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Motivation: Studying interacting particle systems

Stochastic models are complex.
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Fluid / mean field approximation simplifies the analysis
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Fluid approximation is often justified by a law of large
numbers

lim
n→∞
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almost surely.

Bound between Xt and ϕt(X0) by using Gronwall’s lemma.

Xt − X0 −
∫ t

0
f (Xs)ds is a martingale.

This gives a O(1/
√
n) convergence-rate.

Talk: Explain mean-field approximation through examples.

Show tools to provide sharp convergence results.
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(Main) Related work

Kurtz, 70s.
▶ Fluid limits, diffusion limits (mostly transient regime)

Application to queues
▶ Fluid limits (Bramson, Dai 90s)
▶ Interacting queues and mean-field: Load balancing (Mitzenmacher 01

+ many recent)

Stein’s method:
▶ Stein (1986)
▶ Application to queueing: Braverman, Dai (2017–)
▶ Application to mean-field models: Ying (2017).

Refined mean field / Size expansions
▶ Computational biology: Grima et al (2010s)
▶ G. Van Houdt (2018), Allmeier G. (2021,2022).
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Outline

1 Mean field approximation in queueing theory

2 Guarantee of approximation for density dependent processes

3 Element of proofs: Generators and Stein’s method

4 Conclusion
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Example: SQ(2) model
Dispatcher sends to the shortest among two random queues.

Q = (4, 0, 3, 1, 2).

X = (1, 0.8, 0.6, 0.4, 0.2, 0, . . . ).

Natural Markov model: (Q1 . . .Qn).

Complexity grows with n.

”Simplified” process: ”empirical measure”

Xi =
1

n
#{queue with i or more}.
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How to construct the fluid approximation?
(=hydrodynamic limit)

The transitions on Xi are:

Xi 7→ Xi −
1

n
at rate nµ(Xi − Xi+1) // job completion

Xi 7→ Xi +
1

n
at rate nλ(X 2

i−1 − X 2
i ) // job arrival

The ODE is ẋi = µ(xi+1 − xi ) + λ(x2i−1 − x2i ).

The fixed point is a good approximation of the average queue length:
n 10 100 1000 Fixed point

Average queue length, λ/µ = 0.9 2.804 2.393 2.357 2.353

Bias 0.45 0.039 0.004 0
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Why is this approximation called a ”mean field
approximation” (as in physics)

Xt

Xt is the law of the queue.

The queue interacts with its law (McKean-Vlasov process).

This corresponds to assuming that queues are independent.
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This extends to non-homogeneous settings

X
(n)
i =

1

n
{# objects in state i} ⇒ X (n) is not Markovian.

The solution is to use one-hot encoding:

Y(k,i) =

{
1 if object k is in state i at time t
0 otherwise

Y(n) is Markovian. We can construct a hydrodynamic limit for y.
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Example: cache replacement policies

Requests for k arrive at rate λk .

Random replacement policy.

Yk = 1 if object k is in the cache.

ẏk = λk(1− yk)︸ ︷︷ ︸
object k is requested while outside

−
∑
j

λj(1− yj)︸ ︷︷ ︸
another object enters

yk
# cache size︸ ︷︷ ︸

object k is replaced

.
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Density dependent population process

Example: SQ(2) in
the supermarket model

Mean Field Methodology:

X
(n)
s (t) =

1

n
{# objects in state s at t}

Kurtz’s density dependent population model:

X (n) → X (n) +
1

n
ℓ at rate nβℓ(X )

Drift : f (x) =
∑
ℓ

ℓβℓ(x).

The mean field approximation is the solution of ẋ = f (x)
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What is the bias of mean field approximaiton?

Consider a density dependent population process in Rd and assume that
βℓ(x) are bounded.

Theorem (G., Bortolussi, Tribastone 2019) If the drift is C 2, there
exists an (easily computable) vector V (t) such that for any finite
time:

E [Xt ] = ϕt(X0)︸ ︷︷ ︸
mean field approx.

+
1

n
V (t)︸ ︷︷ ︸

First order bias

+O(
1

n2
).

This holds uniformly in time if the ODE has a unique exponentially
stable attractor.

V (t) is the first-order expansion of the bias of the approximation.
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The expansion is in general very accurate for small n

n 10 100 1000 +∞
Average queue length for SQ(2), ρ = 0.9 2.804 2.393 2.357 –

Refined approximation 2.751 2.393 2.357 2.353

where

mean field = Φt(x).

Refined = mean-field + V /n.
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Intuition: Where does the 1/n term come from?
The moment closure approach

Consider a system for which X becomes X + 1/n at rate nX 2. We have:

d

dt
E [X ] = E

[
X 2

]

≈ E [X ]2 (mean field approx.)

d

dt
E
[
X 2

]
= 2E

[
X 3

]
+

1

n
E
[
X 2

]
≈ 2(3E

[
X 2

]
E [X ]− 2E [X ]2) +

1

n
E
[
X 2

]
d

dt
E
[
X 3

]
= E

[
3X 4

n
+

4X 3

n2
+

X 2

n3

]
(refined approximation)

...

This equation is not closed

They can be closed by assuming E
[
(X − E [X ])d

]
≈ 0

This gives a O(1/n⌊(d+1)/2⌋)-accurate approximation.
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Does it always work?

1 Interchange of limit : does lim
N→∞

lim
t→∞

= lim
t→∞

lim
N→∞

?

2 Non-smooth dynamics Xu, Tsitsiklis 2011

O(1/
√
n) convergence
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Reminder: for SQ(2)

O(1/n) convergence

Power of (a little of) centralization
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We compare a stochastic system and a fluid approximation
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Fluid approximation t(X0)

Important notations:

Stochastic system Xt ∈ X .

Fluid approximation ẋ = f (x). Solution starting from X0 is ϕt(X0).
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To compare Xt and ϕt(X0), we zoom on infinitesimal
changes
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We want to compare:

E [Xt ]− ϕt(X0)

=

∫ t

0
E
[
d

ds
ϕt−s(Xs)

]
ds
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To study infinitesimal changes, we need generators

G sto Generator of the stochastic system. For a test function h : X → R:

G stoh(x) = lim
t→0

1

t
E [h(Xt)− h(X0) | X0 = x ] .

Example: if Xt is a Markov chain of generator K :

G stoh(x) =
∑
y∈X

Kxy (h(y)− h(x)).

GODE Generator of the ODE. For a test function h : X → R:

GODEh(x) = lim
t→0

1

t
(h(Φt(x))− h(x))

= ∇h(x) · f (x).

Typically f (x) = G stoI (x), where I is the identity function.
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Using the generators, we can compare the two systems

E
[
d

ds
ϕt−s(Xs)

]
ds

= E
[
G stoϕt−s(Xs)− GODEϕt−s(Xs)

]
= E

[
(G sto − GODE)ϕt−s(Xs)

]
In particular:

E [Xt ]− ϕt(X0) =

∫ t

0
E
[
(G sto − GODE)ϕt−s(Xs)

]
ds

= (G sto − GODE)

∫ t

0
E [ϕt−s(Xs)] ds

(Taking the limit t → ∞, we obtain Stein’s method).
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Recap
For finite t:

E [Xt ]︸ ︷︷ ︸
Stochastic system

− ϕt(X0)︸ ︷︷ ︸
deterministic approx.

= (G sto − GODE)

∫ t

0
E [ϕt−s(Xs)] ds

For t = +∞, if x∗ = ϕ∞(X0) does not depend on X0, we have:

E [h(X∞)]︸ ︷︷ ︸
Stochastic system

− h(x∗)︸ ︷︷ ︸
deterministic approx.

= (G sto − GODE)

∫ ∞

0
E [ϕt(X∞)] ds.

To prove that the sto ≈ deterministic, we prove that:

for some h ∈ H, (G sto − GODE)h is small.∫ t

0
E [ϕt−s ] or

∫ ∞

0
E [ϕt ] belongs to this H.
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Application to density dependent population processes
(1/2)

The generator of the density dependent population process is:

G stoh(x) =
∑
ℓ

(
h(x +

1

n
ℓ)− h(x)

)
nβℓ(x)

= ∇h · f (x)︸ ︷︷ ︸
generator of the ODE, GODE

+
1

n
∇2h · Q(x)︸ ︷︷ ︸
Diffusion term

+O(1/n2).

As a consequence

(G sto − GODE)h = O(1/n) if h is C 2. ⇒ Set H of slide 24 is C 2.

The hidden constant depends on
∥∥∇2h · Q

∥∥. Studying this gives
V (t).
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Consequence for the error of mean field model (2/2)

For finite-horizon, the function h(x) =

∫ t

0
ϕs(x)ds is C 2 if the drift

function f is C 2.

For infinite-horizon model, h(x) =

∫ ∞

0
(ϕs(x)− x∗)ds is C 2 if in

addition x∗ is an exponentially stable attractor.

The two functions belongs to “H” ⇒ Error = O(1/n).
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Some historical remarks

Ying 2016: L2 error is O(1/
√
n) for steady-state.

G. 2017: Bias is O(1/n).

G. 2018, 2019: Expansion terms for the bias.

G. Allmeier 2022: Extension to heterogeneous models.

More recently:

This works for heterogeneous models.

Error bounds for averaging methods (multi-scale models)
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Conclusion

Mean field or fluid approximations are widely used heuristic.

They simplify the analysis of stochastic systems.

We question its validity / accuracy.

We characterize the bias for different models (smooth
homogeneous, heterogeneous, multi-scale).

To do so, we take correlations into account.

Numerical library: https://pypi.org/project/rmftool/

Many open questions: optimization (bandit problems), (sparse) geometric
models, non-Markovian.

Slides and references: http://polaris.imag.fr/nicolas.gast
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