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Good system design needs performance evaluation
Example : load balancing

N servers

Which allocation policy?

Random

Round-robin

JSQ

JSQ(d)

JIQ

We need methods to characterize emerging behavior starting from a
stochastic model of interacting objects

We use simulation analytical methods and approximations.

Nicolas Gast – 2 / 57



Good system design needs performance evaluation
Example : load balancing

N servers

Which allocation policy?

Random

Round-robin

JSQ

JSQ(d)

JIQ

We need methods to characterize emerging behavior starting from a
stochastic model of interacting objects

We use simulation analytical methods and approximations.

Nicolas Gast – 2 / 57



The main difficulty of probability : correlations

P [A,B] 6= P [A] P [B]

Problem: state space explosion
S states per object, N objects ⇒ SN states
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“Mean field approximation” simplifies many problems
But how to apply it?

lim
N→∞

 0 2 4
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0.2

0.3 ODE (N = )

︸ ︷︷ ︸
Mean field approximation

Where has it been used?

Performance of load balancing / caching algorithms
Communication protocols (CSMA, MPTCP, Simgrid)
Mean field games (evacuation, Mexican wave)
Stochastic approximation / learning
Theoretical biology
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Outline: Demystifying Mean Field Approximation

1 Construction of the Mean Field Approximation: 3 models
Density Dependent Population Processes
A Second Point of View: Zoom on One Object
Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results
Transient Analysis
Steady-state Regime

3 The Refined Mean Field
Main Results
Generator Comparison and Stein’s Method
Alternative View: System Size Expansion Approach

4 Demo

5 Conclusion and Open Questions
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The supermarket model (SQ(2))

Arrival at each server ρ.

Sample d − 1 other
queues.

Allocate to the
shortest queue

Service rate=1.
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SQ(d): state representation

Let Sn(t) be the queue length of the nth queue at time t.

S = (1, 3, 1, 0, 2)

Alternative representation:

Xi (t) =
1

N

N∑
n=1

1{Sn(t)≥i},

which is the fraction of queues with queue length ≥ i .

X = (1, 0.8, 0.4, 0.2, 0, 0, 0, . . . )
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SQ(d) : state transitions

Arrival: x 7→ x +
1

N
ei.

Departures: x 7→ x − 1

N
ei.

Recall that xi is the fraction of servers with i jobs or more. Pick two
servers at random, what is the probability the least loaded has i − 1 jobs?

x2
i−1 − x2

i when picked with replacement

xi−1
Nxi−1 − 1

N − 1
− xi

Nxi − 1

N − 1
when picked without replacement

Note: this becomes asymptotically the same as N goes to infinity.
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Transitions and Mean Field Approximation

State changes on x :

x 7→ x +
1

N
ei at rate Nρ(xdi−1 − xdi )

x 7→ x − 1

N
ei at rate N(xi − xi+1)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

ẋi = ρ(xdi−1 − xdi )︸ ︷︷ ︸
Arrival

− (xi − xi+1)︸ ︷︷ ︸
Departure
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Variants: push-pull model, centralized solution
Suppose that:

At rate r , each server that has i ≥ 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

x 7→ x +
1

N
(−ei + e1) at rate Nr(xi−1 − xi )(1− x1)

At rate Nγ, a centralized server serves a job from the longests queue.
Transitions is:

x 7→ x − 1

N
ei at rate Nγxi1{xi+1=0}

The mean field approximation becomes (for i > 1):

ẋi = ρ(xdi−1 − xdi )︸ ︷︷ ︸
Arrival

− (xi − xi+1)︸ ︷︷ ︸
Departure

− r(xi−1 − xi )(1− x1)︸ ︷︷ ︸
Push

−Nγxi1{xi+1=0}︸ ︷︷ ︸
Centralized

ẋ1 = ρ(xd0 − xd1 )︸ ︷︷ ︸
Arrival

− (x1 − x2)︸ ︷︷ ︸
Departure

+
∞∑
i=2

r(xi−1 − xi )(1− x1)︸ ︷︷ ︸
Push

−Nγx11{x2=0}︸ ︷︷ ︸
Centralized

Refs: Push-pull (Minnebo and Van Houdt. 2014), Centralized (Xu,Tsitsiklis, 2011).
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ẋi = ρ(xdi−1 − xdi )︸ ︷︷ ︸
Arrival

− (xi − xi+1)︸ ︷︷ ︸
Departure

− r(xi−1 − xi )(1− x1)︸ ︷︷ ︸
Push

−Nγxi1{xi+1=0}︸ ︷︷ ︸
Centralized
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EN ⊂ E and transitions (for ` ∈ L):

X 7→ X +
`

N
at rate Nβ`(X ).

The Mean field approximation

The drift is f (x) =
∑
`

`β`(x) and the mean field

approximation is the solution of the ODE ẋ = f (x).

Example: SQ(d) load balancing

ẋi = ρ(xdi−1 − xdi )− (xi − xi+1)

It has a unique attractor: πi = ρ(d i−1)/(d−1).
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Accuracy of the mean field approximation
Numerical example of SQ(d) load balancing (d = 2)

Simulation (steady-state average queue length) Fixed Point
N 10 20 30 50 100 ∞ (mean field)

ρ = 0.7 1.2194 1.1735 1.1584 1.1471 1.1384 1.1301

ρ = 0.9 2.8040 2.5665 2.4907 2.4344 2.3931 2.3527

ρ = 0.95 4.2952 3.7160 3.5348 3.4002 3.3047 3.2139

Fairly good accuracy for N = 100 servers.

Nicolas Gast – 13 / 57



Accuracy of the mean field approximation
Numerical example of SQ(d) load balancing (d = 2)

Simulation (steady-state average queue length) Fixed Point
N 10 20 30 50 100 ∞ (mean field)

ρ = 0.7 1.2194 1.1735 1.1584 1.1471 1.1384 1.1301

ρ = 0.9 2.8040 2.5665 2.4907 2.4344 2.3931 2.3527

ρ = 0.95 4.2952 3.7160 3.5348 3.4002 3.3047 3.2139

Fairly good accuracy for N = 100 servers.

Nicolas Gast – 13 / 57



Accuracy of the mean field approximation
Pull-push model (servers with ≥ 2 jobs push to empty)

Simulation (steady-state ave. queue length) Fixed point
N 10 20 50 100 ∞

ρ = 0.8 1.5569 1.4438 1.3761 1.3545 1.3333

ρ = 0.90 2.3043 1.9700 1.7681 1.7023 1.6364

ρ = 0.95 3.4288 2.6151 2.1330 1.9720 1.8095

Fairly good accuracy for N = 100 servers.
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Outline

1 Construction of the Mean Field Approximation: 3 models
Density Dependent Population Processes
A Second Point of View: Zoom on One Object
Discrete-Time Models
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Main Results
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Examples: the cache-replacement policy RAND

Model: There are n objects and a cache of size m.

Objects i is requested according to a Poisson process of intensity λi .

An requested object that is not the cache goes into the cache and
ejects a random object.

The state of object i is {Out,In}.

Out In

λi

1

m

∑
j 6∈{cache}

λj

Extension: list-based caching (G. Van Houdt, Sigmetrics 2015)
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RAND: mean field approximation
Original model

MF approx: let xi (t) = P [i 6∈ {cache}].
If all objects are independent:

Out In

λi

1

m

∑
j 6∈{cache}

λj

Out In

λi

1

m

n∑
j=1

xjλj

The “mean field” equations for the approximation model are:

ẋi = −λixi +
1

m

n∑
j=1

xj(t)λj(1− xi ).

It has a unique fixed point that satisfies:

πi =
z

z + πi
with z such that

n∑
i=1

(1− πi ) = m.

Same equations as Fagins (77).
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Extension to the RAND(m) model (G, Van Houdt SIGMETRICS 2015)

Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This approximation is of the form ẋ = xQ(x).

Nicolas Gast – 18 / 57



Extension to the RAND(m) model (G, Van Houdt SIGMETRICS 2015)

Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This approximation is of the form ẋ = xQ(x).
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The mean field approximation is very accurate

n = 1000 objects with Zipf popularities.

0 2000 4000 6000 8000 10000
number of requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty
 i
n
 c

a
ch

e

1 list (200)
4 lists (50/50/50/50)
ode aprox (1 list)
ode approx (4 lists)

The popularities change Steady-state miss probabilities
every 2000 requests
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Outline

1 Construction of the Mean Field Approximation: 3 models
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Benäım-Le Boudec’s model (PEVA 2007)
Time is discrete.

Xi (k) = Proportion of object in state i at time step k

R(k) = State of the ”resource” at time k (discrete)

Assumptions:

Only O(1) objects change state at each time step and

f (x , r) =
1

N
E [X (k + 1)− X (k)|X (k) = x ,R(k) = r ] .

R evolves fast in a discrete state-space and:

P [R(k + 1) = j |X (k) = x ,R(k) = i ] = Pij(x).

For all x , P(x) is irreducible and has a unique stationary measure π(x , .).
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Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.

ẋ =
∑
r

f (x , r)π(x , r),

where π(x , r) is the stationary measure of the resource given x .

The analysis of such models is done by considering stochastic
approximation algorithms. For example, without resource one has:

X (k + 1) = X (k) +
1

N
[f (X (k)) + M(k + 1)] ,

where M is some noise process.
This is a noisy Euler discretization of an ordinary differential equation.
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ẋ =
∑
r

f (x , r)π(x , r),

where π(x , r) is the stationary measure of the resource given x .

The analysis of such models is done by considering stochastic
approximation algorithms. For example, without resource one has:

X (k + 1) = X (k) +
1

N
[f (X (k)) + M(k + 1)] ,

where M is some noise process.
This is a noisy Euler discretization of an ordinary differential equation.

Nicolas Gast – 22 / 57



Take-home message on this part

Three ways to construct mean field
approximation:

Density dependent population process.

Independence assumption ẋ = xQ(x).

Discrete-time model with vanishing intensity.

In what follows, I will assume that X is a density dependent population
process (ex: SQ(d), pull-push). Analysis of other models are similar.
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Convergence Result as N Goes to Infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If
XN(0) converges to x0, then for any finite T :

sup
0≤t≤T

∥∥∥XN(t)− x(t)
∥∥∥→ 0.

where x(t) is the unique solution of the ODE ẋ = f (x).
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Illustration: An Infection Model
Nodes can be Dormant, Active or Susceptible.

Transition Rate

Activation (D,A,S) 7→ (D − 1

N
,A +

1

N
,S) N(0.15 + 10XA)XD

Immunization (D,A,S) 7→ (D,A− 1

N
, S +

1

N
) N5XA

De-immunization (D,A,S) 7→ (D +
1

N
,A, S − 1

N
) N(1 +

10XA

XD + δ
)XS

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

X D
(t)

Mean field approximation
N=1000
N=10000
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The fixed point method

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = xQ(x)

x∗Q(x∗) = 0
fixed points

N →∞

Method was used in many papers:

Bianchi 00, Performance analysis of the IEEE 802.11 distributed coordination function.

Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.

Kwak et al. 05, Performance analysis of exponenetial backoff.

Kumar et al 08, New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.
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Does the fixed point method always work?

Transition Rate

Activation (D, A, S) 7→ (D −
1

N
, A +

1

N
, S) N(a + 10XA)XD

Immunization (D, A, S) 7→ (D, A−
1

N
, S +

1

N
) N5XA

De-immunization (D, A, S) 7→ (D +
1

N
, A, S −

1

N
) N(1 +

10XA

XD + δ
)XS

Markov chain is irreducible

Mean field approximation has a unique fixed point xQ(x) = 0.

Fixed point Stat. measure
xQ(x) = 0 (simulation)

πD πA πD πA
a = .3 0.211 0.241 0.219 0.242 (N = 103)

0.212 0.242 (N = 104)

a = .15 0.115 0.177 0.154 0.197 N = 103

0.151 0.195 N = 104
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Mean field approximation has a unique fixed point xQ(x) = 0.

Fixed point Stat. measure
xQ(x) = 0 (simulation)

πD πA πD πA
a = .3 0.211 0.241 0.219 0.242 (N = 103)

0.212 0.242 (N = 104)

a = .15 0.115 0.177 0.154 0.197 N = 103

0.151 0.195 N = 104
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What happened?

a = 0.30 a = 0.15

0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

X D
(t)

Mean field approximation
Simulation(N=1000)

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

X D
(t)

Mean field approximation
Simulation(N=1000)

Fixed point = attractor ODE has a cyclic behavior
Fixed point method works! Fixed point method does not work.
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Convergence result (steady-state)

Theorem If the mean field approximation has a unique attractor x(∞),
then ∥∥∥XN(∞)− x(∞)

∥∥∥→ 0
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Fixed points?

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = xQ(x)

x∗Q(x∗) = 0
fixed points

N →∞

N →∞

t →∞if yes

then yes

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary
distribution πN concentrates on the fixed points

In that case, we also have:

lim
N→∞

P [S1 = i1 . . . Sk = ik ] = x∗1 . . . x
∗
k .
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ṗ = pK

πK = 0

t →∞

Mean-field
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Steady-state: illustration

0.0
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0.0 1.0

Fixed point
true stationnary distribution

limit cycle
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0.0 1.00.0

1.0

1.0

0.0

0.0 1.00.0
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0.0
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Fixed point x ∗ = πN

a = .1 a = .3
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Quiz

Consider the SIRS model:

0.0

1.0

1.0

0.0

0.0 1.00.0

1.0

1.0

0.0

0.0 1.00.0

1.0

1.0

0.0

0.0 1.00.0

1.0

1.0

0.0

0.0 1.0

Fixed point
true stationnary distribution

limit cycle

S

D

A

positive correlation

Under the stationary distribution
πN :

(A) As the trajectory converge
to a fixed point, there is no
such stationary distribution.

(B) P(S1 = S ,S2 = S) ≈
P(S1 = S)P(S2 = S)

(C) P(S1 = S ,S2 = S) >
P(S1 = S)P(S2 = S)

(D) P(S1 = S ,S2 = S) <
P(S1 = S)P(S2 = S)

Answer: C

P(S1(t) = S ,S2(t) = S) = x1(t)2. Thus: positively correlated.
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How to show that trajectories converge to a fixed point?

Main solutions:

Find a Lyapunov function
I How to find a Lyapunov function: Energy? Entropy? Luck? (ex: G.

2016 for cache)

Use reversibility (Le Boudec 2013)

Monotonicity property (ex, load-balancing, see Van Houdt 2018)
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Fixed point method in practice

From the examples coming from queuing theory, many models have a
unique attractor.

This holds for classical load balancing policies such as SQ(d),
pull-push, JIQ,...

I Often comes from monotonicity

This holds in many cases in statistical physics
I Lyapunov methods (entropy, reversibility)

It does not always work
I Theoretical biology / chemistry
I Multi-stable models (ex: Kelly)
I Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang

2011)
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Outline

1 Construction of the Mean Field Approximation: 3 models
Density Dependent Population Processes
A Second Point of View: Zoom on One Object
Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results
Transient Analysis
Steady-state Regime

3 The Refined Mean Field
Main Results
Generator Comparison and Stein’s Method
Alternative View: System Size Expansion Approach

4 Demo

5 Conclusion and Open Questions
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Mean Field Accuracy
Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous:

XN(t) ≈ x(t) +
1√
N
Gt

If in addition the ODE has a
unique attractor π:

E
[
XN(∞)− π

]
= O(1/

√
N)

0 1 2 3 4 5
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ODE (N = )
N=10
N=100
N=1000
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with ρ = 0.9):
N 10 100 1000 ∞

Average queue length (simulation) 2.8040 2.3931 2.3567 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error seems to decrease as 1/N

Theorem (Kolokoltsov 2012, G. 2017& 2018). If the drift f is C 2 and has
a unique exponentially stable attractor, then for any t ∈ [0,∞) ∪ {∞},
there exists a constant Vt such that:

E
[
h(XN(t))

]
= h(x(t)) +

V (t)

N
+ O(1/N2)
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The refined mean field approximation...
... is defined as the classic mean field plus the 1/N correction term:

E
[
XN
]

= x(t) +
V (t)

N
,

where V (t) is computed analytically.

To compute V (t), we need:

Derivative of the drifts:

F i
j (t) =

∂fi
∂xj

(x(t)) and F i
jk(t) =

∂2fi
∂xj∂xk

(x(t))

A variance term:

Q(t) =
∑
`

`⊗ `β`(X (t))

Nicolas Gast – 39 / 57



The refined mean field approximation...
... is defined as the classic mean field plus the 1/N correction term:

E
[
XN
]

= x(t) +
V (t)

N
,

where V (t) is computed analytically.

To compute V (t), we need:

Derivative of the drifts:

F i
j (t) =

∂fi
∂xj

(x(t)) and F i
jk(t) =

∂2fi
∂xj∂xk

(x(t))

A variance term:

Q(t) =
∑
`

`⊗ `β`(X (t))

Nicolas Gast – 39 / 57



Computational methods
Theorem (G, Van Houdt 2018) Given a density dependent process with
twice-differentiable drift. Let h : E → R be a twice-differentiable function,
then for t > 0:

E
[
h(XN(t))

]
=h(x(t))+

1

N

(∑
i

∂h(x(t))

∂xi
Vi (t)+

1

2

∑
ij

h(x(t))

∂xi∂xj
Wij(t)

)
+O(

1

N2
),

where

d

dt
V i =

∑
j

F i
j V

j +
∑
jk

F i
j ,kW

j ,k

d

dt
W j ,k = Q jk +

∑
m

F j
mW

m,k +
∑
m

W j ,mF k
m

Theorem (G, Van Houdt 2018) The previous theorem also holds for the
stationary regime (t = +∞) if the ODE has a unique exponentially stable
attractor.
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The supermarket model (SQ(2))

N 10 20 30 50 100 ∞
ρ = 0.7

Simulation 1.2194 1.1735 1.1584 1.1471 1.1384 –
Refined mf 1.2150 1.1726 1.1584 1.1471 1.1386 1.1301

ρ = 0.9
Simulation 2.8040 2.5665 2.4907 2.4344 2.3931 –
Refined mf 2.7513 2.5520 2.4855 2.4324 2.3925 2.3527

ρ = 0.95
Simulation 4.2952 3.7160 3.5348 3.4002 3.3047 –
Refined mf 4.1017 3.6578 3.5098 3.3915 3.3027 3.2139

Mean field approximation

Average queue length: Refined mean field approximation gives a
significant improvement.
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Pull-push model (servers with ≥ 2 jobs push to empty)

N 10 20 50 100 ∞
ρ = 0.8

Simulation 1.5569 1.4438 1.3761 1.3545 –
Refined mean field 1.5473 1.4403 1.3761 1.3547 1.3333

ρ = 0.90
Simulation 2.3043 1.9700 1.7681 1.7023 –

Refined mean field 2.2945 1.9654 1.7680 1.7022 1.6364

ρ = 0.95
Simulation 3.4288 2.6151 2.1330 1.9720 –

Refined mean field 3.4369 2.6232 2.1350 1.9723 1.8095

Mean field approximation

Average queue length: Refined mean field approximation is remarkably
accurate
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SQ(2): the impact of choosing with/without replacement

Reminder: the least loaded of two servers has i jobs with probability:

x2
i−1 − x2

i when picked with replacement

xi−1
Nxi−1 − 1

N − 1
− xi

Nxi − 1

N − 1
when picked without replacement

Asymptotically equal but there is a 1/N-difference!

N = 10 servers Simulation Refined mean field Mean field

ρ = 0.7 with 1.215 1.215 1.1301
without 1.173 1.169 1.1301

with-without 0.042 0.046 –

ρ = 0.9 with 2.820 2.751 2.3527
without 2.705 2.630 2.3527

with-without 0.115 0.121 –

ρ = 0.95 with 4.340 4.102 3.2139
without 4.169 3.923 3.2139

with-without 0.171 0.179 –
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Main Elements of the Proof
1: Semi-groups and generators

For a Markov process, we define the operator Ψt that associates to a
function h the functions Ψth.

Ψthx = E [h(X (t)) | X (0) = x ] .

The generator is the derivative of Ψt at time 0:

Gh(x) =
1

dt
E [h(X (t + dt))− h(X (t)) | X (t) = x ] .

Examples:

For a Markov process that jumps from i to j at rate Qij :

Gh(i) =
∑
j

(h(j)− h(i))Qij

For a deterministic ODE ẋ = f (x):

Gh(x) = Dh(x) · f (x).
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Main Elements of the Proof
2: Comparison of Generators

The generators of the system N and the mean field approximation are:

(L(N)h)(x) =
∑
`∈L

Nβ`(x)(h(x +
`

N
)− h(x))

(Λh)(x) =
∑
`∈L

β`(x)Dh(x) · ` = Dh(x) · f (x)

If h is a twice-differentiable function, then:

lim
N→∞

N(L(N) − Λ)h(x) =
1

2

∑
`∈L

β`(x)D2h(x) · (`, `)
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Main Elements of the Proof
3. Stein’s method

If XN is distributed according to the stationary distribution of L(N), then
for any function g :

E
[
(L(N)g)(XN)

]
= 0

Now, assume that there exists a function g such that

h(x)− h(π) = (Λg)(x)

Then, we have:

NE
[
h(XN)− h(π)

]
= NE

[
(Λg)(XN)

]
= NE

[
(Λ− L(N))(g)(XN)

]
=

1

2
E

[∑
`

β`(X
N)D2g(XN) · (`, `)

]
+ O(1/N)

→ 1

2

∑
`

β`(π)D2g(π) · (`, `).
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Main Elements of the Proof
4. Perturbation theory

Let g be g(x) =

∫ ∞
0

(h(π)− h(Φt(x)))dt, where Φt(x) is the solution of

the ODE ẋ = f (x) starting in x at time 0. Then:

g(x) =

∫ dt

0
(h(π)− h(Φt(x)))dt +

∫ ∞
dt

(h(π)− h(Φt(x)))dt

≈ (h(π)− h(x))dt + g(Φdt(x))

This “shows” that (Λg)(x) = h(x)− h(π).

To finish, we need to show that g is twice-differentiable. This comes from
perturbation theory.

D2g(x) = −
∫ t

0
D2h(Φt(x))dt
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Where does the O(1/N)-term comes from?
Going back to the SQ(2) example

Transitions on Xi : +
1

N
at rate N(x2

i−1 − x2
i ) and − 1

N
at rate

N(xi − xi+1). Hence:

d

dt
E [Xi (t)] = E

[
X 2
i−1(t)− X 2

i (t)− (Xi (t)− Xi+1(t))
]

(exact)

= E
[
X 2
i−1(t)

]
− E

[
X 2
i (t)

]
− E [Xi (t)] + E [Xi+1(t)]

≈E [Xi−1(t)]2 − E [Xi (t)]2 − E [Xi (t)] + E [Xi+1(t)] (mean field approx.)

If we now consider how E
[
X 2
i

]
evolves, we have:

d

dt
E
[
X 2
i

]
= E

[
(2Xi +

1

N
)(X 2

i−1 − X 2
i ) + (−2Xi +

1

N
)(Xi − Xi+1)

]

= E

 2XiX
2
i−1︸ ︷︷ ︸

E[XiX
2
i−1≈?]

+ . . . . . . . . . . . .


where we denote X instead of X (t) for simplicity.
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System Size Expansion Approach
Recall that the transitions are X 7→ X +

`

N
at rate Nβ`(x).

d

dt
E [X ] = E

[∑
`

β`(X )`

]
= E [f (X )] (Exact)

d

dt
x = f (x) (Mean Field Approx.)

We can now look at the second moment:

E [(X − x)⊗ (X − x)] = E [(f (X )− f (x))⊗ (X − x)] (Exact)

+ E [(X − x)⊗ (f (X )− f (x))]

+
1

N
E

[∑
`∈L

β`(X )`⊗ `

]
... We can also look at higher order moments

E
[
(X − x)⊗3

]
= 3SymE [(f (X )− f (x))⊗ (X − x)⊗ (X − x)]

+
3

N
SymE

[∑
`∈L

β`(X )`⊗ `⊗ (X − x)

]
+

1

N
E

[∑
`∈L

β`(X )`⊗ `⊗ `

]
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System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y (t) = X (t)− x(t), and
Y (t)(k) = Y (t)⊗ · · · ⊗ Y (t)︸ ︷︷ ︸

k times

d

dt
E
[
Y (t)(k)

]
can be expressed as an exact

function of Y (t)(j) for j ∈ {0 . . . , k + 1}.

You can close the equations by assuming that Y (k) = 0 for k ≥ K .

For K = 1, this gives the mean field approximation (1/N-accurate)

For K = 3, this gives the refined mean field (1/N2-accurate).

For K = 5, this gives a second order expansion (1/N3-accurate).

Limit of the approach: For a system of dimension d , Y (t)(k) has dk

equations.
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Recap and extensions

For a mean field model with twice differentiable drift, then :

1 The accuracy of the classical mean field approximation is O(1/N).

2 We can use this to define a refined approximation.

3 The refined approximation is often accurate for N = 10.

Extensions:

Transient regime

Discrete-time (Synchronous)

Next expansion term in 1/N2.
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In many cases, the refined approximation is very accurate

“Truth” Refined mean field approximation Mean field approximation

E
[
XN
]

π +
V

N
π (=fixed point)

1

1Ref : G., Van Houdt, 2018
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