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Mean-field approximation is widely used in our community
2016 Asymptotics of Insensitive Load Balancing and Blocking Phases – Jonckheere

- Prabhu

2016 On the Approximation Error of Mean-Field Models – Ying

2015 Power of d Choices for Large-Scale Bin Packing: A Loss Model – Xie et al

2015 Transient and Steady-state Regime of a Family of List-based Cache
Replacement Algorithms – Gast, Van Houdt

2013 Queueing system topologies with limited flexibility. – Tsitsiklis, Xu

2013 A mean field model for a class of garbage collection algorithms in
flash-based solid state drives. – Van Houdt

2012 Fluid limit of an asynchronous optical packet switch with shared per link full
range wavelength conversion. – Van Houdt, Bortolussi

2011 On the power of (even a little) centralization in distributed processing. –

2010 Randomized load balancing with general service time distributions. –
Bramson et al.

2010 Incentivizing peer-assisted services: a fluid shapley value approach. – Misra
et al

2010 A mean field model of work stealing in large-scale systems. – Gast, Gaujal

2009 The age of gossip: spatial mean field regime. – Chaintreau et al.

...
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What is mean-field approximation ?
We study a population of N interchangeable objects.

X (N) denotes the empirical measure.

X
(N)
i (t) = fraction of objects in state i
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Idea of mean-field: Some models simplify as N →∞
Theorem (Kurtz 70,. . . )

X (N)(t) ≈ x(t)

Example: N servers
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How accurate is mean-field approximation?

Theorem (Kurtz 70. . .

Ying 16

)

X (N)(t) ≈ x(t)+
1√
N
Gt
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In practice, how accurate is mean-field approximation?
Can we use the approximation for N = 1000? N = 100? N = 10?

N 10 100 1000 ∞
Average queue length (simulation) 2.8040 2.3931 2.3567 2.3527

Table: Two-choice model with ρ = 0.9

Contributions :

1 We show that under very general conditions, the error is in O(1/N)

2 We show that for that, the drift needs to be twice-differentiable.

3 We study numerically the power-of-two choice.
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Population

CTMC

Density dependent population process (70s)

A continous-time Markov chain (CTMC) with state-space E is given by an
initial state x0 and its transitions (` ∈ L):

X 7→ X + `

`

N

at rate

N

β`(X ).

The drift is f (x) =
∑
`

`β`(x).

1We assume (E, ‖·‖) is a Banach space, not necessarily Rd .
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Transient regime
Let Φt denotes the (unique) solution of the ODE :

Φtx = x +

∫ t

0
f (Φsx)ds.

Theorem (Kurtz 70s)

If f is Lipschitz-continuous with constant L, then for any fixed T :

sup
t<T

∥∥∥XN(t)− ΦtX
N(0)

∥∥∥ = O(1/
√
N) ( lim

N→∞
· = 0).
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Stationary regime

If the ODE ẋ = f (x) has a unique fixed point x∗ that is exponentially
stable, then:

Theorem (Ying 2016)

If f is Lipschitz-continuous with constant L, then for any fixed T :

E
[∥∥∥XN − x∗

∥∥∥] = O(1/
√
N) ( lim

N→∞
· = 0).

(the uniqueness of the fixed point is not sufficient, see Benaim-Le Boudec
2008).
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1/
√
N or 1/N?

System property
(depends on XN)

Object property
(dep. on E [h(Xi )])

xi (mean-field
approx)

O(1/
√
N)

O(1/
√
N) (CLT) O(1/N)

N 10 100 1000 +∞
Average queue length (mN) 2.81 2.39 2.36 2.35

Error (mN −m∞) 0.46 0.039 0.004 0
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Steady-state analysis

We say that ẋ = f (x) has an exponentially stable attractor x∗ if for any
solution:

‖x(t)− x∗‖ ≤ Ce−αt ‖x(0)− x∗‖ .

Theorem

If f is twice differentiable, if the ODE has an exponentially stable attractor

x∗ and if there exists a bounded set B such that P
[
XN 6∈ B

]
= O(1/N2),

then for any bounded function h, there exists a constant K such that:

lim sup
N→∞

N
∣∣∣E [h(XN)

]
− h(x∗)

∣∣∣ ≤ K .

Note: A similar result holds for the transient behavior.
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We say that ẋ = f (x) has an exponentially stable attractor x∗ if for any
solution:

‖x(t)− x∗‖ ≤ Ce−αt ‖x(0)− x∗‖ .

Theorem

If f is twice differentiable, if the ODE has an exponentially stable attractor

x∗ and if there exists a bounded set B such that P
[
XN 6∈ B

]
= O(1/N2),

then for any bounded function h, there exists a constant K such that:

lim sup
N→∞

N
∣∣∣E [h(XN)

]
− h(x∗)

∣∣∣ ≤ K .

Note: A similar result holds for the transient behavior.

Nicolas Gast – 14 / 25



Main ideas of the proof

1. Comparison of the generators:

(L(N)h)(x) =
∑
`∈L

Nβ`(x)(h(x +
`

N
)− h(x))

(Λh)(x) =
∑
`∈L

β`(x)Dh(x) · ` = Dh(x) · f (x)

2. Stein’s method :

E
[
h(XN)− h(x∗)

]
E
[
(Λ− L(N))(Gh)XN

]
,

where Gh(x) =

∫ ∞
0

(h(Φtx)− h(x∗))dt satisfies (x)− h(x∗) = Λ(Gh)x .

3. Perturbation theory: D2(Gh) is twice-differentiable.
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The two choice model2

Randomly choose two, and select one

Nρ

1

1

...
...

Infinite state-space:

X0(t),X1(t), . . .

where

Xi (t) = fraction with i or more jobs.

2
This model or variants have been heavily studied (Vvedenskaya 96, Mitzenmacher 98 . . . Tsitsiklis et al. 2016,. . . ).
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Does this model satisfies our assumptions?

(E, ‖·‖) is the set of infinite sequences such that ‖x‖w =
∞∑
i=1

wi |xi | <∞.

Transitions : easy

Regularity of the drift : easy

Unique attractor : mitzenmacher 98

Stationary measure concentrates on a bounded set : coupling
argument : 2-choice � 1-choice.
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The power of two-choice

Our theory guarantees that the average queue length satisfies:

mN(ρ) = m∞(ρ) + O(1/N),

where m∞(ρ) = Θρ→1

(
log

1

1− ρ
)

.

By simulation, we observe that N(mN(ρ)−m∞) = d(ρ) ≈ ρ2

2(1− ρ)

N 10 20 30 50 +∞
mN(ρ) 2.804 2.566 2.491 2.434 –

m∞(ρ) +
ρ2

2N(1− ρ)
2.758 2.555 2.488 2.434 2.353

Table: Average queue length in the two-choice model (ρ = 0.9).
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The quality of the approximation degrades as ρ goes to 1

Simulation results suggest that:

mN(ρ) ≈ m∞(ρ)︸ ︷︷ ︸
≈ log

1

1− ρ

+
1

N
d(ρ)︸︷︷︸

≈
ρ2

2(1− ρ)

+ O(
1

N2
)

Conjecture: the power of two-choice holds if N = Ω(
1

1− ρ)
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Recap

1 Convergence of mean-field model is O(1/N).
I Works for transient and steady-state
I Works for infinite-dimensional state space.

2 Our approach is to focus on the expected values

X = empiri-
cal measure

Object property

E
[
XN
] xi (mean-field

approx)

CLT: O(1/
√
N)

Our result: the difference is O(1/N)
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In practice

For many mean-field models :

E
[
XN
]
≈ x +

C

N
,

C can be computed for one N and then interpolated.

This provides a new light for the two-choice.
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Does it always work?

Works for the model of Kurtz

Also works for the “Benaim-Le Boudec” by using uniformization

But: it requires the drift to be twice-differentiable.

(see counter-example on the paper)
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Extension and open questions

Multistable equilibria.

Can we go to the order O(1/N2)? It is useful?

I assumed twice differentiable (and it is needed).
I Can we do something in between for the steady-state?

Non-homogeneous population.
I e.g., caching

Paper is reproducible:
https://github.com/ngast/meanFieldAccuracy
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Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr
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