Efficiency and Prices in Real-Time Electricity Markets

Nicolas Gast

EPFL and Inria

April 12, 2014

Average price is 20\$/MWh. Average production is 0.

Average price is 20\$/MWh. Average production is 0.

Average price is 20\$/MWh. Average production is 0.

0\$.

YES: If you are a private consumer.

 150k\$ YES: If you buy on the real-time electricity market (Texas, mar 3 2012)

◎ −150*k*\$.

Average price is 20\$/MWh. Average production is 0. 0\$.

YES: If you are a private consumer.

150k\$ YES: If you buy on the real-time electricity market (Texas, mar 3 2012)

NO (but YES for the red curve! Texas, march 3rd 2012)

Can we explain real-time electricity markets?

Is it price manipulation or an efficient market?

Issue 1: The electric grid is a large, complex system

It is governed by a mix of economics (efficiency) and regulation (safety).

Issue 2: Mix of forecast (day-ahead) and real-time control

Mean error: 1-2%

Mean error: 20%

- Real-time prices can be used for control
 - Decentralized control
- But:
 - Price fluctuation
 - Under-investment, observability

Outline

- 2 Numerical Computation of an Equilibrium and Distributed Optimization
- 3 Consequences of the efficiency of the pricing scheme
- 4 Summary and Conclusion

Outline

Real-Time Market Model and Competitive Equilibria

2 Numerical Computation of an Equilibrium and Distributed Optimization

3 Consequences of the efficiency of the pricing scheme

4 Summary and Conclusion

We consider the simplest model that takes the dynamical constraints into account (extension of Cho-Meyn 2006)

- Generator constraints
- Uncertainty of renewable and consumption.
- Storage :
- Demand-response:

We consider the simplest model that takes the dynamical constraints into account (extension of Cho-Meyn 2006)

• Generator constraints :
$$\zeta^- \leq \frac{G(t) - G(s)}{t - s} \leq \zeta^+$$

- Uncertainty of renewable and consumption.
- Storage : Finite power and energy capacity. Efficiency $\eta \leq 1$.
- Demand-response:
 - ▶ Flexible consumption (temperature dead-band). For example:

We assume perfect competition between 2, 3 or 4 players Players={supplier, demand, storage operator, flexible demand aggregator}

Player *i* maximizes:

We assume perfect competition between 2, 3 or 4 players Players={supplier, demand, storage operator, flexible demand aggregator}

Player *i* maximizes:

Players are assumed price-takers: they cannot influence P(t).

Each player has internal utility/constraints and exchange energy

	Internal utility	Sold energy	Intern. constraints
Supplier	Generation cost	Generated energy	ramping
Demand	-disutiliy of b/o	Consumed energy	
Storage operator	Aging	(dis)charged	power/efficiency
Flexible load	Undesirable states	Consumed energy	temperature dead-band

Each player has internal utility/constraints and exchange energy

	Internal utility	Sold energy	Intern. constraints
Supplier	Generation cost	Generated energy	ramping
Demand	-disutiliy of b/o	Consumed energy	
Storage operator	Aging	(dis)charged	power/efficiency
Flexible load	Undesirable states	Consumed energy	temperature dead-band

Special case (cho-meyn 2006): linear cost functions.

- Linear cost of generation: cG(t)
- **Demand:** $v \min(D(t), E(t)) c^{bo} \max(D(t) E(t), 0)$.

satisfied demand

frustrated demand

• Storage :
$$0 \le B_0 + \sum_{s=1}^{\iota} E_s(t) \le B_{\max}$$
 and $-D_{\max} \le E_S \le C_{\max}$.

Energy balance and the social planner's problem

subject to

- For any player *i*, E_i^e satisfies the constraints of player *i*.
- The energy balance condition: for all *t*:

$$\sum_{i \in \mathsf{players}} E_i^e(t) = 0.$$

Definition: competitive equilibrium

 $(P^e, E_1^e, \ldots, E_i^e)$ is a competitive equilibrium if:

• For any player *i*, E_i^e is a selfish best response to *P*:

The market is efficient (first welfare theorem)

Theorem

Any competitive equilibrium is socially optimal.

Very general result (Cho-Meyn 2006, Wang et al. 2012, Gast et al. 2013, 2014).

Proof. The first welfare theorem is a Lagrangian decomposition

For any price process *P*:

If the selfish responses are such that $\sum_{i} E_i(t) = 0$, the inequality is an equality.

Proof. The first welfare theorem is a Lagrangian decomposition

For any price process *P*:

If the selfish responses are such that $\sum_{i} E_i(t) = 0$, the inequality is an equality.

What is the price equilibrium? Is it smooth?

What is the price equilibrium? Is it smooth?

- Production has ramping constraints,
- Demand does not.

Fact 1. Without storage, prices are never equal to the marginal production cost.

No storage

Fact 1. Without storage, prices are never equal to the marginal production cost.

No storage

Fact 2. Storage leads to a price concentration

Fact 3. Because of (in)efficiency, the price oscillates, even for large storage

Outline

Real-Time Market Model and Competitive Equilibria

2 Numerical Computation of an Equilibrium and Distributed Optimization

3 Consequences of the efficiency of the pricing scheme

4 Summary and Conclusion

Reminder

If there exists a price such that selfish decisions leads to energy balance.

• These decisions are optimal.

- There exists such a price.
- We can compute it.

We design a decentralized optimization algorithm based on an iterative scheme

We design a decentralized optimization algorithm based on an iterative scheme

We design a decentralized optimization algorithm based on an iterative scheme

We design a decentralized optimization algorithm based on an iterative scheme

Solution 1: We represent forecast errors by multiple discrete-time trajectories

Solution 1: We represent forecast errors by multiple discrete-time trajectories

Finite number of observation point.

Solution 2: Each flexible appliance computes its best-response to price

The global behavior of the flexible appliances can be approximated by a mean-field approx.

The problem is convex.

Constraints = observability + generator / demand / storage / flexible load.

Dual ascent method is decentralized but not robust

Lagrangian:

$$L_0(E,P) := \sum_{i \in \mathsf{players}} W_i(E_i) + \sum_t P(t) \left(\sum_i E_i(t)\right)$$

Dual ascent method:

$$E^{k+1} \in \operatorname{arg\,max}_{E} L_0(E, P^k)$$
$$P^{k+1} := P^k - \alpha^k (\sum_i E_i^{k+1})$$

Good: distributed.

Bad: converges... under some conditions.

Method of multiplier is robust but not distributed

Augmented Lagrangian:

$$L_{
ho}(E,P) := \sum_{i \in \mathsf{players}} W_i(E_i) + \sum_t P(t) \left(\sum_i E_i(t)\right) - rac{
ho}{2} \left(\sum_t \sum_i E_i(t)
ight)^2$$

Method of multipliers:

$$E^{k+1} \in \operatorname{arg\,max}_{E} L_{\rho}(E, P^{k})$$
$$P^{k+1} := P^{k} - \rho(\sum_{i} E_{i}^{k+1})$$

Good: (almost) always converge. Bad: not distributed

Solution 3: add extra variables and use ADMM

Augmented Lagrangian:

$$L_{\rho}(E,P) := \sum_{i \in \text{players}} W_i(E_i) + \sum_t P(t) \left(\sum_i E_i(t)\right) - \frac{\rho}{2} \sum_{t,i} \left(E_i(t) - \bar{E}_i(t)\right)^2$$

ADMM (alternating direction method of multipliers):

$$E^{k+1} \in \arg \max_{E} L_{\rho}(E, \overline{E}^{k}, P^{k})$$

$$\overline{E}^{k+1} \in \arg \max_{\overline{E} \text{ s.t. } \sum_{i} \overline{E}_{i}=0} L_{\rho}(E^{k+1}, \overline{E}, P^{k})$$

$$P^{k+1} := P^{k} - \rho(\sum_{i} E_{i}^{k+1})$$

Good: distributed, always converge if convex.

Outline

Real-Time Market Model and Competitive Equilibria

2 Numerical Computation of an Equilibrium and Distributed Optimization

3 Consequences of the efficiency of the pricing scheme

4 Summary and Conclusion

Reminder There exists a price such that: • Selfish decision leads to a social optimum. We know how to compute the price.

We can evaluate the effect of more flexible load / more storage.

In a perfect world, the benefit of demand-response is similar to perfect storage

Problem 1: synchronization leads to observability problem No demand-response

Problem 1: synchronization leads to observability problem

Problem 1. Observablity is detrimental if the penetration is large

We assume that:

- The demand-response operator knows the state of its fridges
- The day-ahead forecast does not.

Problem 2. The market structure might lead to under-investment

Outline

Real-Time Market Model and Competitive Equilibria

2 Numerical Computation of an Equilibrium and Distributed Optimization

3 Consequences of the efficiency of the pricing scheme

Summary

1. Real-time market model (generation dynamics, flexible loads, storage)

2. A price such that selfish decisions are feasible leads to a social optimum.

- 3. We know how to compute the price.
 - Trajectorial forecast and ADMM
- 4. Benefit of demand-response: flexibility, efficiency Drawbacks: non-observability, under-investment

Conclusion and perspective

- Methodology:
 - Distributed Lagrangian (ADMM) is powerful
 - Use of trajectorial forecast makes it computable
 - Can be used for learning
- Real-time Market
 - Efficient but not robust
 - ★ Efficiency disregards safety, security, investment,...
 - ★ Who wants real-time prices at home?
 - Interesting applications: electric cars, voltage control

I belong to the Quanticol project

A Quantitative Approach to Management and Design of Collective and Adaptive Behaviors.

• FET project, cousin of CASSTING.

Objectives:

- Build a modelization tool
 - ► Stochastic models, fluid approximation, optimization, verification
- Applications: smart-cities
 - Buses
 - Bike-sharing systems
 - Smart-grids

Nicolas Gast — http://mescal.imag.fr/membres/nicolas.gast/ Model

- Dynamic competitive equilibria in electricity markets, G. Wang, M. Negrete-Pincetic, A. Kowli, E. Shafieepoorfard, S. Meyn and U. Shanbhag, *Control and Optimization Methods for Electric Smart Grids*, 35–62 2012,
- A Control Theorist's Perspective on Dynamic Competitive Equilibria in Electricity Markets. G. Wang, A. Kowli, M. Negrete-Pincetic, E. Shafieepoorfard, S. Meyn and U. Shanbhag.

Storage and Demand-response

- Impact of storage on the efficiency and prices in real-time electricity markets. N Gast, JY Le Boudec, A Proutière, DC Tomozei, e-Energy 2013
- Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity Markets. N Gast, JY Le Boudec, DC Tomozei. e-Energy 2014

ADMM

• Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Foundations and Trends in Machine Learning, 3(1):1-122, 2011.

Supported by **quanticol**_http://www.quanticol.eu