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Stochastic information models on ‘dense’ graphs
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Objective of the talk (and outline)

1 What is mean field approximation?

2 How to characterize the bias of this approximation?

3 What about multiscale models?

4 Conclusion
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Running example: Simple information propagation model.

Population of n persons where each person
can be “Informed” or “Outdated”. x is the
proportion of “informed” people.

Informed persons loose information at rate 1.

Outdated persons become informed at rate 1 + x

Nicolas Gast – 5 / 22



Stochastic model
If X is the proportion of “informed” people, then:

X 7→ X − 1

n
at rate nX

X 7→ X +
1

n
at rate n(1− X 2) = n(1− X )(1 + X )
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Mean field approximation

X 7→ X − 1

n
at rate nX average change: −X

X 7→ X +
1

n
at rate n(1− X 2) average change: 1− X 2

The mean field approximation is the solution of the ODE ẋ = 1− x2 − x .
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With this approximation, we study:

The transient regime.

The fixed point:
x(∞) = (

√
5− 1)/2.

How accurate is this
approximation?
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Accuracy of the mean field approximation

n 5 10 100 ∞
P(someone informed) 0.593 0.601 0.61679642 (

√
5− 1)/2 ≈ 0.618.

Error 0.025 0.125 0.0012 0

Table: Steady-state values

Theorem (Folk). For dense graphs of interactions, mean field
approximation is asymptotically exact. Accuracy is O(1/

√
n).

Theorem: (G. Bortolussi, Tribastone) For this model, if E
[
X (n)

]
is the

probability that someone is “informed” and if the x(∞) = (
√

5− 1)/2 is
the mean field approximation, then:

E
[
X (n)

]
= x(∞) +

1

20n
(
√

5− 1) +
1

50n2
(
√

5− 3) + O(1/n3).
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We study a generic interaction model

We consider a population of n objects with two types of interactions:

Unilateral transitions:

Object k jumps from state i to j at rate r
(k)
ij

Pairwise interactions:

Object k , k ′ simultaneously jump from states

(i , i ′) to (j , j ′) at rate r
(k,k ′)
ij ,i ′j ′ /n

If the rates do not depend on k, we call the model homogeneous.
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Mean field approximation for homogeneous models

X
(n)
s (t) =

1

n
{# objects in state s at t}

The transitions are:

X(n) → X(n) +
1

n
(ej − ei ) at rate nrijXi .

X(n) → X(n) +
1

n
(ej − ei + ej ′ − ei ′) at rate nrij ,i ′j ′XiXi ′ .

This is a density dependent population process (Kurtz 70s).

(one example is our information propagation model)

Nicolas Gast – 11 / 22



Mean field method for non-homogeneous models

X
(n)
s (t) =

1

n
{# objects in state s at t} ⇒ X (n) is not Markovian.

Solution: represent model using indicators:

Y
(n)
(k,s)(t) =

{
1 if object k is in state s at time t
0 otherwise

Y(n) is Markovian.

Y(n) → Y(n) + ek,j − ek,i at rate r
(k)
ij Yk,i .

Y(n) → Y(n) + ek,j − ek,i + ek ′,j ′ − ek ′,i ′ at rate
1

n
r
(k,k ′)
ij ,i ′j ′ Yk,iYk ′,i ′ .
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Mean field approximaiton and result

The drift is:

f (y) =
∑

all transitions

Transition change for y × Rate of transition at y.

The mean field approximation is the solution of the ODE ẏ = f (y).

Theorem (Allmeier, G. 2022) There exists an (easily computable)
vector V (t) such that for any finite time:

P [ Object k is in state s at t] = yk,s(t) +
1

n
Vk,s(t) + O(

1

n2
).

Vk,s(t) is the bias of the mean field approximation.
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Idea of proof

1 We can show that cov(Yk,sYk ′,s′)(t) =
1

n
W (t) + O(1/N2), where

W (t) satisfies a (time inhomogeneous) linear ODE:

Ẇ = A(y(t))W + WAT (y(t)) + Q(x(t)).

2 We then have E [Yk,s(t)] = y(t) + V (t), where V (t) satisfies a (time
inhomogeneous) linear ODE:

V̇ = A(y(t))V + B(x(t)) ·W (t).

Nicolas Gast – 14 / 22



Where does the 1/n-term
The moment closure approach

Consider a system for which X becomes X + 1/n at rate nX 2. We have:

d

dt
E [X ] = E

[
X 2
]

≈ E [X ]2 (mean field approx.)

d

dt
E
[
X 2
]

= 2E
[
X 3
]

+
1

n
E
[
X 2
]

≈ 2(3E
[
X 2
]
E [X ]− 2E [X ]2) +

1

n
E
[
X 2
]

d

dt
E
[
X 3
]

= E
[

3X 4

n
+

4X 3

n2
+

X 2

n3

]
(refined approximation)

...

This equation is not closed

They can be closed by assuming E
[
(X − E [X ])d

]
≈ 0

This gives a O(1/nb(d+1)/2c)-accurate approximation.
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Communication with interference

A B C

Interference graph.

n nodes per class A, B or C

State is X ,Y

Xi ,s = proportion of nodes of class i with ≥ S messages.

Yi = 1 if class i talks.
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This is a two timescale model
“Fast process”: Y .

(0,0,0)

(0,1,0)

(0,0,1) (1,0,0)

(1,0,1)

nµBXB,1(t)nνB

“Slow process”: X .

Arrival/departure:

Xi ,s 7→ Xi ,s ±
1

n

Rate depends on y .

Two approximations:
P [Y (t) = y ] ≈ πy (X (t)) Drift f (X ,Y )

ẋ =
∑
y

πy (x)f (x , y)

(Averaging technique):
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Accuracy results (Allmeier, G. 2022)

Theorem. If X (t) is the two timescale process, if the rates are twice
differentiable and the evolution the the fast process is ”unichain”, then:

E [X (t)] = x(t) +
1

n
C (t) + O(1/n2).

Holds uniformly in time if the ODE has an exponentially stable attractor.
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Numerical example
With n = 1 node per class!

A B C

Jobs arrive at rate 1, activation rate = 3. Job duration is 1/3.
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Class A or C Class B
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Conclusion

Mean field approximation is a widely used heuristic.

It consists in assuming independence.

We question its validity / accuracy.

We characterize the bias for different models (smooth
homogeneous, heterogeneous, multi-scale).

To do so, we take correlations into account.

Numerical library: https://pypi.org/project/rmftool/

Many open questions: (sparse) geometric models, non-Markovian,
controlled systems

More slides and references: http://polaris.imag.fr/nicolas.gast
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