
Analysis and design of list-based cache replacement
policies1

Nicolas Gast (Inria)

Inria (joint work with Benny Van Houdt (Univ. of Antwerp))

POLARIS / DataMove Seminar, Jan.2016, Inria

1Mainly based on Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms, by G and Van Houdt. ACM SIGMETRICS 2015.

Nicolas Gast – 1 / 31

Caches are everywhere

User/Application

data source

slow

cache

fast
Examples:

Processor

Database

CDN

Single cache / hierarchy of
caches

Nicolas Gast – 2 / 31

In this talk, I focus on a single cache.

The question is: which item to replace?

Application

data source

cache

requests

replace one item

miss

Classical cache replacement policies:

RAND, FIFO

LRU

CLIMB

Other approaches:

Time to live

Nicolas Gast – 3 / 31

In this talk, I focus on a single cache.

The question is: which item to replace?

Application

data source

cache

requestshit

replace one item

miss

Classical cache replacement policies:

RAND, FIFO

LRU

CLIMB

Other approaches:

Time to live

Nicolas Gast – 3 / 31

In this talk, I focus on a single cache.

The question is: which item to replace?

Application

data source

cache

requestshit

replace one item

miss

Classical cache replacement policies:

RAND, FIFO

LRU

CLIMB

Other approaches:

Time to live

Nicolas Gast – 3 / 31

The analysis of cache performance has a growing interest

Theoretical studies: started with [King 1971, Gelenbe 1973]

Nowadays:

New applications: CDN / CON (replication2)

New analysis techniques (Che approximation3,4)

2
[Borst et al. 2010] Distributed Caching Algorithms for Content Distribution Networks

3
[Che et al 2002] Hierarchical web caching sys tems: modeling, design and experimental results.

4
[Fricker et al. 2012] A versatile and accurate approximation for lru cache performance

Nicolas Gast – 4 / 31

Outline of the talk
1 What are the classical models?

2 We introduce a family of policies for which the cache is (virtually)
divided into lists (generalization of FIFO/RANDOM)

1 We can compute in polynomial time the steady-state distribution
F Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
F Fast approximation of the steady-state distribution.
F We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)

ODE approximation

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 31

Outline of the talk
1 What are the classical models?
2 We introduce a family of policies for which the cache is (virtually)

divided into lists (generalization of FIFO/RANDOM)
1 We can compute in polynomial time the steady-state distribution

F Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
F Fast approximation of the steady-state distribution.
F We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)

ODE approximation

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 31

Outline of the talk
1 What are the classical models?
2 We introduce a family of policies for which the cache is (virtually)

divided into lists (generalization of FIFO/RANDOM)
1 We can compute in polynomial time the steady-state distribution

F Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
F Fast approximation of the steady-state distribution.
F We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)

ODE approximation

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 31

Outline of the talk
1 What are the classical models?
2 We introduce a family of policies for which the cache is (virtually)

divided into lists (generalization of FIFO/RANDOM)
1 We can compute in polynomial time the steady-state distribution

F Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
F Fast approximation of the steady-state distribution.
F We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)

ODE approximation

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 31

Outline

1 Performance models of caches

2 List-based cache replacement algorithms
Steady-state performance under the IRM model
Transient behavior via mean-field approximation

3 Parameters tuning and practical guidelines

4 Conclusion

Nicolas Gast – 6 / 31

Outline

1 Performance models of caches

2 List-based cache replacement algorithms
Steady-state performance under the IRM model
Transient behavior via mean-field approximation

3 Parameters tuning and practical guidelines

4 Conclusion

Nicolas Gast – 7 / 31

Our performance metric will be the hit probability

hit probability =
number of items served from cache

total number of items served
= 1−miss probability

Goal: find a policy to maximize the hit probability.

Nicolas Gast – 8 / 31

The offline problem is easy. . .

but with unbounded
competitive ratio

Application

data source

cache (size m)

requestshit

replace one item

miss

Nicolas Gast – 9 / 31

The offline problem is easy. . .

but with unbounded
competitive ratio

Application

data source

cache (size m)

requestshit

replace one item

miss

If you know the sequence of requests:

MIN policy

At time t, if Xt is not in the cache,
evict an item in the cache whose next
request occurs furthest in the future.

Theorem (Maston et al. 1970)

MIN is optimal

Nicolas Gast – 9 / 31

The offline problem is easy. . . but with unbounded
competitive ratio

Application

data source

cache (size m)

requestshit

replace one item

miss
Theorem

No deterministic online algorithm
for caching can achieve a better
competitive ratio than m.

LRU has a competitive ratio of m.

Nicolas Gast – 9 / 31

To compare policies, we need more...

We can use trace-based simulations.

We can model request as stochastic processes (Started with [King
1971, Gelenbe 1973])

Independent reference model (IRM)

At each time step, item i is requested with probability pi .

IRM is OK for web-caching5

5
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 10 / 31

To compare policies, we need more...

We can use trace-based simulations.

We can model request as stochastic processes (Started with [King
1971, Gelenbe 1973])

Independent reference model (IRM)

At each time step, item i is requested with probability pi .

IRM is OK for web-caching5

5
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 10 / 31

Example: analysis of LRU: from King [71] to Che [2002]

[King 71]: Under IRM model, in steady-state, the probability of having a
sequence of distinct items i1 . . . in is

P(i1 . . . im) = pi1
pi2

1− pi1
. . .

pim
1− pi1 − . . . pim−1

Hit probability is:
∑

distinct sequences i1 . . . im

(pi1 + · · ·+ pim)P(i1 . . . im).

[Che approximation 2002] : an item spends approximately T in the cache.

P(item i in cache) ≈ 1− e−piT ,

where T is such that
n∑

i=1

1− e−piT

Nicolas Gast – 11 / 31

Example: analysis of LRU: from King [71] to Che [2002]

[King 71]: Under IRM model, in steady-state, the probability of having a
sequence of distinct items i1 . . . in is

P(i1 . . . im) = pi1
pi2

1− pi1
. . .

pim
1− pi1 − . . . pim−1

Hit probability is:
∑

distinct sequences i1 . . . im

(pi1 + · · ·+ pim)P(i1 . . . im).

[Che approximation 2002] : an item spends approximately T in the cache.

P(item i in cache) ≈ 1− e−piT ,

where T is such that
n∑

i=1

1− e−piT

Nicolas Gast – 11 / 31

Even when the popularity is constant, LFU is not optimal.

LFU is optimal under IRM (it maximizes the steady-state hit
probability).

LFU is not optimal under general distribution:
I e.g. time between two requests of item 1 = 1 with probability .99,

1000 with probability .01. Time between two requests of item 2 is 5.
LRU outperforms LFU.

Nicolas Gast – 12 / 31

Even when the popularity is constant, LFU is not optimal.

LFU is optimal under IRM (it maximizes the steady-state hit
probability).

LFU is not optimal under general distribution:
I e.g. time between two requests of item 1 = 1 with probability .99,

1000 with probability .01. Time between two requests of item 2 is 5.
LRU outperforms LFU.

Nicolas Gast – 12 / 31

Outline

1 Performance models of caches

2 List-based cache replacement algorithms
Steady-state performance under the IRM model
Transient behavior via mean-field approximation

3 Parameters tuning and practical guidelines

4 Conclusion

Nicolas Gast – 13 / 31

I consider a cache (virtually) divided into lists

Application

data source

list 1
. . .

list j list j+1
. . .

list h

missmiss

IRM At each time step, item i is
requested with probability pi
(IRM assumption3)

MISS If item i is not in the cache,
it is exchanged with a item
from list 1 (FIFO or RAND).

HIT If item i is list j , it is
exchanged with a item from
list j + 1 (FIFO or RAND).

6
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 14 / 31

I consider a cache (virtually) divided into lists

Application

data source

list 1
. . .

list j list j+1
. . .

list h

miss

miss

IRM At each time step, item i is
requested with probability pi
(IRM assumption3)

MISS If item i is not in the cache,
it is exchanged with a item
from list 1 (FIFO or RAND).

HIT If item i is list j , it is
exchanged with a item from
list j + 1 (FIFO or RAND).

6
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 14 / 31

I consider a cache (virtually) divided into lists

Application

data source

list 1
. . .

list j list j+1
. . .

list h

hit

miss

miss

IRM At each time step, item i is
requested with probability pi
(IRM assumption3)

MISS If item i is not in the cache,
it is exchanged with a item
from list 1 (FIFO or RAND).

HIT If item i is list j , it is
exchanged with a item from
list j + 1 (FIFO or RAND).

6
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 14 / 31

Items on higher lists are (supposedly) more popular.

list 1
. . .

list j list j+1
. . .

list h

miss

hit

less popular popular items

cache size = m = m1 + · · ·+ mh

These algorithms are refered to as RAND(m)and FIFO(m).

Nicolas Gast – 15 / 31

The steady-state is a product-form distribution

Same for RAND and FIFO.

Example of a cache of size 4 with 3 lists and m = (1, 2, 1)

i j k `

Probability of (i , j , k , `) is proportional to pi (pjpk)2(p`)
3.

Nicolas Gast – 16 / 31

The steady-state is a product-form distribution

Same for RAND and FIFO.

Example of a cache of size 4 with 3 lists and m = (1, 2, 1)

i j k `

Probability of (i , j , k , `) is proportional to pi (pjpk)2(p`)
3.

Nicolas Gast – 16 / 31

We can compute the miss probability by using a dynamic
programming approach (Generalization of [Fagin,Price]8).

We want to compute

M(m) =
∑

c∈Cn(m)

∑
k 6∈c

pk

π(c) =
E (m + e1, n)

E (m, n)
,

where E (r, k) =
∑

c∈Ck (r)

h∏
i=1

 ri∏
j=1

pc(i ,j)

i

.

We obtain a recursion formula on E (r, k): solvable in O(n ×m1 . . .mh).

The Dan and Towsley7 approximation is not needed for polynomial time.

7
A. Dan and D. Towsley. An approximate analysis of the LRU and FIFO buffer replacement schemes. SIGMETRICS

Perform. Eval. Rev., 18(1):143-152, Apr. 1990.
8

R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent reference model. SIAM J.
Comput., 7:288-296, 1978.

Nicolas Gast – 17 / 31

A higher cache size and more lists (usually) leads to a
lower steady-state miss probability.

300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cache size m

M
is

s
 P

ro
b
a
b
ili

ty

n = 3000, α = 0.8

h = ∞

h = 2, m
2
 = m − 1

h = 3, m
3
 = m − 2

h = 5, m
5
 = m − 4

h = 10, m
10

 = m − 9

Lower bounds

(h =∞ corresponds to LFU).

Nicolas Gast – 18 / 31

Is increasing the number of lists always better9?

m1 . . . mj mj+1 . . . mh
hit

less popular popular items

?≥?

Six lists: m = (1, 1, 1, 1, 1, 1) Three lists: m = (1, 1, 4).

9conjectured in 1987! O. I. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer
Storage. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

Nicolas Gast – 19 / 31

Is increasing the number of lists always better9?

?≥?

Six lists: m = (1, 1, 1, 1, 1, 1) Three lists: m = (1, 1, 4).

9conjectured in 1987! O. I. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer
Storage. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

Nicolas Gast – 19 / 31

Outline

1 Performance models of caches

2 List-based cache replacement algorithms
Steady-state performance under the IRM model
Transient behavior via mean-field approximation

3 Parameters tuning and practical guidelines

4 Conclusion

Nicolas Gast – 20 / 31

We want to study at which speed the caches fills

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)

simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)
ode aprox (1 list)
ode approx (4 lists)

Figure: Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate

Nicolas Gast – 21 / 31

We want to study at which speed the caches fills

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)

simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)

ODE approx.

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)
ode aprox (1 list)
ode approx (4 lists)

Figure: Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate

Nicolas Gast – 21 / 31

We want to study at which speed the caches fills

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)

simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)
ode aprox (1 list)
ode approx (4 lists)

Figure: Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate

Nicolas Gast – 21 / 31

We construct an ODE by assuming independence
Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This is similar to a TTL approximation.

Nicolas Gast – 22 / 31

We construct an ODE by assuming independence
Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This is similar to a TTL approximation.
Nicolas Gast – 22 / 31

We show that this approximation is accurate, theoretically
and by simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)
ode aprox (1 list)
ode approx (4 lists)

Nicolas Gast – 23 / 31

This approximation can also be used to compute stationary
distribution

Very accurate:

Map is contracting: computation in O(nh), compared to
O(nm1 . . .mh) for the exact.

Nicolas Gast – 24 / 31

Outline

1 Performance models of caches

2 List-based cache replacement algorithms
Steady-state performance under the IRM model
Transient behavior via mean-field approximation

3 Parameters tuning and practical guidelines

4 Conclusion

Nicolas Gast – 25 / 31

Under the IRM model, a smaller first list (usually) means a
higher hit probability but a larger time to fill the cache

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Requests

H
it
 P

ro
b

a
b

ili
ty

m = 200, ODE

m = 200, simul

m = (100,100), ODE

m = (100,100), simul

m = (50,150), ODE

m = (50,150), simul

m = (20,180), ODE

m = (20,180), simul

Nicolas Gast – 26 / 31

Under the IRM model, the time to fill the cache mainly
depend on the size of the first list.

10
3

10
4

10
5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Requests

H
it

P
ro

b
a

b
ili

ty

m = (40,160), ODE

m = (40,160), simul

m = (40,40,120), ODE

m = (40,40,120) simul

m = (40,40,40,80), ODE

m = (40,40,40,80), simul

In a dynamic setting, a good choice seems to be m1 ≥ m2 · · · ≥ mh

with m1 “large-enough”.
Nicolas Gast – 27 / 31

We verified on a trace of youtube videos10, that reserving
at least 30% of the cache for the first list seems important.

 0 1000 2000 3000 4000 5000
0.27

0.28

0.29

0.3

0.31

0.32

0.33

m − m
1

H
it
 P

ro
b

a
b

ili
ty

FIFO

m = 5000

LRU

FIFO(m): 2 lists

FIFO(m): 3 lists

FIFO(m): 5 lists

LRU(m): 2 lists

LRU(m): 3 lists

LRU(m): 5 lists

10
M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of YouTube network traffic at a campus network-measurements,

models, and implications. Comput. Netw., 53(4):501-514, Mar. 2009.
Nicolas Gast – 28 / 31

Outline

1 Performance models of caches

2 List-based cache replacement algorithms
Steady-state performance under the IRM model
Transient behavior via mean-field approximation

3 Parameters tuning and practical guidelines

4 Conclusion

Nicolas Gast – 29 / 31

Recap

Unified framework for studying list-based replacement policies.

Steady-state miss probability in polynomial time.

Accurate ODE approximation

Guidelines on how to use such a replacement algorithm: the size of
the first list is important.

m1 . . . mj mj+1 . . . mh

Two theoretical interests of this work:
I provides a unified framework and disproves old conjectures.
I ODE approximation

Future work

Network of caches?

Applications?

Nicolas Gast – 30 / 31

Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms. Gast, Van Houdt. ACM Sigmetrics 2015.

Nicolas Gast – 31 / 31

http://mescal.imag.fr/membres/nicolas.gast

	Performance models of caches
	List-based cache replacement algorithms
	Steady-state performance under the IRM model
	Transient behavior via mean-field approximation

	Parameters tuning and practical guidelines
	Conclusion

