Expected Values Estimated via Mean-Field Approximation are $1 / N$-Accurate

Nicolas Gast

Inria, Grenoble, France

Sigmetrics TPC workshop, March 2017

Mean-field approximation is widely used in our community

2016 Asymptotics of Insensitive Load Balancing and Blocking Phases - Jonckheere - Prabhu

2016 On the Approximation Error of Mean-Field Models - Ying
2015 Power of d Choices for Large-Scale Bin Packing: A Loss Model - Xie et al
2015 Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms - Gast, Van Houdt
2013 Queueing system topologies with limited flexibility. - Tsitsiklis, Xu
2013 A mean field model for a class of garbage collection algorithms in flash-based solid state drives. - Van Houdt
2012 Fluid limit of an asynchronous optical packet switch with shared per link full range wavelength conversion. - Van Houdt, Bortolussi
2011 On the power of (even a little) centralization in distributed processing. -
2010 Randomized load balancing with general service time distributions. Bramson et al.
2010 Incentivizing peer-assisted services: a fluid shapley value approach. - Misra et al
2010 A mean field model of work stealing in large-scale systems. - Gast, Gaujal
2009 The age of gossip: spatial mean field regime. - Chaintreau et al.

What is mean-field approximation?

We study a population of N interchangeable objects.
$X^{(N)}$ denotes the empirical measure.

$$
X_{i}^{(N)}(t)=\text { fraction of objects in state } i
$$

Idea of mean-field: Some models simplify as $N \rightarrow \infty$
Theorem (Kurtz 70,...)

$$
x^{(N)}(t) \approx x(t)
$$

Idea of mean-field: Some models simplify as $N \rightarrow \infty$

Theorem (Kurtz 70,...)

$$
x^{(N)}(t) \approx x(t)
$$

Example: N servers

Randomly choose two, and select one

Idea of mean-field: Some models simplify as $N \rightarrow \infty$

Theorem (Kurtz 70,...)

$$
x^{(N)}(t) \approx x(t)
$$

Example: N servers

Randomly choose two, and select one

How accurate is mean-field approximation?

$$
\begin{aligned}
& \text { Theorem (Kurtz 70... } \\
& \qquad x^{(N)}(t) \approx x(t)+\frac{1}{\sqrt{N}} G_{t}
\end{aligned}
$$

$\uparrow X_{3}(t)$ - Fraction of servers with 3 jobs

How accurate is mean-field approximation?

Theorem (Kurtz 70...)

$$
X^{(N)}(t) \approx x(t)+\frac{1}{\sqrt{N}} G_{t}
$$

How accurate is mean-field approximation?
Theorem (Kurtz 70... Ying 16)

$$
x^{(N)}(t) \approx x(t)+\frac{1}{\sqrt{N}} G_{t}
$$

How accurate is mean-field approximation?
Theorem (Kurtz 70... Ying 16)

$$
x^{(N)}(t) \approx x(t)+\frac{1}{\sqrt{N}} G_{t}
$$

In practice, how accurate is mean-field approximation?
Can we use the approximation for $N=1000$? $N=100$? $N=10$?

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527

Table: Two-choice model with $\rho=0.9$

In practice, how accurate is mean-field approximation?

Can we use the approximation for $N=1000$? $N=100$? $N=10$?

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean-field	0.4513	0.0404	0.0040	0

Table: Two-choice model with $\rho=0.9$

In practice, how accurate is mean-field approximation?
Can we use the approximation for $N=1000$? $N=100$? $N=10$?

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean-field	0.4513	0.0404	0.0040	0

Table: Two-choice model with $\rho=0.9$

Contributions:
(1) We show that under very general conditions, the error is in $O(1 / N)$
(2) We show that for that, the drift needs to be twice-differentiable.
(3) We study numerically the power-of-two choice.

Outline

(1) The Kurtz's Population Model: Classical Convergence Results
(2) The $O(1 / N)$-Accuracy of Mean-Field Approximation
(3) Example: two-choice model
(4) Recap and Discussion

Outline

(1) The Kurtz's Population Model: Classical Convergence Results
(2) The $O(1 / N)$-Accuracy of Mean-Field Approximation
(3) Example: two-choice model

4 Recap and Discussion

CTMC

A continous-time Markov chain (CTMC) with state-space \mathbf{E} is given by an initial state x_{0} and its transitions $(\ell \in \mathcal{L})$:

$$
X \mapsto X+\ell \quad \text { at rate } \quad \beta_{\ell}(X)
$$

The drift is $f(x)=\sum_{\ell} \ell \beta_{\ell}(x)$.
${ }^{1}$ We assume $(\mathbf{E},\|\cdot\|)$ is a Banach space, not necessarily \mathbb{R}^{d}.

Population CTMC

Density dependent population process (70s)

A population process is a sequence of CTMC \mathbf{X}^{N}, indexed by the population size N, with state spaces $\mathbf{E}^{N} \subset \mathbf{E}$, with initial state x_{0} and with transitions (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

The drift is $f(x)=\sum_{\ell} \ell \beta_{\ell}(x)$.

[^0]
Transient regime

Let Φ_{t} denotes the (unique) solution of the ODE :

$$
\Phi_{t} x=x+\int_{0}^{t} f\left(\Phi_{s} x\right) d s
$$

Transient regime

Let Φ_{t} denotes the (unique) solution of the ODE :

$$
\Phi_{t} x=x+\int_{0}^{t} f\left(\Phi_{s} x\right) d s
$$

Theorem (Kurtz 70s)
If f is Lipschitz-continuous with constant L, then for any fixed T :

$$
\sup _{t<T}\left\|X^{N}(t)-\Phi_{t} X^{N}(0)\right\|=O(1 / \sqrt{N}) \quad\left(\lim _{N \rightarrow \infty} \cdot=0\right)
$$

Stationary regime

If the ODE $\dot{x}=f(x)$ has a unique fixed point x^{*} that is exponentially stable, then:

Theorem (Ying 2016)
If f is Lipschitz-continuous with constant L, then for any fixed T :

$$
\mathbb{E}\left[\left\|x^{N}-x^{*}\right\|\right]=O(1 / \sqrt{N}) \quad\left(\lim _{N \rightarrow \infty} \cdot=0\right)
$$

(the uniqueness of the fixed point is not sufficient, see Benaim-Le Boudec 2008).

Outline

(1) The Kurtz's Population Model : Classical Convergence Results
(2) The $O(1 / N)$-Accuracy of Mean-Field Approximation
(3) Example: two-choice model
(4) Recap and Discussion

$1 / \sqrt{N}$ or $1 / N$?

N	10	100	1000	$+\infty$
Average queue length $\left(m^{N}\right)$	2.81	2.39	2.36	2.35
Error $\left(m^{N}-m^{\infty}\right)$	0.46	0.039	0.004	0

$1 / \sqrt{N}$ or $1 / N$?

$$
O(1 / \sqrt{N})
$$

System property (depends on $\left.\mathbf{X}^{N}\right) \quad$ (dep. on $\left.\mathbb{E}\left[h\left(\mathbf{X}_{i}\right)\right]\right)$ $O(1 / \sqrt{N})($ CLT $)$
$O(1 / N):$
x_{i} (mean-field approx)

N	10	100	1000	$+\infty$
Average queue length $\left(m^{N}\right)$	2.81	2.39	2.36	2.35
Error $\left(m^{N}-m^{\infty}\right)$	0.46	0.039	0.004	0

Steady-state analysis

We say that $\dot{x}=f(x)$ has an exponentially stable attractor x^{*} if for any solution:

$$
\left\|x(t)-x^{*}\right\| \leq C e^{-\alpha t}\left\|x(0)-x^{*}\right\|
$$

Steady-state analysis

We say that $\dot{x}=f(x)$ has an exponentially stable attractor x^{*} if for any solution:

$$
\left\|x(t)-x^{*}\right\| \leq C e^{-\alpha t}\left\|x(0)-x^{*}\right\|
$$

Theorem

If f is twice differentiable, if the ODE has an exponentially stable attractor x^{*} and if there exists a bounded set \mathcal{B} such that $\mathbf{P}\left[X^{N} \notin \mathcal{B}\right]=O\left(1 / N^{2}\right)$, then for any bounded function h, there exists a constant K such that:

$$
\limsup _{N \rightarrow \infty} N\left|\mathbb{E}\left[h\left(X^{N}\right)\right]-h\left(x^{*}\right)\right| \leq K
$$

- Note: A similar result holds for the transient behavior.

Main ideas of the proof

1. Comparison of the generators:

$$
\begin{aligned}
\left(L^{(N)} h\right)(x) & =\sum_{\ell \in \mathcal{L}} N \beta_{\ell}(x)\left(h\left(x+\frac{\ell}{N}\right)-h(x)\right) \\
(\Lambda h)(x) & =\sum_{\ell \in \mathcal{L}} \beta_{\ell}(x) D h(x) \cdot \ell=\operatorname{Dh}(x) \cdot f(x)
\end{aligned}
$$

2. Stein's method :

$$
\mathbb{E}\left[h\left(X^{N}\right)-h\left(x^{*}\right)\right] \mathbb{E}\left[\left(\Lambda-L^{(N)}\right)(G h) X^{N}\right]
$$

where $G h(x)=\int_{0}^{\infty}\left(h\left(\Phi_{t} x\right)-h\left(x^{*}\right)\right) d t$ satisfies $(x)-h\left(x^{*}\right)=\Lambda(G h) x$.
3. Perturbation theory: $D^{2}(G h)$ is twice-differentiable.

Outline

(1) The Kurtz's Population Model : Classical Convergence Results
(2) The $O(1 / N)$-Accuracy of Mean-Field Approximation
(3) Example: two-choice model

(4) Recap and Discussion

The two choice model ${ }^{2}$

Infinite state-space:

$$
X_{0}(t), X_{1}(t), \ldots
$$

where
$X_{i}(t)=$ fraction with i or more jobs.
Randomly choose two, and select one

Does this model satisfies our assumptions?

$(\mathbf{E},\|\cdot\|)$ is the set of infinite sequences such that $\|x\|_{w}=\sum_{i=1}^{\infty} w_{i}\left|x_{i}\right|<\infty$.

- Transitions : easy
- Regularity of the drift : easy
- Unique attractor: mitzenmacher 98
- Stationary measure concentrates on a bounded set : coupling argument : 2-choice \ll 1-choice.

The power of two-choice

Our theory guarantees that the average queue length satisfies:

$$
m^{N}(\rho)=m^{\infty}(\rho)+O(1 / N)
$$

where $m^{\infty}(\rho)=\Theta_{\rho \rightarrow 1}\left(\log \frac{1}{1-\rho}\right)$.

The power of two-choice

Our theory guarantees that the average queue length satisfies:

$$
m^{N}(\rho)=m^{\infty}(\rho)+O(1 / N)
$$

where $m^{\infty}(\rho)=\Theta_{\rho \rightarrow 1}\left(\log \frac{1}{1-\rho}\right)$.
By simulation, we observe that $N\left(m^{N}(\rho)-m^{\infty}\right)=d(\rho) \approx \frac{\rho^{2}}{2(1-\rho)}$

N	10	20	30	50	$+\infty$
$m^{N}(\rho)$	2.804	2.566	2.491	2.434	-
$m^{\infty}(\rho)+\frac{\rho^{2}}{2 N(1-\rho)}$	2.758	2.555	2.488	2.434	2.353

Table: Average queue length in the two-choice model ($\rho=0.9$).

The quality of the approximation degrades as ρ goes to 1

Simulation results suggest that:

$$
\begin{aligned}
& m^{N}(\rho) \approx \underbrace{m^{\infty}(\rho)}+\frac{1}{N} \underbrace{d(\rho)}+O\left(\frac{1}{N^{2}}\right) \\
& \approx \log \frac{1}{1-\rho} \\
& \approx \frac{\rho^{2}}{2(1-\rho)}
\end{aligned}
$$

Conjecture: the power of two-choice holds if $N=\Omega\left(\frac{1}{1-\rho}\right)$

Outline

(1) The Kurtz's Population Model: Classical Convergence Results
(2) The $O(1 / N)$-Accuracy of Mean-Field Approximation
(3) Example: two-choice model
(4) Recap and Discussion

Recap

(1) Convergence of mean-field model is $O(1 / N)$.

- Works for transient and steady-state
- Works for infinite-dimensional state space.
(2) Our approach is to focus on the expected values

Our result: the difference is $O(1 / N)$

In practice

For many mean-field models :

$$
\mathbb{E}\left[X^{N}\right] \approx x+\frac{C}{N}
$$

- C can be computed for one N and then interpolated.

This provides a new light for the two-choice.

Does it always work?

- Works for the model of Kurtz
- Also works for the "Benaim-Le Boudec" by using uniformization

But: it requires the drift to be twice-differentiable.

- (see counter-example on the paper)

Extension and open questions

- Multistable equilibria.
- Can we go to the order $O\left(1 / N^{2}\right)$? It is useful?
- I assumed twice differentiable (and it is needed).
- Can we do something in between for the steady-state?
- Non-homogeneous population.
- e.g., caching

Paper is reproducible:
https://github.com/ngast/meanFieldAccuracy

Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Mean-field and decoupling

Benaïm,

Le Boudec 08

Le Boudec 10

Darling Norris 08
G. 16
G. 16

A class of mean field interaction models for computer and communication systems, M.Benaïm and J.Y. Le Boudec., Performance evaluation, 2008.
The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points., J.-Y. L. Boudec. , Arxiv:1009.5021, 2010
R. W. R. Darling and J. R. Norris, Differential equation approximations for Markov chains, Probability Surveys 2008
Construction of Lyapunov functions via relative entropy with application to caching, Gast, N., ACM MAMA 2016 Expected Values Estimated via Mean-field approximation are 1/N accurate, Gast, N., SIGMETRICS 2017
Budhiraja et al. 15 Limits of relative entropies associated with weakly interacting particle systems., A. S. Budhiraja, P. Dupuis, M. Fischer, and K. Ramanan. , Electronic journal of probability, 20, 2015.

References (continued)

Optimal control and mean-field games:
${ }_{12}^{\text {G.,Gaujal Le Boudec }}$ Mean field for Markov decision processes: from discrete to continuous optimization, N.Gast,B.Gaujal, J.Y.Le Boudec, IEEE TAC, 2012
G. Gaujal 12 Markov chains with discontinuous drifts have differential inclusion limits., Gast N. and Gaujal B., Performance Evaluation, 2012
Lasry Lions Mean field games, J.-M. Lasry and P.-L. Lions, Japanese Journal of Mathematics, 2007.
Tembine at al 09 Mean field asymptotics of markov decision evolutionary games and teams, H. Tembine, J.-Y. L. Boudec, R. El-Azouzi, and E. Altman., GameNets 00

Applications: caches
Don and Towsley An approximate analysis of the LRU and FIFO buffer replacement schemes, A. Dan and D. Towsley., SIGMETRICS 1990
G. Van Houdt 15 Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms., Gast, Van Houdt., ACM Sigmetrics 2015

[^0]: ${ }^{1}$ We assume $(\mathbf{E},\|\cdot\|)$ is a Banach space, not necessarily \mathbb{R}^{d}.

