
Transient and Steady-state Regime of a Family of
List-based Cache Replacement Algorithms

Nicolas Gast1, Benny Van Houdt2

Sigmetrics 2015, Portland, Oregon

1Inria
2University of Antwerp

Nicolas Gast – 1 / 26



Caches are everywhere

User/Application

data source

slow

cache

fast
Examples:

Processor

Database

CDN

Single cache / hierarchy of
caches

Nicolas Gast – 2 / 26



In this talk, I focus on a single cache.

The question is: which item to replace?

Application

data source

cache

requests

replace one item

miss

Classical cache replacement policies:

RAND, FIFO

LRU

CLIMB

Other approaches:

Time to live

Nicolas Gast – 3 / 26



In this talk, I focus on a single cache.

The question is: which item to replace?

Application

data source

cache

requestshit

replace one item

miss

Classical cache replacement policies:

RAND, FIFO

LRU

CLIMB

Other approaches:

Time to live

Nicolas Gast – 3 / 26



In this talk, I focus on a single cache.

The question is: which item to replace?

Application

data source

cache

requestshit

replace one item

miss

Classical cache replacement policies:

RAND, FIFO

LRU

CLIMB

Other approaches:

Time to live

Nicolas Gast – 3 / 26



Our performance metric will be the hit probability

hit probability =
number of items served from cache

total number of items served
= 1−miss probability

Theoretical studies: IRM (started with [King 1971, Gelenbe 1973])

Practical studies use trace-based simulations.

Approximations: link between TTL and cache replacement policies.
I FIFO and LRU: [Dan and Towsley 1990, Martina at al. 14, Fofack at

al. 13, Berger et al. 14]
I LRU: Che approximation [Che, 2002, Fricker et al. 12]

Nicolas Gast – 4 / 26



Our performance metric will be the hit probability

hit probability =
number of items served from cache

total number of items served
= 1−miss probability

Theoretical studies: IRM (started with [King 1971, Gelenbe 1973])

Practical studies use trace-based simulations.

Approximations: link between TTL and cache replacement policies.
I FIFO and LRU: [Dan and Towsley 1990, Martina at al. 14, Fofack at

al. 13, Berger et al. 14]
I LRU: Che approximation [Che, 2002, Fricker et al. 12]

Nicolas Gast – 4 / 26



Contributions (and Outline of the talk)
We introduce a family of policies for which the cache is (virtually) divided
into lists (generalization of FIFO/RANDOM)

1 We can compute in polynomial time the steady-state distribution
under the IRM model.

I Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
I Fast approximation of the steady-state distribution.
I We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)ODE approx.

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 26



Contributions (and Outline of the talk)
We introduce a family of policies for which the cache is (virtually) divided
into lists (generalization of FIFO/RANDOM)

1 We can compute in polynomial time the steady-state distribution
under the IRM model.

I Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
I Fast approximation of the steady-state distribution.
I We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)ODE approx.

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 26



Contributions (and Outline of the talk)
We introduce a family of policies for which the cache is (virtually) divided
into lists (generalization of FIFO/RANDOM)

1 We can compute in polynomial time the steady-state distribution
under the IRM model.

I Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
I Fast approximation of the steady-state distribution.
I We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)ODE approx.

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 26



Contributions (and Outline of the talk)
We introduce a family of policies for which the cache is (virtually) divided
into lists (generalization of FIFO/RANDOM)

1 We can compute in polynomial time the steady-state distribution
under the IRM model.

I Disprove old conjectures.

2 We develop a mean-field approximation and show that it is accurate
I Fast approximation of the steady-state distribution.
I We can characterize the transient behavior:

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)ODE approx.

3 We provide guidelines of how to tune the parameters by using IRM
and trace-based simulation

Nicolas Gast – 5 / 26



Outline

1 Cache model and IRM

2 Steady-state performance under the IRM model

3 Fast and accurate mean-field approximation

4 How to choose the size of the lists?

5 Conclusion

Nicolas Gast – 6 / 26



Outline

1 Cache model and IRM

2 Steady-state performance under the IRM model

3 Fast and accurate mean-field approximation

4 How to choose the size of the lists?

5 Conclusion

Nicolas Gast – 7 / 26



I consider a cache (virtually) divided into lists

Application

data source

list 1
. . .

list j list j+1
. . .

list h

missmiss

IRM At each time step, item i is
requested with probability pi
(IRM assumption3)

MISS If item i is not in the cache,
it is exchanged with a item
from list 1 (FIFO or RAND).

HIT If item i is list j , it is
exchanged with a item from
list j + 1 (FIFO or RAND).

3
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 8 / 26



I consider a cache (virtually) divided into lists

Application

data source

list 1
. . .

list j list j+1
. . .

list h

miss

miss

IRM At each time step, item i is
requested with probability pi
(IRM assumption3)

MISS If item i is not in the cache,
it is exchanged with a item
from list 1 (FIFO or RAND).

HIT If item i is list j , it is
exchanged with a item from
list j + 1 (FIFO or RAND).

3
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 8 / 26



I consider a cache (virtually) divided into lists

Application

data source

list 1
. . .

list j list j+1
. . .

list h

hit

miss

miss

IRM At each time step, item i is
requested with probability pi
(IRM assumption3)

MISS If item i is not in the cache,
it is exchanged with a item
from list 1 (FIFO or RAND).

HIT If item i is list j , it is
exchanged with a item from
list j + 1 (FIFO or RAND).

3
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM’99, volume 1, pages 126-134. IEEE, 1999.

Nicolas Gast – 8 / 26



Items on higher lists are (supposedly) more popular.

list 1
. . .

list j list j+1
. . .

list h

miss

hit

less popular popular items

cache size = m = m1 + · · ·+ mh

These algorithms are refered to as RAND(m)and FIFO(m).

Nicolas Gast – 9 / 26



Outline

1 Cache model and IRM

2 Steady-state performance under the IRM model

3 Fast and accurate mean-field approximation

4 How to choose the size of the lists?

5 Conclusion

Nicolas Gast – 10 / 26



The steady-state is a product-form distribution

Same for RAND and FIFO.

Example of a cache of size 4 with 3 lists and m = (1, 2, 1):

i j k `

Probability of (i , j , k , `) is proportional to pi (pjpk)2(p`)
3.

Nicolas Gast – 11 / 26



The steady-state is a product-form distribution

Same for RAND and FIFO.

Example of a cache of size 4 with 3 lists and m = (1, 2, 1):

i j k `

Probability of (i , j , k , `) is proportional to pi (pjpk)2(p`)
3.

Nicolas Gast – 11 / 26



We can compute the miss probability by using a dynamic
programming approach (Generalization of [Fagin,Price]5).

We want to compute

M(m) =
∑

c∈Cn(m)

∑
k 6∈c

pk

π(c) =
E (m + e1, n)

E (m, n)
,

where E (r, k) =
∑

c∈Ck (r)

h∏
i=1

 ri∏
j=1

pc(i ,j)

i

.

We obtain a recursion formula on E (r, k): solvable in O(n ×m1 . . .mh).

The Dan and Towsley4 approximation is not needed for polynomial time.

4
A. Dan and D. Towsley. An approximate analysis of the LRU and FIFO buffer replacement schemes. SIGMETRICS

Perform. Eval. Rev., 18(1):143-152, Apr. 1990.
5

R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent reference model. SIAM J.
Comput., 7:288-296, 1978.

Nicolas Gast – 12 / 26



A higher cache size and more lists (usually) leads to a
lower steady-state miss probability.

300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cache size m

M
is

s
 P

ro
b
a
b
ili

ty

 

 

n = 3000, α = 0.8

h = ∞

h = 2, m
2
 = m − 1

h = 3, m
3
 = m − 2

h = 5, m
5
 = m − 4

h = 10, m
10

 = m − 9

Lower bounds

(h =∞ corresponds to LFU).

Nicolas Gast – 13 / 26



Is increasing the number of lists always better6?

m1 . . . mj mj+1 . . . mh
hit

less popular popular items

?≥?

Six lists: m = (1, 1, 1, 1, 1, 1) Three lists: m = (1, 1, 4).

6conjectured in O. I. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer Storage. Kluwer
Academic Publishers, Norwell, MA, USA, 1987.

Nicolas Gast – 14 / 26



Is increasing the number of lists always better6?

?≥?

Six lists: m = (1, 1, 1, 1, 1, 1) Three lists: m = (1, 1, 4).

6conjectured in O. I. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer Storage. Kluwer
Academic Publishers, Norwell, MA, USA, 1987.

Nicolas Gast – 14 / 26



Outline

1 Cache model and IRM

2 Steady-state performance under the IRM model

3 Fast and accurate mean-field approximation

4 How to choose the size of the lists?

5 Conclusion

Nicolas Gast – 15 / 26



We want to study at which speed the caches fills

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)

simulation

Figure : Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate

Nicolas Gast – 16 / 26



We want to study at which speed the caches fills

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)

simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

approx 1 list (200)
approx 4 lists (50/50/50/50)

ODE approx.

Figure : Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate

Nicolas Gast – 16 / 26



We want to study at which speed the caches fills

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)

simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)
ode aprox (1 list)
ode approx (4 lists)

Figure : Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate

Nicolas Gast – 16 / 26



We construct an ODE by assuming independence
Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This is similar to a TTL approximation.

Nicolas Gast – 17 / 26



We construct an ODE by assuming independence
Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This is similar to a TTL approximation.
Nicolas Gast – 17 / 26



We show that this approximation is accurate, theoretically
and by simulation

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)
ode aprox (1 list)
ode approx (4 lists)

Nicolas Gast – 18 / 26



This approximation can also be used to compute stationary
distribution

Very accurate:

Map is contracting: computation in O(nh), compared to
O(nm1 . . .mh) for the exact.

Nicolas Gast – 19 / 26



Outline

1 Cache model and IRM

2 Steady-state performance under the IRM model

3 Fast and accurate mean-field approximation

4 How to choose the size of the lists?

5 Conclusion

Nicolas Gast – 20 / 26



Under the IRM model, a smaller first list (usually) means a
higher hit probability but a larger time to fill the cache

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Requests

H
it
 P

ro
b

a
b

ili
ty

 

 

m = 200, ODE

m = 200, simul

m = (100,100), ODE

m = (100,100), simul

m = (50,150), ODE

m = (50,150), simul

m = (20,180), ODE

m = (20,180), simul

Nicolas Gast – 21 / 26



Under the IRM model, the time to fill the cache mainly
depend on the size of the first list.

10
3

10
4

10
5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Requests

H
it 

P
ro

b
a

b
ili

ty

 

 

m = (40,160), ODE

m = (40,160), simul

m = (40,40,120), ODE

m = (40,40,120) simul

m = (40,40,40,80), ODE

m = (40,40,40,80), simul

In a dynamic setting, a good choice seems to be m1 ≥ m2 · · · ≥ mh

with m1 “large-enough”.
Nicolas Gast – 22 / 26



We verified on a trace of youtube videos7, that reserving at
least 30% of the cache for the first list seems important.

   0 1000 2000 3000 4000 5000
0.27

0.28

0.29

0.3

0.31

0.32

0.33

m − m
1

H
it
 P

ro
b

a
b

ili
ty

FIFO

m = 5000

LRU

 

 

FIFO(m): 2 lists

FIFO(m): 3 lists

FIFO(m): 5 lists

LRU(m): 2 lists

LRU(m): 3 lists

LRU(m): 5 lists

7
M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of YouTube network traffic at a campus network-measurements,

models, and implications. Comput. Netw., 53(4):501-514, Mar. 2009.

Nicolas Gast – 23 / 26



Outline

1 Cache model and IRM

2 Steady-state performance under the IRM model

3 Fast and accurate mean-field approximation

4 How to choose the size of the lists?

5 Conclusion

Nicolas Gast – 24 / 26



Conclusion

Unified framework for studying list-based replacement policies.

Steady-state miss probability in polynomial time.

Accurate ODE approximation

Guidelines on how to use such a replacement algorithm: the size of
the first list is important.

m1 . . . mj mj+1 . . . mh

Two theoretical interests of this work:
I provides a unified framework and disproves old conjectures.
I ODE approximation

Future work: network of caches.

Nicolas Gast – 25 / 26



Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms.

Nicolas Gast – 26 / 26

http://mescal.imag.fr/membres/nicolas.gast

	Cache model and IRM
	Steady-state performance under the IRM model
	Fast and accurate mean-field approximation
	How to choose the size of the lists?
	Conclusion

