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In this talk, | focus on a single cache.

The question is: which item to replace? ]
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In this talk, | focus on a single cache.

The question is: which item to replace? J
Application
Classical cache replacement policies:

e RAND, FIFO

requests miss
e LRU
o CLIMB
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/ :
replace one item Other approaches:

@ Time to live
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Our performance metric will be the hit probability

number of items served from cache
hit probability =

total number of items served
= 1 — miss probability
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Our performance metric will be the hit probability

number of items served from cache
hit probability =

total number of items served
= 1 — miss probability

@ Theoretical studies: IRM (started with [King 1971, Gelenbe 1973])

@ Practical studies use trace-based simulations.

@ Approximations: link between TTL and cache replacement policies.
» FIFO and LRU: [Dan and Towsley 1990, Martina at al. 14, Fofack at
al. 13, Berger et al. 14]
» LRU: Che approximation [Che, 2002, Fricker et al. 12]
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Contributions (and Outline of the talk)
We introduce a family of policies for which the cache is (virtually) divided
into lists (generalization of FIFO/RANDOM)
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into lists (generalization of FIFO/RANDOM)

@ We can compute in polynomial time the steady-state distribution
under the IRM model.

» Disprove old conjectures.

@ We develop a mean-field approximation and show that it is accurate
» Fast approximation of the steady-state distribution.
» We can characterize the transient behavior:
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0.5 . . — 1hist(200) 005" pprox 1 list (200)
simulation ODE appjonts i e

)
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number of requests. numbe

6000
v of requests

© We provide guidelines of how to tune the parameters by using IRM

and trace-based simulation
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Outline

@ Cache model and IRM

© Steady-state performance under the IRM model
© Fast and accurate mean-field approximation

@ How to choose the size of the lists?

© Conclusion
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| consider a cache (virtually) divided into lists

Application

list 1

list j

list j+1

list h

data source

IRM At each time step, item i/ is
requested with probability p;
(IRM assumption?)

3L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and

implications. In INFOCOM'99, volume 1, pages 126-134. IEEE, 1999.
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D IRM At each time step, item i/ is
Application ) I
requested with probability p;
(IRM assumption?)

miss MISS If item i is not in the cache,
J it is exchanged with a item
/ from list 1 (FIFO or RAND).
i8N List ) Llist j+1 ] Llist A

data source
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| consider a cache (virtually) divided into lists

D IRM At each time step, item i/ is
Application ) I
requested with probability p;
(IRM assumption?)
miss~ hit MISS If item 7 is not in the cache,
J it is exchanged with a item
] L from list 1 (FIFO or RAND).
list 1 &t o1l listh
HIT If item i is list j, it is
exchanged with a item from
data source list j + 1 (FIFO or RAND).

3L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and
implications. In INFOCOM'99, volume 1, pages 126-134. IEEE, 1999.
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Items on higher lists are (supposedly) more popular.

cachesize=m=my +---+ my

less popular popular items
[ 4

hit

At 1 list Z1Ltist j+1] Llist &

miss

These algorithms are refered to as RAND(m)and FIFO(m).
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Outline

© Steady-state performance under the IRM model
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The steady-state is a product-form distribution

THEOREM 1. The steady state probabilities ™rAND(m)(C)
and Tprro(m)(€), with ¢ € Cn(m), can be written as

7Tz«vFO(m)(c) = 7rRAND(m)( c)=
7T(C) Z(m H (H Pe(i ])) ’ (1)

where Z(m) = Yoce, (my [Tz (T2 Peti)) -
@ Same for RAND and FIFO.
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The steady-state is a product-form distribution

THEOREM 1. The steady state probabilities ™rAND(m)(C)
and Tprro(m)(€), with ¢ € Cn(m), can be written as

7TFIFO(m)(C) = 7rRAND(m)( c)=
7T(C) Z(m H (Hpc(zj)) ’ (1)

where Z(m) = Yoce, (my [Tz (T2 Peti)) -
@ Same for RAND and FIFO.

Example of a cache of size 4 with 3 lists and m = (1,2, 1):

il :k]el]

Probability of (i, , k, ¢) is proportional to p;(pjpk)z(pg)3.
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We can compute the miss probability by using a dynamic
programming approach (Generalization of [Fagin,Price]°).

We want to compute

Mim) = 3 b wle) = L)

ceCn(m) \ ktc E(m, n)

where E(r Z H HPC (i)

ceCy(r) i=1 =

We obtain a recursion formula on E(r, k): solvable in O(n x my ... mp).

The Dan and Towsley* approximation is not needed for polynomial time.

4A. Dan and D. Towsley. An approximate analysis of the LRU and FIFO buffer replacement schemes. SIGMETRICS
Perform. Eval. Rev., 18(1):143-152, Apr. 1990.

R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent reference model. SIAM J.
Comput., 7:288-296, 1978.
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A higher cache size and more lists (usually) leads to a
lower steady-state miss probability.
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s increasing the number of lists always better®?

less popular popu_lgr items
= -.”.L =R Mjpy |- My
?7>7 A
Six lists: m=(1,1,1,1,1,1) Three lists: m = (1,1,4).

6conjectured in 0. 1. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer Storage. Kluwer
Academic Publishers, Norwell, MA, USA, 1987.
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s increasing the number of lists always better®?

7>7 B
- 1 1 1
Six lists: m=(1,1,1,1,1,1) Three lists: m = (1,1,4).
policy m M (m) lower bound

Optimal  RAND(L,1,4) 0.005284 0.004925
RAND(1,1,3,1) 0.005299 0.004884
RAND(1,1,2,2) 0.005317  0.004884
RAND(1,1,2,1,1) 0.005321  0.004879
RAND(1,1,1,3) 0.005338  0.004884

RAND(1,1,1,2,1)  0.005343 0.004879
RAND(1,1,1,1,2)  0.005347 0.004879
CLIMB RAND(1,1,1,1,1,1) 0.005348 0.004878

RAND(1,2,3) 0.005428  0.004925

RAND(1,2,2,1) 0.005439  0.004884
LRU LRU(6) 0.005880 -
RANDOM RAND(6) 0.015350 0.015350

Table 1: CLIMB is not optimal for IRM model: p =
(49,49, 49,49,7,1,1)/205 and m = 6.

6conjectured in 0. 1. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of Computer Storage. Kluwer
Academic Publishers, Norwell, MA, USA, 1987.
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Outline

© Fast and accurate mean-field approximation
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We want to study at which speed the caches fills

probability in cache
°
4
b5

0.10|
simulation
0.05] — 1 list (200)
— 4 lists (50/50/50/50)
o 2000 4000 6000 8000 10000

number of requests

Figure : Popularities of objects change every 2000 steps.
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@ We develop an ODE approximation
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We want to study at which speed the caches fills

probability in cache
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Figure : Popularities of objects change every 2000 steps.

@ We develop an ODE approximation
@ We show that it is accurate
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We construct an ODE by assuming independence
Let H;(t) be the popularity in list i.

Pr Pr Pk Pk
o@go@o 90
Ho(t Hi(t Hy(t) Hp—1(t)

my mo m3 mp
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We construct an ODE by assuming independence
Let H;(t) be the popularity in list i.

Pk Dk Pr Pk
Ho(t Hy(t Hy(t) Hp_1(t)
mi m2 m3 mp,

If x4 i(t) is the probability that item k is in list / at time t, we
approximately have:

Popularity in cache i-1

. Tk, (L
&,i(t) = pexr,i-1(t) — ijxj,,;_l(t)#

+1iichy - Pkﬂ:k,i(t))

Popularity in cache i

This is similar to a TTL approximation.
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We show that this approximation is accurate, theoretically

and by simulation

THEOREM 6. For any T > 0, there exists a constant C >
0 that depends on T such that, for any probability distribu-
tion over n items and list sizes m1 ... mn, we have:

E sup |H;(£)—6:(t)| <C4‘(maxpk+m}zlax ! ,
te{0...7},i€{0...h} =0 m,;

where T := [T/(max?_; pj, + max?_y ™ =1

probability in cache

0.10 1 list (200) i
— 4 lists (50/50/50/50)
0.05 == ode aprox (1 list)

== ode approx (4 lists)

(] 2000 2000 6000 8000 10000
number of requests
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This approximation can also be used to compute stationary

distribution
THEOREM 7. The mean-field model (8) has a unique fized
point. For this fixed point, the probability that item k is part
of isti, fork=1,...,n andi=0,...,h, is given by

s — Phzi
st T h i )
I Dy
where z = (21, ..., 2n) s the unique solution of the equation
= Zi
YT L R (14)
1+ EJ 1 PkZJ

mi1 m2 m3 ma exact mean field

2 2 96 0.3166 0.3169
10 30 60 0.3296 0.3299
20 2 78 0.3273 0.3276

Y Very accurate: 90 8 2 0.4094 0.4100
: 1 4 10 85 0.3039 0.3041

5 15 25 55 0.3136 0.3139
25 256 25 25 0.3345 0.3348
60 2 2 36 0.3514 0.3517

e Map is contracting: computation in O(nh), compared to

O(nmjy ... my) for the exact.
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Outline

@ How to choose the size of the lists?
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Under the IRM model, a smaller first list (usually) means a
higher hit probability but a larger time to fill the cache
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Under the IRM model, the time to fill the cache mainly
depend on the size of the first list.
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@ In a dynamic setting, a good choice seems to be my > mp--- > my,
with my “large-enough”.
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We verified on a trace of youtube videos’, that reserving at
least 30% of the cache for the first list seems important.

Hit Probability

0.29} —<— FIFO(m): 2 lists ]
—6— FIFO(m): 3 lists o
—%— FIFO(m): 5 lists
—8&— LRU(m): 2 lists ]
—+— LRU(m): 3 lists
—>— LRU(m): 5 lists

0.28

0.27L L L L L
0 1000 2000 3000 4000 5000
m-m 1

7M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of YouTube network traffic at a campus network-measurements,

models, and implications. Comput. Netw., 53(4):501-514, Mar. 2009.
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Outline

© Conclusion
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Conclusion

Unified framework for studying list-based replacement policies.

Steady-state miss probability in polynomial time.

Accurate ODE approximation

Guidelines on how to use such a replacement algorithm: the size of

the first list is important.

mji

Two theoretical interests of this work:
» provides a unified framework and disproves old conjectures.

» ODE approximation

Future work: network of caches.
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Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms.
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