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Quiz: what is the value of energy?

Average price is 20$/MWh.
Average production is 0.

1 0$.

YES: If you are a private
consumer.

2 150k$

YES: If you buy on the
real-time electricity market
(Texas, mar 3 2012)

3 −150k$.

NO (but YES for the red
curve! Texas, march 3rd
2012)
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Can we explain real-time electricity markets?

Is it price manipulation or an efficient market?
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Issue 1: The electric grid is a large, complex system

It is governed by a mix of economics (efficiency) and regulation (safety).
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Issue 2: Mix of forecast (day-ahead) and real-time control

Mean error: 1–2% Mean error: 20%
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Main message

Real-time prices can be used for control
I Decentralized control

But:
I Price fluctuation
I Under-investment, observability
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Outline

1 Real-Time Market Model and Competitive Equilibria

2 Numerical Computation of an Equilibrium and Distributed Optimization

3 Consequences of the efficiency of the pricing scheme

4 Summary and Conclusion
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We consider the simplest model that takes the dynamical
constraints into account (extension of Cho-Meyn 2006)

•Demand Supplier

Flexible loads Storage (e.g. battery)

Generator constraints

: ζ− ≤ G (t)− G (s)

t − s
≤ ζ+

Uncertainty of renewable and consumption.

Storage :

Finite power and energy capacity. Efficiency η ≤ 1.

Demand-response:

I Flexible consumption (temperature dead-band). For example:
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We assume perfect competition between 2, 3 or 4 players
Players={supplier, demand, storage operator, flexible demand aggregator}

Player i maximizes:

argmax
Ei∈internal constraints of i

E

∫ ∞
0

Wi (t)︸ ︷︷ ︸
internal utility

− P(t)︸︷︷︸
spot price

· Ei (t)︸ ︷︷ ︸
bough/sold energy

dt



Players are assumed price-takers: they cannot influence P(t).

•
Price P(t)

Demand Supplier

Flexible loads Storage (e.g. battery)
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Each player has internal utility/constraints and exchange
energy

Internal utility Sold energy Intern. constraints

Supplier Generation cost Generated energy ramping

Demand -disutiliy of b/o Consumed energy

Storage operator Aging (dis)charged power/efficiency

Flexible load Undesirable states Consumed energy temperature
dead-band

Special case (cho-meyn 2006): linear cost functions.

Linear cost of generation: cG (t)

Demand: v min(D(t),E (t))︸ ︷︷ ︸
satisfied demand

−cbo max(D(t)− E (t), 0)︸ ︷︷ ︸
frustrated demand

.

Storage : 0 ≤ B0 +
t∑

s=1

Es(t) ≤ Bmax and −Dmax ≤ ES ≤ Cmax.
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Energy balance and the social planner’s problem

(E e
1 , . . . ,E

e
j ) is socially optimal if it maximizes E


∫ ∞

0

∑
i∈ players

Wi (t)︸ ︷︷ ︸
social utility

dt

,

subject to

For any player i , E e
i satisfies the constraints of player i .

The energy balance condition: for all t:∑
i∈players

E e
i (t) = 0.
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Definition: competitive equilibrium

(Pe ,E e
1 , . . . ,E

e
j ) is a competitive equilibrium if:

For any player i , E e
i is a selfish best response to P:

argmax
Ei∈internal constraints of i

E

∫ ∞
0

Wi (t)︸ ︷︷ ︸
internal utility

− P(t)Ei (t)︸ ︷︷ ︸
bough/sold energy

dt


For all t:

∑
i∈players

E e
i (t) = 0
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The market is efficient (first welfare theorem)

Theorem

Any competitive equilibrium is socially optimal.

Very general result (Cho-Meyn 2006, Wang et al. 2012, Gast et al. 2013,
2014).
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Proof. The first welfare theorem is a Lagrangian
decomposition

For any price process P:

max
Ei satisfies constraints i

∀t :
∑

i Ei (t) = 0

E

 ∑
i∈players

∫
Wi (t)dt


social planner’s problem

≤
∑

i∈players

max
Ei satisfies constraints i

E
[∫

(Wi (t) + P(t)Ei (t))dt

]selfish response to prices

If the selfish responses are such that
∑
i

Ei (t) = 0, the inequality is an

equality.
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What is the price equilibrium? Is it smooth?

Reminder

Price is such that: for any player i , E e
i is a selfish best response:

argmax
Ei∈internal constraints of i

E

∫ ∞
0

Wi (t)︸ ︷︷ ︸
internal utility

− P(t)Ei (t)︸ ︷︷ ︸
bough/sold energy

dt



Production has ramping constraints,

Demand does not.
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Fact 1. Without storage, prices are never equal to the
marginal production cost.

No storage
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Fact 2. Storage leads to a price concentration

Small storage Large storage
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Fact 3. Because of (in)efficiency, the price oscillates, even
for large storage

Large storage

Two modes in
√
η and 1/

√
η
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Outline
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Reminder

If there exists a price such that selfish decisions leads to energy balance.

These decisions are optimal.

•
Price P(t)

Demand Supplier

Flexible loads Storage (e.g. battery)

There exists such a price.

We can compute it.
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We design a decentralized optimization algorithm based on
an iterative scheme

Price P(t)

Generator

Demand

...

Fridges

1. forecasted price P(1), . . . , P(T )

2. forecasted consumption

3. Update price

Iterate

Difficulties
1 Forecast errors

2 Stochastic behavior of appliances

3 Convergence guarantee
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Solution 1: We represent forecast errors by multiple
discrete-time trajectories
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Solution 2: Each flexible appliance computes its
best-response to price

=

Object = Markov chain
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Sample trajectories of 5 fridges

Average x−state (mean field approx.)
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The global behavior of the flexible appliances can be
approximated by a mean-field approx.

Original system Mean-field approximation
(limit as number of appliances is large)
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The problem is convex.

minimize
∑

i∈players

E [Wi (Ei )]

subject to Ei satisfies constraints of player i

For all t:
∑

Ei (t) = 0

Constraints = observability + generator / demand / storage / flexible load.
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Dual ascent method is decentralized but not robust

Lagrangian:

L0(E ,P) :=
∑

i∈players

Wi (Ei ) +
∑
t

P(t)

(∑
i

Ei (t)

)

Dual ascent method:

E k+1 ∈ argmax
E

L0(E ,Pk)

Pk+1 := Pk − αk(
∑
i

E k+1
i )

Good: distributed.
Bad: converges... under some conditions.
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Method of multiplier is robust but not distributed

Augmented Lagrangian:

Lρ(E ,P) :=
∑

i∈players

Wi (Ei ) +
∑
t

P(t)

(∑
i

Ei (t)

)
− ρ

2

(∑
t

∑
i

Ei (t)

)2

Method of multipliers:

E k+1 ∈ argmax
E

Lρ(E ,Pk)

Pk+1 := Pk − ρ(
∑
i

E k+1
i )

Good: (almost) always converge.
Bad: not distributed
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Solution 3: add extra variables and use ADMM

Augmented Lagrangian:

Lρ(E ,P) :=
∑

i∈players

Wi (Ei ) +
∑
t

P(t)

(∑
i

Ei (t)

)
− ρ

2

∑
t,i

(
Ei (t)− Ēi (t)

)2

ADMM (alternating direction method of multipliers):

E k+1 ∈ argmax
E

Lρ(E , Ē k ,Pk)

Ē k+1 ∈ argmax
Ē s.t.

∑
i Ēi=0

Lρ(E k+1, Ē , ,Pk)

Pk+1 := Pk − ρ(
∑
i

E k+1
i )

Good: distributed, always converge if convex.
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Reminder

There exists a price such that:

Selfish decision leads to a social optimum.

We know how to compute the price.

•
Price P(t)

Demand Supplier

Flexible loads Storage (e.g. battery)

We can evaluate the effect of more flexible load / more storage.
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In a perfect world, the benefit of demand-response is
similar to perfect storage

Social Welfare

Installed flexible power (in GW for UK)
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Problem 1: synchronization leads to observability problem
No demand-response

Total
consumption

No problem: actual consumption
is close to forecast

With demand-response

Total
consumption

Problem if we cannot
observe the initial state
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Problem 1. Observablity is detrimental if the penetration is
large

We assume that:

The demand-response operator knows the state of its fridges

The day-ahead forecast does not.

Social Welfare

Installed flexible power (in GW for UK)
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Problem 2. The market structure might lead to
under-investment

Welfare for
storage owner

Installed flexible power (in GW for UK)
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Summary

1. Real-time market model (generation dynamics, flexible loads, storage)

•

Price P(t)

Demand Supplier

Flexible loads Storage (e.g. battery)

2. A price such that selfish decisions are feasible leads to a social
optimum.

3. We know how to compute the price.

Trajectorial forecast and ADMM

4. Benefit of demand-response: flexibility, efficiency
Drawbacks: non-observability, under-investment
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Conclusion and perspective

Methodology:
I Distributed Lagrangian (ADMM) is powerful
I Use of trajectorial forecast makes it computable
I Can be used for learning

Real-time Market
I Efficient but not robust

F Efficiency disregards safety, security, investment,...
F Who wants real-time prices at home?

I Interesting applications: electric cars, voltage control
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I belong to the Quanticol project

A Quantitative Approach to Management and Design of Collective and
Adaptive Behaviors.

FET project, cousin of CASSTING.

Objectives:

Build a modelization tool
I Stochastic models, fluid approximation, optimization, verification

Applications: smart-cities
I Buses
I Bike-sharing systems
I Smart-grids
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