Construction of Lyapunov functions via relative entropy with application to caching

Nicolas Gast¹

ACM MAMA 2016, Antibes, France

¹Inria

Nicolas Gast - 1 / 23

Outline

2 How to make the fixed point method work (sufficient condition)

3 What: application to caching policy

4 Conclusion

State space explosion and mean-field method

We need to keep track

$$\mathbb{P}(X_1(t)=i_1,\ldots,X_n(t)=i_n)$$

 $3^{13} \approx 10^6$ states.

State space explosion and mean-field method

We need to keep track

$$\mathbb{P}(X_1(t)=i_1,\ldots,X_n(t)=i_n)$$

 $3^{13}\approx 10^6$ states.

The decoupling assumption is

 $\mathbb{P}(X_1(t) = i_1, \ldots, X_n(t) = i_n) \approx \mathbb{P}(X_1(t) = i_1) \ldots \mathbb{P}(X_n(t) = i_n)$

Problem: is this valid?

Decoupling assumption: (always) valid in transient regime

Nicolas Gast – 4 / 23

Decoupling assumption: (always) valid in transient regime

Theorem (Kurtz (70'), Benaim, Le Boudec (08),...)

For many systems and any fixed t, if $x \mapsto xQ(x)$ is Lipschitz-continuous then, as the number of objects N goes to infinity:

$$\lim_{\mathsf{V}\to\infty}\mathbb{P}(X_k(t)=i)=x_{k,i}(t),$$

where x satisfies $\dot{x} = xQ(x)$.

The fixed point method

We know that $x_i(t) \approx \mathbb{P}(X(t) = i)$ satisfies $\dot{x} = xQ(x)$.

Does
$$\mathbb{P}(X = i)$$
 satisfies $xQ(x) = 0$?

Method was used in many papers:

- Bianchi 00²
- Ramaiyan et al. 08³
- Kwak et al. 05⁴
- Kumar et al 08⁵

²Performance analysis of the IEEE 802.11 distributed coordination function. – G. Bianchi. – IEEE J. Select. Areas Commun. 2000.

³Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability. – V. Ramaiyan, A. Kumar, and E. Altman. – ACM/IEEE Trans. Networking. Oct. 2008.

⁴Performance analysis of exponential backoff. – B.-J. Kwak, N.-O. Song, and L. Miller. – ACM/IEEE Trans. Networking. 2005.

New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs. – A. Kumar, E. Altman, D. Miorandi, and M. Goyal. – ACM/IEEE Trans. Networking 2007

It does not always work⁶⁷

- Markov chain is irreducible.
- Unique fixed point xQ(x) = 0.

⁶Benaim Le Boudec 08

⁷Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protoco. 2010

It does not always work⁶⁷

- Markov chain is irreducible.
- Unique fixed point xQ(x) = 0.

	Fixed	point	Stat. measure			
	xQ(x) = 0		N = 1000			
	xs	хı	π_S	π_I		
a = .3	0.209	0.234	0.209	0.234		

⁶Benaim Le Boudec 08

⁷Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protoco. 2010

It does not always work⁶⁷

⁶Benaim Le Boudec 08

⁷Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protoco. 2010

It does not always work

2 How to make the fixed point method work (sufficient condition)

3 What: application to caching policy

Nicolas Gast - 8 / 23

Outline

2 How to make the fixed point method work (sufficient condition)

3 What: application to caching policy

4 Conclusion

Link between the decoupling assumption and $\dot{x} = xQ(x)$

$$\mathbb{P}(X_1(t)=i_1,\ldots,X_n(t)=i_n)\approx\underbrace{\mathbb{P}(X_1(t)=i_1)}_{=x_{1,i_1}(t)}\ldots\underbrace{\mathbb{P}(X_n(t)=i_n)}_{=x_{n,i_n}(t)}$$

When we zoom on one object

$$\mathbb{P}(X_1(t+dt)=j|X_1(t)=i)\approx\mathbb{E}\left[\mathbb{P}(X_1(t)=j|X_1=i\wedge X_2\ldots X_n)\right]\\\approx Q_{i,j}^{(1)}(\mathbf{x}):=\sum_{i_2\ldots i_n}K_{(i,i_2\ldots i_n)\to (j,j_2\ldots j_n)}x_{2,i_2}\ldots x_{n,i_n}$$

We then get:
$$\frac{d}{dt} x_{1,j}(t) \approx \sum_{i} x_{1,i} Q_{i,j}^{(1)}(\mathbf{x})$$

Nicolas Gast - 10 / 23

Markov chain

Transient regime $\dot{p} = pK$ I $t \to \infty$ \downarrow Stationary $\pi K = 0$

Theorem ((i) Benaim Le Boudec 08,(ii) Le Boudec 12)

The stationary distribution π^N concentrates on the fixed points if : (i) All trajectories of the ODE converges to the fixed points. (ii) (or) The markov chain is reversible.

Lyapunov functions

A solution of $\frac{d}{dt}x(t) = xQ(x(t))$ converges to the fixed points of xQ(x) = 0, if there exists a Lyapunov function f, that is:

- Lower bounded: $\inf_{x} f(x) > +\infty$
- Decreasing along trajectories:

$$\frac{d}{dt}f(x(t)) < 0,$$

whenever $x(t)Q(x(t)) \neq 0$.

Lyapunov functions

A solution of $\frac{d}{dt}x(t) = xQ(x(t))$ converges to the fixed points of xQ(x) = 0, if there exists a Lyapunov function f, that is:

- Lower bounded: $\inf_{x} f(x) > +\infty$
- Decreasing along trajectories:

$$\frac{d}{dt}f(x(t)) < 0,$$

whenever $x(t)Q(x(t)) \neq 0$.

How to find a Lyapnuov functionEnergy? Distance? Entropy? Luck?

The relative entropy is a Lyapunov function for Markov chains

Let Q be the generator of an irreducible Markov chain and π be its stationary distribution. Let P(t) be the solution of $\frac{d}{dt}P(t) = P(t)Q$.

Theorem (e.g. Budhiraja et al 15, Dupuis-Fischer 11) The relative entropy $R(P||\pi) = \sum_{i} P_i \log \frac{P_i}{\pi_i}$

is a Lyapunov function:

 $\frac{d}{dt}R(P(t)\|\pi)<0,$

with equality if and only if $P(t) = \pi$.

Relative entropy for mean-field models

Assume that Q(x) be a generator of an irreducible Markov chain and let $\pi(x)$ be its stationary distribution. Let P(t) be the solution of $\frac{d}{dt}P(t) = P(t)Q(P(t))$. Then

$$\frac{d}{dt}R(P(t)||\pi(t)) = \underbrace{\frac{d}{dt}P(t)\frac{\partial}{\partial P}R(P(t),\pi(t))}_{\leq 0} + \underbrace{\frac{d}{dt}\pi(t)\frac{\partial}{\partial \pi}R(P(t),\pi(t))}_{=-\sum_{i}x_{i}(t)\frac{d}{dt}\log\pi_{i}(t)}$$
$$\leq -\sum_{i}x_{i}(t)\frac{d}{dt}\log\pi_{i}(t)$$

Relative entropy for mean-field models

Assume that Q(x) be a generator of an irreducible Markov chain and let $\pi(x)$ be its stationary distribution. Let P(t) be the solution of $\frac{d}{dt}P(t) = P(t)Q(P(t))$. Then

$$\frac{d}{dt}R(P(t)||\pi(t)) = \underbrace{\frac{d}{dt}P(t)\frac{\partial}{\partial P}R(P(t),\pi(t))}_{\leq 0} + \underbrace{\frac{d}{dt}\pi(t)\frac{\partial}{\partial \pi}R(P(t),\pi(t))}_{=-\sum_{i}x_{i}(t)\frac{d}{dt}\log\pi_{i}(t)}$$
$$\leq -\sum_{i}x_{i}(t)\frac{d}{dt}\log\pi_{i}(t)$$

Theorem

If there exists a lower bounded integral F(x) of $-\sum_{i} x_i(t) \frac{d}{dt} \log \pi_i(t)$, then $x \mapsto R(x || \pi(x)) + F(x)$ is a Lyapunov function for the mean-field model.

Outline

3 What: application to caching policy

4 Conclusion

I consider a cache (virtually) divided into lists

IRM Probability request p_i RAND Upon hit/miss: Exchanged with random from next list.

data source

Nicolas Gast - 16 / 23

I consider a cache (virtually) divided into lists

IRM Probability request *p_i* RAND Upon hit/miss: Exchanged with random from next list. I consider a cache (virtually) divided into lists

IRM Probability request *p_i* RAND Upon hit/miss: Exchanged with random from next list.

data source

Nicolas Gast - 16 / 23

We construct the ODE by assuming independence Let $H_i(t)$ be the popularity in list *i*.

We construct the ODE by assuming independence Let $H_i(t)$ be the popularity in list *i*.

If $x_{k,i}(t)$ is the probability that item k is in list i at time t:

$$\begin{split} \dot{x}_{k,i}(t) &= p_k x_{k,i-1}(t) - \underbrace{\sum_{j} p_j x_{j,i-1}(t)}_{i} \frac{x_{k,i}(t)}{m_i} \\ &+ \mathbf{1}_{\{i < h\}} \left(\underbrace{\sum_{j} p_j x_{j,i}(t)}_{i} \frac{x_{k,i+1}(t)}{m_{i+1}} - p_k x_{k,i}(t) \right) \end{split}$$

ODE of the type $\dot{x} = xQ(x)$.

Transient regime: this approximation is accurate

THEOREM 6. For any T > 0, there exists a constant C > 0 that depends on T such that, for any probability distribution over n items and list sizes $m_1 \dots m_h$, we have:

$$\mathbf{E}\left[\sup_{t\in\{0\dots\tau\},i\in\{0\dots h\}}|H_i(t)-\delta_i(t)|\right] \leq C\sqrt{\max_{k=1}^n p_k + \max_{i=0}^n \frac{1}{m_i}},$$

where $\tau := \left\lceil T / (\max_{k=1}^{n} p_k + \max_{i=0}^{h} \frac{1}{m_i}) \right\rceil.$

Stationary distribution: uniqueness of the fixed point

THEOREM 7. The mean-field model (8) has a unique fixed point. For this fixed point, the probability that item k is part of list i, for k = 1, ..., n and i = 0, ..., h, is given by

$$x_{k,i} = \frac{p_k^i z_i}{1 + \sum_{j=1}^h p_k^j z_j},$$

where $\mathbf{z} = (z_1, \ldots, z_h)$ is the unique solution of the equation

$$\sum_{k=1}^{n} \frac{p_k^i z_i}{1 + \sum_{j=1}^{h} p_k^j z_j} = m_i.$$
(14)

Stationary distribution: uniqueness of the fixed point

THEOREM 7. The mean-field model (8) has a unique fixed point. For this fixed point, the probability that item k is part of list i, for k = 1, ..., n and i = 0, ..., h, is given by

$$x_{k,i} = \frac{p_k^i z_i}{1 + \sum_{j=1}^h p_k^j z_j},$$

where $\mathbf{z} = (z_1, \ldots, z_h)$ is the unique solution of the equation

$$\sum_{k=1}^{n} \frac{p_k^i z_i}{1 + \sum_{j=1}^{h} p_k^j z_j} = m_i.$$
(14)

• By simulation: very accurate

m_1	m_2	m_3	m_4	exact	mean field
2	2	96	-	0.3166	0.3169
10	30	60	-	0.3296	0.3299
20	2	78	-	0.3273	0.3276
90	8	2	-	0.4094	0.4100
1	4	10	85	0.3039	0.3041
5	15	25	55	0.3136	0.3139
25	25	25	25	0.3345	0.3348
60	2	2	36	0.3514	0.3517

Relative entropy for the caching model

The stationary measure $\pi_{k,i}$ satisfy: $\pi_{k,i}(\mathbf{x}) = \frac{\prod_{j=1}^{i-1} \lambda_{k,j} / \mu_j(\mathbf{x})}{\sum_{i'=1}^{h} \prod_{j=1}^{j'-1} \lambda_{k,j} / \mu_j(\mathbf{x})}.$ $\sum_{k=1}^{n} \sum_{k=1}^{n} x_{k,i}(t) \frac{d}{dt} \log(\pi_{k,i}(\mathbf{x}(t)))$ $=\sum_{i=1}^{h}\sum_{k=1}^{n}x_{k,i}(t)\frac{d}{dt}\log\left(\prod_{j=1}^{i-1}\mu_{j}(\mathbf{x})\right)$ $=m_{i}$ $\sum_{k=1}^{n} \sum_{i=1}^{h} x_{k,i}(t) \frac{d}{dt} \log \left(\sum_{j'=1}^{h} \prod_{j=1}^{j'-1} \lambda_{k,j} / \mu_j(\mathbf{x}) \right)$

• Very similar to (Fricker, G. 14), (Fricker et al. 12) (Tibi 11).

Outline

2) How to make the fixed point method work (sufficient condition)

3 What: application to caching policy

Conclusion

- Decoupling assumption: OK in transient.
- The fixed point method is not always valid. We need either:
 - Reversibility
 - Lyapunov function
- To find Lyapunov functions: we need problem-specific.
 - Physics: energy.
 - Markov chains: relative entropy (since it it decrease along trajectories)

Yet... the method is not robust (e.g.: non-IRM, LRU instead of RAND)

Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

G. Van Houdt 15 Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms., Gast, Van Houdt., ACM Sigmetrics 2015
 G. 16 Construction of Lyapunov functions via relative entropy with application to caching, Gast, N., ACM MAMA 2016

Benaïm, Le Boudec 08	A class of mean field interaction models for computer and communication <i>systems</i> , M.Benaïm and J.Y. Le Boudec., Performance evaluation, 2008.		
Le Boudec 10	The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points., JY. L. Boudec. , Arxiv:1009.5021, 2010		
Budhiraja et al.	Limits of relative entropies associated with weakly interacting particle		
15	<i>systems.</i> , A. S. Budhiraja, P. Dupuis, M. Fischer, and K. Ramanan. , Electronic journal of probability, 20, 2015.		
Fricker-Gast 14	Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity., C. Fricker and N. Gast., Euro journal on transportation and logistics:1-31, 2014.		
Fricket et al. 13	Mean field analysis for inhomogeneous bike sharing systems, Fricker, Gast, Mohamed, Discrete Mathematics and Theoretical Computer Science DMTCS		

Outline

(5) On the non-optimality of too many lists

Increasing the number of lists is not always better⁸

The scheme seems to sort the number of items from least popular to most popular:

less popular popular items
$$m_{1-} \cdots m_{j+1} \cdots m_{h}$$

Six lists:
$$m = (1, 1, 1, 1, 1, 1)$$
 ?>?
 Three lists: $m = (1, 1, 4)$.

⁸contrary to the conjecture of O. I. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer Storage. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

Increasing the number of lists is not always better

Six lists: $\mathbf{m} = (1, 1, 1, 1, 1, 1)$

Three lists: m = (1, 1, 4).

policy	m	$M(\mathbf{m})$	lower bound
Optimal	RAND(1,1,4)	0.005284	0.004925
	$\operatorname{RAND}(1,1,3,1)$	0.005299	0.004884
	RAND(1,1,2,2)	0.005317	0.004884
	RAND(1,1,2,1,1)	0.005321	0.004879
	RAND(1,1,1,3)	0.005338	0.004884
	RAND(1,1,1,2,1)	0.005343	0.004879
	RAND(1,1,1,1,2)	0.005347	0.004879
CLIMB	RAND(1,1,1,1,1,1)	0.005348	0.004878
	RAND(1,2,3)	0.005428	0.004925
	RAND(1,2,2,1)	0.005439	0.004884
LRU	LRU(6)	0.005880	_
RANDOM	RAND(6)	0.015350	0.015350

Table 1: CLIMB is not optimal for IRM model: p = (49, 49, 49, 49, 7, 1, 1)/205 and m = 6.

Having 3 lists of sizes (1, 1, 4) is better than 6 lists of size 1. The same holds for the mean-field approximation.