop. of problematic stations is at least 2/(C + 1) (6.5% for C = 30)
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Two-choice improvement

Arrival Nλ
Pick two

at random

1

1

If xj is the proportion of stations with j bikes.

(i 7→ i − 1) at rate 1

(i 7→ i + 1) at rate λ(xi + 2
∞∑

j=i+1

xj )

Note: the rate of change of xi has to be multiplied by xi .
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With no geometry, we can solve the equation in close-form

xi = λ2i − λ2i+1

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

no choice
two-choice (no space)

For velib, choosing two stations at random, improves perf. from 1/C to√
C 2−C/2
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To take geometry into account, we can use
pair-approximation
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queue length (i)
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Simulation, ring
Simulation, Fix D(2)
Pair Approximation
One choice
mean-field approx.
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Take-away message

Z	
  

%	
  

Mean-field approximation makes possible the study of large
systems. Beware of the decoupling assumption.

Performance of bike-sharing is poor, even for homogeneous
scenarios (1/C of problematic stations). Incentives or frustration can help.

If an ideal symmetric system works poorly, do not expect perfect service in
a real system ;)
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To learn more: the slides are online
http://mescal.imag.fr/membres/nicolas.gast/
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