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This talk is about performance modeling of systems of
interacting objects, using stochastic models

???
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The main difficulty of probability : correlations

P [A,B] 6= P [A]P [B]

Problem: state space explosion
S states per object, N objects ⇒ SN states
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Can we study (Markovian) models of large systems?

N = 1: M/M/1!

N = 10 N = 100 N = 1000

Model size grows like SN :
intractable for N ≥ 10
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What happened is a law of large numbers
Some systems simplify as N goes to infinity : objects become independent

”Theorem”. lim
N→∞
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︸ ︷︷ ︸
Mean field approximation

Mean field approximation has been shown to be asymptotically exact and
has been successfully used in many context. For example :

CSMA (see e.g. Thesis of F. Cecchi), 802.11 (Bianchi’s formula)
Load balancing (power of two-choice, Mitzenmacher 98 /
Vvedenskaya 96, Tsitsiklis,Xu 2011& 2013)
Caching algorithms (G and Van Houdt 2015)
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We can study large systems. What about moderate sizes?

N = 1: easy N =∞: easy

N = 10 N = 100 N = 1000

What can we do here?

For many systems, asymptotically:

Perf (N) ≈ Perf (∞) +
1

N
C

purpose of this talk

Mean field approximation

Refined mean field approximation
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By studying what happens when N →∞, we get a very
good approximation even for N = 10
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Outline

1 Kurtz’ population model: classical convergence results

2 Accuracy of the approximation and refinement

3 In practice

4 Conclusion and recap
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We study a population of N interchangeable objects.

X denotes the empirical measure.

Xi (t) = fraction of objects in state i
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Population

CTMC

Density dependent population process (70s)

A continous-time Markov chain (CTMC) with state-space E is given by an
initial state x0 and its transitions (` ∈ L):

X 7→ X + `

`

N

at rate

N

β`(X ).

The drift is f (x) =
∑
`

`β`(x).

1We assume (E, ‖·‖) is a Banach space, not necessarily Rd .
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Our running example will be the supermarket model
Vvedenskaya et al. 96, Mitzenmacher 98

Example: N servers

Xi = fractions of servers with i or
more jobs.

The transitions are:

X 7→ X +
1

N
ei at rate Nρ(X 2

i−1 − X 2
i )

X 7→ X − 1

N
ei at rate N(xi − xi+1)

The mean field approximation is given by the (infinite) system of ODE:

ẋi = ρ(x2
i−1 − x2

i )︸ ︷︷ ︸
arrivals

− (xi − xi+1)︸ ︷︷ ︸
departures
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Idea of mean field: Some models simplify as N →∞

Theorem (Kurtz 70s. . . Benaim-Le Boudec 08. . . Ying 16)

XN(t) ≈ x(t) +
1√
N
Gt

Example: N servers
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In practice, can we use the approximation for N = 10?
N = 100?

N 10 100 1000 ∞
Average queue length (simulation) 2.8040 2.3931 2.3567 2.3527

Table: Two-choice model with ρ = 0.9

Under very general conditions:

1 The convergence is in O(1/N), not O(1/
√
N)

2 We can do better than mean field approximation.
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Why is the accuracy of the approximation 1/N and not

1/
√
N?

Xi =
1

N

N∑
n=1

1{Object n is in state i}

Even if the objects were independent, the central limit theorem :

Xi = P [Object n is in state i ]︸ ︷︷ ︸
≈ xi (mean field approximation)

+O
( 1√

N

)
.

Our metric is different :

E [Xi ] = P [Object n is in state i ] .

= xi +
C

N
+ O

( 1

N2

)
Our result
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Steady-state analysis : main assumptions

(A0) sup
x

∑
`

|`|2|β`(x)| <∞.

(A1) The stochastic process is a density dependent population process.

(A2) The drift f is twice-differentiale

(A3) The ODE has a globally stable attractor π, i.e., for any solution x of
the ODE ẋ = f (x) :

‖x(t)− π‖ ≤ Ce−αt ‖x(0)− π‖ .

(A4) For each N, the population process has a unique stationary
distribution.
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The constant can be easily evaluated numerically

Let π be the fixed point of the mean field approximation and

A = Df (π) B = D2f (π) Qij =
∑
`

`i`jβ`(π).

Let W be the unique solution of the Lyapunov equation

AW + (AW )T = Q
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Proof (1/2) – Comparison of generators

The generators of both systems are:

(L(N)h)(x) =
∑
`∈L

Nβ`(x)(h(x +
`

N
)− h(x))

(Λh)(x) =
∑
`∈L

β`(x)Dh(x) · ` = Dh(x) · f (x)

If h is C 2, then:

lim
N→∞

N(L(N) − Λ)h(x) =
1

2

∑
`∈L

β`(x)D2h(x) · (`, `)
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Proof (2/2) – Stein’s method (+ perturbation theory)

Let Gh be the function Gh(x) =

∫ ∞
0

(h(Φt(x))− h(π))dt, where Φt(x) is

the solution of the ODE ẋ = f (x) starting in x at time 0.
Then :

NE
[
h(XN)− h(π)

]
= NE

[
ΛGh)(XN)

]
= NE

[
(Λ− L(N))(Gh)(XN)

]
=

1

2
E

[∑
`

β`(X
N)D2Gh(XN) · (`, `)

]
+ O(1/N)

→ 1

2

∑
`

β`(π)D2Gh(π) · (`, `).

The computation of D2Gh(π) gives you the result (perturbation theory).
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What can we do in practice?

Perf (N) ≈ Perf (∞) +
C

N︸ ︷︷ ︸
refined mean field approximation

C cannot be computed in closed form very often.

Numerical evaluation is easy, e.g.,
https://github.com/ngast/rmf_tool/

Nicolas Gast – 22 / 29

https://github.com/ngast/rmf_tool/


A simple example : SIR

S

IR

1 + 2xI

1

3

The transitions are:

+
1

N
(−1, 1, 0) at rate xs + 2xsxI

+
1

N
(0,−1, 1) at rate xI

+
1

N
(1, 0,−1) at rate 3xR
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More complex example : the two-choice model

The transitions are
(for i ∈ {1 . . .K}):

+
1

N
ei rate Nρ(x2

i−1 − x2
i )

− 1

N
ei rate N(xi − xi+1)
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For the two-choice (and many models), the quality of the
approximation degrades as ρ approaches 1

The average queue length satisfies:

mN(ρ) = Θρ→1

(
log

1

1− ρ

)
+ O(1/N)

+
1

N
Θρ→1

( 1

1− ρ

)
︸ ︷︷ ︸

order of magnitude larger

+ O
( 1

N2

)

(based on a numerical evaluation of the c(ρ) ≈ ρ2

2

1

1− ρ
).
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Power of two-choice : the impact of with/without
replacement

0.5 0.6 0.7 0.8 0.9
ρ

0

2

4

6

8
constant D (mean-field v.s finite N system)
correction due to with replacement / without
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Recap

1 The accuracy of mean field approximation is O(1/N).
I Works for transient and steady-state
I Works for infinite-dimensional state space.

2 We can use the rate of convergence to define a refined approximation.
The main ideas are:

I It is easy to compute x = lim
N→∞

XN

I It is easy to compute C = lim
N→∞

N(XN − π)

I The new approximation is x + C/N.

The refined approximation is often accurate even for N = 10:
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To go further :

More examples in the paper, e.g.: two-choice with/without replacement.

Open questions

Multistable equilibria.

Can we go to the order O(1/N2)? It is useful?

Non-homogeneous population, e.g., caching

Main references :

A Refined Mean Field Approximation by Gast and Van Houdt. To
appear in SIGMETRICS 2018 https://hal.inria.fr/hal-01622054/

https://github.com/ngast/rmf_tool/

Expected Values Estimated via Mean Field Approximation are
O(1/N)-accurate by Gast. SIGMETRICS 2017.
https://github.com/ngast/meanFieldAccuracy
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Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr
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