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In this talk, I focus on a single cache.

The question is: which item to replace?
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Other approaches:
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The analysis of cache performance has a growing interest

Theoretical studies: started with [King 1971, Gelenbe 1973]

Nowadays:

New applications: CDN / CON (replication2)

New analysis techniques (Che approximation3,4)

2
[Borst et al. 2010] Distributed Caching Algorithms for Content Distribution Networks

3
[Che et al 2002] Hierarchical web caching sys tems: modeling, design and experimental results.

4
[Fricker et al. 2012] A versatile and accurate approximation for lru cache performance
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Outline of the talk
1 What are the classical models?

2 We introduce a family of policies for which the cache is (virtually)
divided into lists (generalization of FIFO/RANDOM)

1 We can compute in polynomial time the steady-state distribution
F Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
F Fast approximation of the steady-state distribution.
F We can characterize the transient behavior:
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Our performance metric will be the hit probability

hit probability =
number of items served from cache

total number of items served
= 1−miss probability

Goal: find a policy to maximize the hit probability.
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The offline problem is easy. . .

but with unbounded
competitive ratio

Application

data source

cache (size m)

requestshit

replace one item

miss
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The offline problem is easy. . .

but with unbounded
competitive ratio

Application

data source

cache (size m)

requestshit

replace one item

miss

If you know the sequence of requests:

MIN policy

At time t, if Xt is not in the cache,
evict an item in the cache whose next
request occurs furthest in the future.

Theorem (Maston et al. 1970)

MIN is optimal
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The offline problem is easy. . . but with unbounded
competitive ratio

Application

data source

cache (size m)

requestshit

replace one item

miss
Theorem

No deterministic online algorithm
for caching can achieve a better
competitive ratio than m.

LRU has a competitive ratio of m.
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To compare policies, we need more...

We can use trace-based simulations.

We can model request as stochastic processes (Started with [King
1971, Gelenbe 1973])

Independent reference model (IRM)

At each time step, item i is requested with probability pi .

IRM is OK for web-caching5

5
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 10 / 31



To compare policies, we need more...

We can use trace-based simulations.

We can model request as stochastic processes (Started with [King
1971, Gelenbe 1973])

Independent reference model (IRM)

At each time step, item i is requested with probability pi .

IRM is OK for web-caching5

5
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 10 / 31



Example: analysis of LRU: from King [71] to Che [2002]

[King 71]: Under IRM model, in steady-state, the probability of having a
sequence of distinct items i1 . . . in is

P(i1 . . . im) = pi1
pi2

1− pi1
. . .

pim
1− pi1 − . . . pim−1

Hit probability is:
∑

distinct sequences i1 . . . im

(pi1 + · · ·+ pim)P(i1 . . . im).

[Che approximation 2002] : an item spends approximately T in the cache.

P(item i in cache) ≈ 1− e−piT ,

where T is such that
n∑

i=1

1− e−piT
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Even when the popularity is constant, LFU is not optimal.

LFU is optimal under IRM (it maximizes the steady-state hit
probability).

LFU is not optimal under general distribution:
I e.g. time between two requests of item 1 = 1 with probability .99,

1000 with probability .01. Time between two requests of item 2 is 5.
LRU outperforms LFU.
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I consider a cache (virtually) divided into lists

Application

data source

list 1
. . .

list j list j+1
. . .

list h

missmiss

IRM At each time step, item i is
requested with probability pi
(IRM assumption3)

MISS If item i is not in the cache,
it is exchanged with a item
from list 1 (FIFO or RAND).

HIT If item i is list j , it is
exchanged with a item from
list j + 1 (FIFO or RAND).

6
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.
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Items on higher lists are (supposedly) more popular.

list 1
. . .

list j list j+1
. . .

list h

miss

hit

less popular popular items

cache size = m = m1 + · · ·+ mh

These algorithms are refered to as RAND(m)and FIFO(m).
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The steady-state is a product-form distribution

Same for RAND and FIFO.

Example of a cache of size 4 with 3 lists and m = (1, 2, 1)

i j k `

Probability of (i , j , k , `) is proportional to pi (pjpk)2(p`)
3.
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We can compute the miss probability by using a dynamic
programming approach (Generalization of [Fagin,Price]8).

We want to compute

M(m) =
∑

c∈Cn(m)

∑
k 6∈c

pk

π(c) =
E (m + e1, n)

E (m, n)
,

where E (r, k) =
∑

c∈Ck (r)

h∏
i=1

 ri∏
j=1

pc(i ,j)

i

.

We obtain a recursion formula on E (r, k): solvable in O(n ×m1 . . .mh).

The Dan and Towsley7 approximation is not needed for polynomial time.

7
A. Dan and D. Towsley. An approximate analysis of the LRU and FIFO buffer replacement schemes. SIGMETRICS

Perform. Eval. Rev., 18(1):143-152, Apr. 1990.
8

R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent reference model. SIAM J.
Comput., 7:288-296, 1978.
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A higher cache size and more lists (usually) leads to a
lower steady-state miss probability.
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 = m − 9

Lower bounds

(h =∞ corresponds to LFU).
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Is increasing the number of lists always better9?

m1 . . . mj mj+1 . . . mh
hit

less popular popular items

?≥?

Six lists: m = (1, 1, 1, 1, 1, 1) Three lists: m = (1, 1, 4).

9conjectured in 1987! O. I. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer
Storage. Kluwer Academic Publishers, Norwell, MA, USA, 1987.
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We want to study at which speed the caches fills
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Figure: Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate
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We construct an ODE by assuming independence
Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This is similar to a TTL approximation.
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We show that this approximation is accurate, theoretically
and by simulation
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This approximation can also be used to compute stationary
distribution

Very accurate:

Map is contracting: computation in O(nh), compared to
O(nm1 . . .mh) for the exact.
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Under the IRM model, a smaller first list (usually) means a
higher hit probability but a larger time to fill the cache
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Under the IRM model, the time to fill the cache mainly
depend on the size of the first list.
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In a dynamic setting, a good choice seems to be m1 ≥ m2 · · · ≥ mh

with m1 “large-enough”.
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We verified on a trace of youtube videos10, that reserving
at least 30% of the cache for the first list seems important.
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FIFO(m): 2 lists

FIFO(m): 3 lists

FIFO(m): 5 lists

LRU(m): 2 lists

LRU(m): 3 lists

LRU(m): 5 lists

10
M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of YouTube network traffic at a campus network-measurements,

models, and implications. Comput. Netw., 53(4):501-514, Mar. 2009.
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Recap

Unified framework for studying list-based replacement policies.

Steady-state miss probability in polynomial time.

Accurate ODE approximation

Guidelines on how to use such a replacement algorithm: the size of
the first list is important.

m1 . . . mj mj+1 . . . mh

Two theoretical interests of this work:
I provides a unified framework and disproves old conjectures.
I ODE approximation

Future work

Network of caches?

Applications?
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Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms. Gast, Van Houdt. ACM Sigmetrics 2015.
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