A Tutorial on Mean Field and Refined Mean Field Approximation

Nicolas Gast

Inria, Grenoble, France

YEQT XI, December 2018, Toulouse

Nicolas Gast - 1 / 57

Good system design needs performance evaluation Example : load balancing

Which allocation policy?

- Random
- Round-robin
- JSQ
- *JSQ*(*d*)
- JIQ

Good system design needs performance evaluation Example : load balancing

Which allocation policy?

- Random
- Round-robin
- JSQ
- *JSQ*(*d*)
- JIQ

We need methods to characterize emerging behavior starting from a stochastic model of interacting objects

• We use simulation analytical methods and approximations.

The main difficulty of probability : correlations

 $\mathbf{P}\left[A,B\right]\neq\mathbf{P}\left[A\right]\mathbf{P}\left[B\right]$

Problem: state space explosion S states per object, N objects $\Rightarrow S^N$ states

"Mean field approximation" simplifies many problems But how to apply it?

Where has it been used?

- Performance of load balancing / caching algorithms
- Communication protocols (CSMA, MPTCP, Simgrid)
- Mean field games (evacuation, Mexican wave)
- Stochastic approximation / learning
- Theoretical biology

Outline: Demystifying Mean Field Approximation

- Construction of the Mean Field Approximation: 3 models
 - Density Dependent Population Processes
 - A Second Point of View: Zoom on One Object
 - Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

3 The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

Demo

Outline

Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

3 The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

Demo

The supermarket model (SQ(2))

Arrival at each server ρ .

- Sample d-1 other queues.
- Allocate to the shortest queue

Service rate=1.

SQ(d): state representation

• Let $S_n(t)$ be the queue length of the *n*th queue at time *t*.

$$S = (1, 3, 1, 0, 2)$$

SQ(d): state representation

• Let $S_n(t)$ be the queue length of the *n*th queue at time t.

• Alternative representation:

$$X_i(t) = \frac{1}{N} \sum_{n=1}^N \mathbf{1}_{\{S_n(t) \ge i\}},$$

which is the fraction of queues with queue length $\geq i$.

$$X = (1, 0.8, 0.4, 0.2, 0, 0, 0, \dots)$$

SQ(d) : state transitions

• Arrival:
$$x \mapsto x + \frac{1}{N}\mathbf{e}_i$$
.
• Departures: $x \mapsto x - \frac{1}{N}\mathbf{e}_i$.

SQ(d) : state transitions

Recall that x_i is the fraction of servers with *i* jobs or more. Pick two servers at random, what is the probability the least loaded has i - 1 jobs?

SQ(d) : state transitions

Recall that x_i is the fraction of servers with *i* jobs or more. Pick two servers at random, what is the probability the least loaded has i - 1 jobs?

$$\begin{aligned} x_{i-1}^2 - x_i^2 & \text{when picked with replacement} \\ x_{i-1} \frac{Nx_{i-1} - 1}{N - 1} - x_i \frac{Nx_i - 1}{N - 1} & \text{when picked without replacement} \end{aligned}$$

Note: this becomes asymptotically the same as N goes to infinity.

Transitions and Mean Field Approximation

State changes on x:

$$x \mapsto x + \frac{1}{N} \mathbf{e}_{i}$$
 at rate $N \rho(x_{i-1}^{d} - x_{i}^{d})$
 $x \mapsto x - \frac{1}{N} \mathbf{e}_{i}$ at rate $N(x_{i} - x_{i+1})$

The mean field approximation is to consider the ODE associated with the drift (average variation):

$$\dot{x}_i = \underbrace{\rho(x_{i-1}^d - x_i^d)}_{\text{Arrival}} - \underbrace{(x_i - x_{i+1})}_{\text{Departure}}$$

Variants: push-pull model, centralized solution Suppose that:

 At rate r, each server that has i ≥ 2 or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$x \mapsto x + \frac{1}{N}(-e_i + e_1)$$
 at rate $Nr(x_{i-1} - x_i)(1 - x_1)$

Variants: push-pull model, centralized solution Suppose that:

 At rate r, each server that has i ≥ 2 or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$x \mapsto x + \frac{1}{N}(-e_i + e_1)$$
 at rate $Nr(x_{i-1} - x_i)(1 - x_1)$

 At rate Nγ, a centralized server serves a job from the longests queue. Transitions is:

$$x\mapsto x-rac{1}{N}e_i$$
 at rate $N\gamma x_i \mathbf{1}_{\{x_{i+1}=0\}}$

Variants: push-pull model, centralized solution Suppose that:

 At rate r, each server that has i ≥ 2 or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$x\mapsto x+rac{1}{N}(-e_i+e_1)$$
 at rate $Nr(x_{i-1}-x_i)(1-x_1)$

 At rate Nγ, a centralized server serves a job from the longests queue. Transitions is:

$$x\mapsto x-rac{1}{N}e_i$$
 at rate $N\gamma x_i \mathbf{1}_{\{x_{i+1}=\mathbf{0}\}}$

The mean field approximation becomes (for i > 1):

$$\dot{x}_{i} = \underbrace{\rho(x_{i-1}^{d} - x_{i}^{d})}_{\text{Arrival}} - \underbrace{(x_{i} - x_{i+1})}_{\text{Departure}} - \underbrace{r(x_{i-1} - x_{i})(1 - x_{1})}_{\text{Push}} - \underbrace{N\gamma x_{i} \mathbf{1}_{\{x_{i+1}=0\}}}_{\text{Centralized}}$$
$$\dot{x}_{1} = \underbrace{\rho(x_{0}^{d} - x_{1}^{d})}_{\text{Arrival}} - \underbrace{(x_{1} - x_{2})}_{\text{Departure}} + \sum_{i=2}^{\infty} \underbrace{r(x_{i-1} - x_{i})(1 - x_{1})}_{\text{Push}} - \underbrace{N\gamma x_{1} \mathbf{1}_{\{x_{2}=0\}}}_{\substack{\text{Centralized}\\ \text{Nicolas Gast - 11 / 57}}$$

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell($

X).

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The Mean field approximation The drift is $f(x) = \sum_{\ell} \ell \beta_{\ell}(x)$ and the mean field approximation is the solution of the ODE $\dot{x} = f(x)$.

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^N(t)$ indexed by the population size N, with state space $E^N \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The Mean field approximation The drift is $f(x) = \sum_{\ell} \ell \beta_{\ell}(x)$ and the mean field approximation is the solution of the ODE $\dot{x} = f(x)$.

Example: SQ(d) load balancing

$$\dot{x}_i = \rho(x_{i-1}^d - x_i^d) - (x_i - x_{i+1})$$

It has a unique attractor: $\pi_i = \rho^{(d^i-1)/(d-1)}$.

Nicolas Gast - 12 / 57

Accuracy of the mean field approximation Numerical example of SQ(d) load balancing (d = 2)

	Simulati	Fixed Point				
Ν	10	20	30	50	100	∞ (mean field)
$\rho = 0.7$	1.2194	1.1735	1.1584	1.1471	1.1384	1.1301
ho = 0.9	2.8040	2.5665	2.4907	2.4344	2.3931	2.3527
ho = 0.95	4.2952	3.7160	3.5348	3.4002	3.3047	3.2139

Fairly good accuracy for N = 100 servers.

Accuracy of the mean field approximation Numerical example of SQ(d) load balancing (d = 2)

	Simulation (steady-state average queue length)					Fixed Point
Ν	10	20	30	50	100	∞ (mean field)
$\rho = 0.7$	1.2194	1.1735	1.1584	1.1471	1.1384	1.1301
ho = 0.9	2.8040	2.5665	2.4907	2.4344	2.3931	2.3527
$\rho = 0.95$	4.2952	3.7160	3.5348	3.4002	3.3047	3.2139

Fairly good accuracy for N = 100 servers.

Accuracy of the mean field approximation Pull-push model (servers with ≥ 2 jobs push to empty)

	Simulati	Fixed point			
Ν	10	20	50	100	∞
$\rho = 0.8$	1.5569	1.4438	1.3761	1.3545	1.3333
$\rho = 0.90$	2.3043	1.9700	1.7681	1.7023	1.6364
$\rho = 0.95$	3.4288	2.6151	2.1330	1.9720	1.8095

Fairly good accuracy for N = 100 servers.

Outline

1

Construction of the Mean Field Approximation: 3 models • Density Dependent Population Processes

- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
- 🕨 Demo

Examples: the cache-replacement policy RAND

Model: There are n objects and a cache of size m.

- Objects *i* is requested according to a Poisson process of intensity λ_i .
- An requested object that is not the cache goes into the cache and ejects a random object.

Examples: the cache-replacement policy RAND

Model: There are n objects and a cache of size m.

- Objects *i* is requested according to a Poisson process of intensity λ_i .
- An requested object that is not the cache goes into the cache and ejects a random object.

The state of object i is {Out,In}.

Extension: list-based caching (G. Van Houdt, Sigmetrics 2015)

RAND: mean field approximation Original model

The "mean field" equations for the approximation model are:

$$\dot{x}_i = -\lambda_i x_i + \frac{1}{m} \sum_{j=1}^n x_j(t) \lambda_j(1-x_i).$$

The "mean field" equations for the approximation model are:

$$\dot{x}_i = -\lambda_i x_i + \frac{1}{m} \sum_{j=1}^n x_j(t) \lambda_j(1-x_i).$$

It has a unique fixed point that satisfies:

$$\pi_i = rac{z}{z+\pi_i}$$
 with z such that $\sum_{i=1}^n (1-\pi_i) = m$.

Same equations as Fagins (77).

Nicolas Gast - 17 / 57

Extension to the RAND(m) model (G, Van Houdt SIGMETRICS 2015) Let $H_i(t)$ be the popularity in list *i*.

Extension to the RAND(m) model (G, Van Houdt SIGMETRICS 2015) Let $H_i(t)$ be the popularity in list *i*.

If $x_{k,i}(t)$ is the probability that item k is in list i at time t, we approximately have:

$$\dot{x}_{k,i}(t) = p_k x_{k,i-1}(t) - \underbrace{\sum_{j} p_j x_{j,i-1}(t)}_{i} \frac{x_{k,i}(t)}{m_i} + \mathbf{1}_{\{i < h\}} \underbrace{\left(\sum_{j} p_j x_{j,i}(t) \frac{x_{k,i+1}(t)}{m_{i+1}} - p_k x_{k,i}(t)\right)}_{\text{Populativia cache i}}$$

This approximation is of the form $\dot{x} = xQ(x)$.

The mean field approximation is very accurate

every 2000 requests

n = 1000 objects with Zipf popularities.

m_1	m_2	m_3	m_4	exact	mean field
2	2	96	-	0.3166	0.3169
10	30	60	_	0.3296	0.3299
20	2	78	_	0.3273	0.3276
90	8	2	-	0.4094	0.4100
1	4	10	85	0.3039	0.3041
5	15	25	55	0.3136	0.3139
25	25	25	25	0.3345	0.3348
60	2	2	36	0.3514	0.3517

Steady-state miss probabilities

Outline

Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

🕨 Demo

Benaïm-Le Boudec's model (PEVA 2007) Time is discrete.

 $X_i(k)$ = Proportion of object in state *i* at time step *k* R(k) = State of the "resource" at time *k* (discrete) Benaïm-Le Boudec's model (PEVA 2007) Time is discrete.

> $X_i(k) =$ Proportion of object in state *i* at time step *k* R(k) = State of the "resource" at time *k* (discrete)

Assumptions:

• Only O(1) objects change state at each time step and

$$f(x,r) = \frac{1}{N} \mathbb{E} \left[X(k+1) - X(k) | X(k) = x, R(k) = r \right]$$

• *R* evolves fast in a discrete state-space and:

$$\mathbf{P}[R(k+1) = j | X(k) = x, R(k) = i] = P_{ij}(x).$$

For all x, P(x) is irreducible and has a unique stationary measure $\pi(x, .)$. Nicolas Gast - 21 / 57

Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.

$$\dot{x} = \sum_{r} f(x, r) \pi(x, r),$$

where $\pi(x, r)$ is the stationary measure of the resource given x.
Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.

$$\dot{x} = \sum_{r} f(x, r) \pi(x, r),$$

where $\pi(x, r)$ is the stationary measure of the resource given x.

The analysis of such models is done by considering stochastic approximation algorithms. For example, without resource one has:

$$X(k+1) = X(k) + \frac{1}{N} [f(X(k)) + M(k+1)],$$

where M is some noise process.

This is a noisy Euler discretization of an ordinary differential equation.

Take-home message on this part

Three ways to construct mean field approximation:

- Density dependent population process.
- Independence assumption $\dot{x} = xQ(x)$.
- Discrete-time model with vanishing intensity.

In what follows, I will assume that X is a density dependent population process (ex: SQ(d), pull-push). Analysis of other models are similar.

Outline

Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

3 The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

Demo

Convergence Result as N Goes to Infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If $X^{N}(0)$ converges to x_{0} , then for any finite T:

$$\sup_{0\leq t\leq T}\left\|X^{N}(t)-x(t)\right\|\to 0.$$

where x(t) is the unique solution of the ODE $\dot{x} = f(x)$.

Illustration: An Infection Model

Nodes can be Dormant, Active or Susceptible.

	Transition	Rate
Activation	$(D,A,S)\mapsto (D-rac{1}{N},A+rac{1}{N},S)$	$N(0.15+10X_A)X_D$
Immunization	$(D,A,S)\mapsto (D,A-\frac{1}{N},S+\frac{1}{N})$	$N5X_A$
De-immunization	$(D,A,S)\mapsto (D+\frac{1}{N},A,S-\frac{1}{N})$	$N(1+rac{10X_A}{X_D+\delta})X_S$

Illustration: An Infection Model

Nodes can be $\ensuremath{\textbf{D}}\xspace$ or $\ensuremath{\textbf{S}}\xspace$ use of $\ensuremath{\textbf{S}}\xspace$ successible.

	Transition	Rate
Activation	$(D,A,S)\mapsto (D-\frac{1}{N},A+\frac{1}{N},S)$	$N(0.15+10X_A)X_D$
Immunization	$(D,A,S)\mapsto (D,A-\frac{1}{N},S+\frac{1}{N})$	N5X _A
De-immunization	$(D,A,S)\mapsto (D+\frac{1}{N},A,S-\frac{1}{N})$	$N(1+\frac{10X_A}{X_D+\delta})X_S$

The fixed point method

Markov chain

Transient regime $\dot{p} = pK$ I $t \rightarrow \infty$ \downarrow Stationary $\pi K = 0$

The fixed point method

Method was used in many papers:

- Bianchi 00, Performance analysis of the IEEE 802.11 distributed coordination function.
- Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.
- Kwak et al. 05, Performance analysis of exponenetial backoff.
- Kumar et al 08, New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.

Does the fixed point method always work?

	Transition	Rate
Activation	$(D, A, S) \mapsto (D - \frac{1}{N}, A + \frac{1}{N}, S)$	$N(a + 10X_A)X_D$
Immunization	$(D, A, S) \mapsto (D, A - \frac{1}{N}, S + \frac{1}{N})$	N5X _A
De-immunization	$(D, A, S) \mapsto (D + \frac{1}{N}, A, S - \frac{1}{N})$	$N(1+rac{10X_A}{X_D+\delta})X_S$

- Markov chain is irreducible
- Mean field approximation has a unique fixed point xQ(x) = 0.

Does the fixed point method always work?

	Transition	Rate
Activation	$(D, A, S) \mapsto (D - \frac{1}{N}, A + \frac{1}{N}, S)$	$N(a + 10X_A)X_D$
Immunization	$(D, A, S) \mapsto (D, A - \frac{1}{N}, S + \frac{1}{N})$	N5X _A
De-immunization	$(D, A, S) \mapsto (D + \frac{1}{N}, A, S - \frac{1}{N})$	$N(1+rac{10X_A}{X_D+\delta})X_S$

- Markov chain is irreducible
- Mean field approximation has a unique fixed point xQ(x) = 0.

	Fixed	point	Stat. measure			
	xQ(x) = 0	0 (simulation)			
	π_D	$\pi_{\mathcal{A}}$	π_D	$\pi_{\mathcal{A}}$		
a = .3	0.211 0.241		0.219	0.242	$(N = 10^3)$	
			0.212	0.242	$(N = 10^4)$	

Does the fixed point method always work?

	Transition	Rate
Activation	$(D, A, S) \mapsto (D - \frac{1}{N}, A + \frac{1}{N}, S)$	$N(a + 10X_A)X_D$
Immunization	$(D, A, S) \mapsto (D, A - \frac{1}{N}, S + \frac{1}{N})$	N5X _A
De-immunization	$(D, A, S) \mapsto (D + \frac{1}{N}, A, S - \frac{1}{N})$	$N(1+rac{10X_A}{X_D+\delta})X_S$

- Markov chain is irreducible
- Mean field approximation has a unique fixed point xQ(x) = 0.

	Fixed	point	Stat. measure		
	xQ(x) = 0		(simula ⁻	tion)
	π_D	$\pi_{\mathcal{A}}$	π_D	$\pi_{\mathcal{A}}$	
a = .3	0.211 0.241		0.219	0.242	$(N = 10^3)$
			0.212	0.242	$(N = 10^4)$
a = .15	0.115	0.177	0.154	0.197	$N = 10^{3}$
			0.151	0.195	$N = 10^{4}$

What happened?

a = 0.30

Fixed point = attractor Fixed point method works!

ODE has a cyclic behavior Fixed point method does not work.

Convergence result (steady-state)

Theorem If the mean field approximation has a unique attractor $x(\infty)$, then

$$\left\|X^N(\infty)-x(\infty)\right\|\to 0$$

Fixed points?

Markov chain

Transient regime $\dot{p} = pK$ I $t \to \infty$ \checkmark Stationary $\pi K = 0$

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary distribution π^N concentrates on the fixed points

In that case, we also have:

$$\lim_{N\to\infty} \mathbf{P}\left[S_1=i_1\ldots S_k=i_k\right]=x_1^*\ldots x_k^*.$$

Steady-state: illustration

a = .1

a = .3

Nicolas Gast - 32 / 57

Quiz

Consider the SIRS model:

Under the stationary distribution π^N :

(A) As the trajectory converge to a fixed point, there is no such stationary distribution.

(B)
$$P(S_1 = S, S_2 = S) \approx$$

 $P(S_1 = S)P(S_2 = S)$
(C) $P(S_1 = S, S_2 = S) >$
 $P(S_1 = S)P(S_2 = S)$
(D) $P(S_1 = S, S_2 = S) <$
 $P(S_1 = S)P(S_2 = S)$

Quiz

Consider the SIRS model:

Under the stationary distribution π^N :

(A) As the trajectory converge to a fixed point, there is no such stationary distribution.

(B)
$$P(S_1 = S, S_2 = S) \approx$$

 $P(S_1 = S)P(S_2 = S)$
(C) $P(S_1 = S, S_2 = S) >$
 $P(S_1 = S)P(S_2 = S)$
(D) $P(S_1 = S, S_2 = S) <$
 $P(S_1 = S)P(S_2 = S)$

Answer: C

 $P(S_1(t) = S, S_2(t) = S) = x_1(t)^2$. Thus: positively correlated.

How to show that trajectories converge to a fixed point?

Main solutions:

- Find a Lyapunov function
 - ► How to find a Lyapunov function: Energy? Entropy? Luck? (ex: G. 2016 for cache)
- Use reversibility (Le Boudec 2013)
- Monotonicity property (ex, load-balancing, see Van Houdt 2018)

Fixed point method in practice

From the examples coming from queuing theory, many models have a unique attractor.

- This holds for classical load balancing policies such as SQ(d), pull-push, JIQ,...
 - Often comes from monotonicity
- This holds in many cases in statistical physics
 - Lyapunov methods (entropy, reversibility)

- It does not always work
 - Theoretical biology / chemistry
 - Multi-stable models (ex: Kelly)
 - Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang 2011)

Outline

Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
- 2 On the Accuracy of Mean Field : Positive and Negative Results
 - Transient Analysis
 - Steady-state Regime

3 The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

Demo

Mean Field Accuracy

Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous: $X^{N}(t) \approx x(t) + \frac{1}{\sqrt{N}}G_{t}$ If in addition the ODE has a unique attractor π : $\mathbb{E}\left[X^{N}(\infty) - \pi\right] = O(1/\sqrt{N})$

Nicolas Gast - 37 / 57

Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with $\rho = 0.9$): 100 1000 Ν 10 ∞ Average queue length (simulation) 2.8040 2.3931 2.3567 2.3527 Error of mean field 0.4513 0.0404 0.0040 0

Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with $ ho=0.9$):						
N	10	100	1000	∞		
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527		
Error of mean field	0.4513	0.0404	0.0040	0		
Error seems to decrease as $1/N$	I			I		

Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with $ ho=0.9$):						
N	10	100	1000	∞		
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527		
Error of mean field	0.4513	0.0404	0.0040	0		
Error seems to decrease as $1/N$						

Theorem (Kolokoltsov 2012, G. 2017& 2018). If the drift f is C^2 and has a unique exponentially stable attractor, then for any $t \in [0, \infty) \cup \{\infty\}$, there exists a constant V_t such that:

$$\mathbb{E}\left[h(X^N(t))\right] = h(x(t)) + \frac{V(t)}{N} + O(1/N^2)$$

Nicolas Gast - 38 / 57

The refined mean field approximation...

... is defined as the classic mean field plus the 1/N correction term:

$$\mathbb{E}\left[X^{N}
ight] = x(t) + rac{V(t)}{N},$$

where V(t) is computed analytically.

The refined mean field approximation...

... is defined as the classic mean field plus the 1/N correction term:

$$\mathbb{E}\left[X^{N}
ight] = x(t) + rac{V(t)}{N},$$

where V(t) is computed analytically.

To compute V(t), we need:

• Derivative of the drifts:

$$F_j^i(t) = \frac{\partial f_i}{\partial x_j}(x(t)) \text{ and } F_{jk}^i(t) = \frac{\partial^2 f_i}{\partial x_j \partial x_k}(x(t))$$

• A variance term:

$$Q(t) = \sum_\ell \ell \otimes \ell eta_\ell(X(t))$$

Computational methods

Theorem (G, Van Houdt 2018) Given a density dependent process with twice-differentiable drift. Let $h : E \to \mathbb{R}$ be a twice-differentiable function, then for t > 0:

$$\mathbb{E}\left[h(X^{N}(t))\right] = h(x(t)) + \frac{1}{N} \left(\sum_{i} \frac{\partial h(x(t))}{\partial x_{i}} V_{i}(t) + \frac{1}{2} \sum_{ij} \frac{h(x(t))}{\partial x_{i} \partial x_{j}} W_{ij}(t)\right) + O(\frac{1}{N^{2}})$$

where

$$\frac{d}{dt}V^{i} = \sum_{j} F_{j}^{i}V^{j} + \sum_{jk} F_{j,k}^{i}W^{j,k}$$
$$\frac{d}{dt}W^{j,k} = Q^{jk} + \sum_{m} F_{m}^{j}W^{m,k} + \sum_{m} W^{j,m}F_{m}^{k}$$

Theorem (G, Van Houdt 2018) The previous theorem also holds for the stationary regime $(t = +\infty)$ if the ODE has a unique exponentially stable attractor.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
ho = 0.7						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	_
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.1301
ho = 0.9						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	_
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\rho = 0.95$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	-
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\rho = 0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	_
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.130 1
$\rho = 0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	- :
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
ho = 0.95						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	_
Refined mf	1 1017	2 6570	2 5000	2 201E	2 2007	2 0120

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

	N	10	20	30	50	100	∞	
	$\rho = 0.7$							
	Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	—	
_	Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.130 1	_
f	$\rho = 0.9$				Me	an field	approxim	ation
i.	Simulation	2.8040	2.5665	2.4907	2.4344	2.3931		1 - C
ł	Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527	
ľ	$\rho = 0.95$							•
	Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	—	
	Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.213 9	

Average queue length: Refined mean field approximation gives a significant improvement.

Pull-push model (servers with ≥ 2 jobs push to empty)

Average queue length: Refined mean field approximation is remarkably accurate

SQ(2): the impact of choosing with/without replacement

Reminder: the least loaded of two servers has *i* jobs with probability:

$$\begin{aligned} & x_{i-1}^2 - x_i^2 \\ & x_{i-1} \frac{Nx_{i-1} - 1}{N - 1} - x_i \frac{Nx_i - 1}{N - 1} \end{aligned}$$

when picked with replacement

when picked without replacement

Asymptotically equal but there is a 1/N-difference!

SQ(2): the impact of choosing with/without replacement

Reminder: the least loaded of two servers has *i* jobs with probability:

$$x_{i-1}^2 - x_i^2$$

$$x_{i-1} \frac{Nx_{i-1} - 1}{N - 1} - x_i \frac{Nx_i - 1}{N - 1}$$

when picked with replacement

when picked without replacement

Asymptotically equal but there is a 1/N-difference!

	N = 10 servers	Simulation	Refined mean field	Mean field
$\rho = 0.7$	with	1.215	1.215	1.1301
	without	1.173	1.169	1.1301
	with-without	0.042	0.046	—
$\rho = 0.9$	with	2.820	2.751	2.3527
	without	2.705	2.630	2.3527
	with-without	0.115	0.121	_
$\rho = 0.95$	with	4.340	4.102	3.2139
	without	4.169	3.923	3.2139
	with-without	0.171	0.179	_
Outline

1

Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

🕨 Demo

1: Semi-groups and generators

For a Markov process, we define the operator Ψ_t that associates to a function *h* the functions $\Psi_t h$.

 $\Psi_t h x = \mathbb{E} \left[h(X(t)) \mid X(0) = x \right].$

The generator is the derivative of Ψ_t at time 0:

 $Gh(x) = \frac{1}{dt}\mathbb{E}\left[h(X(t+dt)) - h(X(t)) \mid X(t) = x\right].$

1: Semi-groups and generators

For a Markov process, we define the operator Ψ_t that associates to a function *h* the functions $\Psi_t h$.

$$\Psi_t h x = \mathbb{E}\left[h(X(t)) \mid X(0) = x\right].$$

The generator is the derivative of Ψ_t at time 0:

$$Gh(x) = \frac{1}{dt}\mathbb{E}\left[h(X(t+dt)) - h(X(t)) \mid X(t) = x\right].$$

Examples:

• For a Markov process that jumps from *i* to *j* at rate Q_{ij} :

$$Gh(i) = \sum_{j} (h(j) - h(i))Q_{ij}$$

• For a deterministic ODE $\dot{x} = f(x)$:

 $Gh(x) = Dh(x) \cdot f(x).$

Nicolas Gast - 45 / 57

2: Comparison of Generators

The generators of the system N and the mean field approximation are:

$$(L^{(N)}h)(x) = \sum_{\ell \in \mathcal{L}} N\beta_{\ell}(x)(h(x + \frac{\ell}{N}) - h(x))$$
$$(\Lambda h)(x) = \sum_{\ell \in \mathcal{L}} \beta_{\ell}(x)Dh(x) \cdot \ell = Dh(x) \cdot f(x)$$

2: Comparison of Generators

The generators of the system N and the mean field approximation are:

$$(L^{(N)}h)(x) = \sum_{\ell \in \mathcal{L}} N\beta_{\ell}(x)(h(x + \frac{\ell}{N}) - h(x))$$
$$(\Lambda h)(x) = \sum_{\ell \in \mathcal{L}} \beta_{\ell}(x)Dh(x) \cdot \ell = Dh(x) \cdot f(x)$$

If h is a twice-differentiable function, then:

$$\lim_{N\to\infty} N(L^{(N)} - \Lambda)h(x) = \frac{1}{2}\sum_{\ell\in\mathcal{L}}\beta_\ell(x)D^2h(x)\cdot(\ell,\ell)$$

3. Stein's method

If X^N is distributed according to the stationary distribution of $L^{(N)}$, then for any function g:

 $\mathbb{E}\left[(L^{(N)}g)(X^N)\right]=0$

3. Stein's method

If X^N is distributed according to the stationary distribution of $L^{(N)}$, then for any function g:

$$\mathbb{E}\left[(L^{(N)}g)(X^N)\right]=0$$

Now, assume that there exists a function g such that

 $h(x) - h(\pi) = (\Lambda g)(x)$

3. Stein's method

If X^N is distributed according to the stationary distribution of $L^{(N)}$, then for any function g:

$$\mathbb{E}\left[(L^{(N)}g)(X^N)\right]=0$$

Now, assume that there exists a function g such that

$$h(x) - h(\pi) = (\Lambda g)(x)$$

Then, we have:

$$\begin{split} \mathcal{N}\mathbb{E}\left[h(X^{N}) - h(\pi)\right] &= \mathcal{N}\mathbb{E}\left[(\Lambda g)(X^{N})\right] \\ &= \mathcal{N}\mathbb{E}\left[(\Lambda - L^{(N)})(g)(X^{N})\right] \\ &= \frac{1}{2}\mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X^{N})D^{2}g(X^{N}) \cdot (\ell,\ell)\right] + O(1/N) \\ &\to \frac{1}{2}\sum_{\ell} \beta_{\ell}(\pi)D^{2}g(\pi) \cdot (\ell,\ell). \end{split}$$

Nicolas Gast - 47 / 57

4. Perturbation theory

Let g be $g(x) = \int_0^\infty (h(\pi) - h(\Phi_t(x)))dt$, where $\Phi_t(x)$ is the solution of the ODE $\dot{x} = f(x)$ starting in x at time 0. Then:

$$g(x) = \int_0^{dt} (h(\pi) - h(\Phi_t(x)))dt + \int_{dt}^\infty (h(\pi) - h(\Phi_t(x)))dt$$
$$\approx (h(\pi) - h(x))dt + g(\Phi_{dt}(x))$$

This "shows" that $(\Lambda g)(x) = h(x) - h(\pi)$.

4. Perturbation theory

Let g be $g(x) = \int_0^\infty (h(\pi) - h(\Phi_t(x)))dt$, where $\Phi_t(x)$ is the solution of the ODE $\dot{x} = f(x)$ starting in x at time 0. Then:

$$g(x) = \int_0^{dt} (h(\pi) - h(\Phi_t(x)))dt + \int_{dt}^\infty (h(\pi) - h(\Phi_t(x)))dt$$
$$\approx (h(\pi) - h(x))dt + g(\Phi_{dt}(x))$$

This "shows" that $(\Lambda g)(x) = h(x) - h(\pi)$.

To finish, we need to show that g is twice-differentiable. This comes from perturbation theory.

$$D^2g(x) = -\int_0^t D^2h(\Phi_t(x))dt$$

Outline

1 Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
- Demo

Where does the O(1/N)-term comes from? Going back to the SQ(2) example Transitions on X_i : $+\frac{1}{N}$ at rate $N(x_{i-1}^2 - x_i^2)$ and $-\frac{1}{N}$ at rate $N(x_i - x_{i+1})$. Hence: $\frac{d}{dt}\mathbb{E}[X_i(t)] = \mathbb{E}[X_{i-1}^2(t) - X_i^2(t) - (X_i(t) - X_{i+1}(t))]$ (exact) $= \mathbb{E}[X_{i-1}^2(t)] - \mathbb{E}[X_i^2(t)] - \mathbb{E}[X_i(t)] + \mathbb{E}[X_{i+1}(t)]$ $\approx \mathbb{E}[X_{i-1}(t)]^2 - \mathbb{E}[X_i(t)]^2 - \mathbb{E}[X_i(t)] + \mathbb{E}[X_{i+1}(t)]$ (mean field approx. Where does the O(1/N)-term comes from? Going back to the SQ(2) example Transitions on X_i : $+\frac{1}{N}$ at rate $N(x_{i-1}^2 - x_i^2)$ and $-\frac{1}{N}$ at rate $N(x_i - x_{i+1})$. Hence: $\frac{d}{dt}\mathbb{E}[X_i(t)] = \mathbb{E}[X_{i-1}^2(t) - X_i^2(t) - (X_i(t) - X_{i+1}(t))]$ (exact) $= \mathbb{E}[X_{i-1}^2(t)] - \mathbb{E}[X_i^2(t)] - \mathbb{E}[X_i(t)] + \mathbb{E}[X_{i+1}(t)]$ $\approx \mathbb{E}[X_{i-1}(t)]^2 - \mathbb{E}[X_i(t)]^2 - \mathbb{E}[X_i(t)] + \mathbb{E}[X_{i+1}(t)]$ (mean field approx.

If we now consider how $\mathbb{E}[X_i^2]$ evolves, we have:

$$\frac{d}{dt}\mathbb{E}\left[X_i^2\right] = \mathbb{E}\left[\left(2X_i + \frac{1}{N}\right)\left(X_{i-1}^2 - X_i^2\right) + \left(-2X_i + \frac{1}{N}\right)\left(X_i - X_{i+1}\right)\right]$$
$$= \mathbb{E}\left[\underbrace{2X_i X_{i-1}^2}_{\mathbb{E}\left[X_i X_{i-1}^2 \approx ?\right]} + \dots + \underbrace{2X_i X_{i-1}^2}_{\mathbb{E}\left[X_i X_{i-1}^2 \approx ?\right]}\right]$$

where we denote X instead of X(t) for simplicity.

System Size Expansion Approach Recall that the transitions are $X \mapsto X + \frac{\ell}{N}$ at rate $N\beta_{\ell}(x)$.

$$\frac{d}{dt}\mathbb{E}\left[X\right] = \mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X)\ell\right] = \mathbb{E}\left[f(X)\right] \qquad \text{(Exact)}$$
$$\frac{d}{dt}x = f(x) \qquad \qquad \text{(Mean Field Approx.)}$$

System Size Expansion Approach Recall that the transitions are $X \mapsto X + \frac{\ell}{N}$ at rate $N\beta_{\ell}(x)$.

$$\frac{d}{dt}\mathbb{E}[X] = \mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X)\ell\right] = \mathbb{E}[f(X)] \qquad (Exact)$$
$$\frac{d}{dt}x = f(x) \qquad (Mean Field Approx.)$$

We can now look at the second moment:

$$\mathbb{E}\left[(X-x)\otimes(X-x)\right] = \mathbb{E}\left[(f(X)-f(x))\otimes(X-x)\right] \qquad (Exact) \\ + \mathbb{E}\left[(X-x)\otimes(f(X)-f(x))\right] \\ + \frac{1}{N}\mathbb{E}\left[\sum_{\ell\in\mathcal{L}}\beta_{\ell}(X)\ell\otimes\ell\right]$$

System Size Expansion Approach Recall that the transitions are $X \mapsto X + \frac{\ell}{N}$ at rate $N\beta_{\ell}(x)$.

$$\frac{d}{dt}\mathbb{E}\left[X\right] = \mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X)\ell\right] = \mathbb{E}\left[f(X)\right] \qquad (\mathsf{Exact})$$
$$\frac{d}{dt}x = f(x) \qquad (\mathsf{Mean Field Approx.})$$

We can now look at the second moment:

$$\mathbb{E}\left[(X-x)\otimes(X-x)\right] = \mathbb{E}\left[(f(X) - f(x))\otimes(X-x)\right] \qquad (Exact) \\ + \mathbb{E}\left[(X-x)\otimes(f(X) - f(x))\right] \\ + \frac{1}{N}\mathbb{E}\left[\sum_{\ell\in\mathcal{L}}\beta_{\ell}(X)\ell\otimes\ell\right]$$

... We can also look at higher order moments

$$\mathbb{E}\left[(X-x)^{\otimes 3}\right] = 3 \operatorname{Sym}\mathbb{E}\left[(f(X) - f(x)) \otimes (X-x) \otimes (X-x)\right] \\ + \frac{3}{N} \operatorname{Sym}\mathbb{E}\left[\sum_{\ell \in \mathcal{L}} \beta_{\ell}(X)\ell \otimes \ell \otimes (X-x)\right] + \frac{1}{N}\mathbb{E}\left[\sum_{\ell \in \mathcal{L}} \beta_{\ell}(X)\ell \otimes \ell \otimes \ell \right]_{\operatorname{Nicolas Gast} - 51} \right]$$

System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y(t) = X(t) - x(t), and $Y(t)^{(k)} = \underbrace{Y(t) \otimes \cdots \otimes Y(t)}_{k \text{ times}}$

 $\frac{d}{dt}\mathbb{E}\left[Y(t)^{(k)}\right] \text{ can be expressed as an exact}$ function of $Y(t)^{(j)}$ for $j \in \{0 \dots, k+1\}$.

System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y(t) = X(t) - x(t), and $Y(t)^{(k)} = \underbrace{Y(t) \otimes \cdots \otimes Y(t)}_{k \text{ times}}$

 $\frac{d}{dt}\mathbb{E}\left[Y(t)^{(k)}\right] \text{ can be expressed as an exact}$ function of $Y(t)^{(j)}$ for $j \in \{0 \dots, k+1\}$.

You can close the equations by assuming that $Y^{(k)} = 0$ for $k \ge K$.

- For K = 1, this gives the mean field approximation (1/N-accurate)
- For K = 3, this gives the refined mean field $(1/N^2$ -accurate).
- For K = 5, this gives a second order expansion $(1/N^3$ -accurate).

Limit of the approach: For a system of dimension d, $Y(t)^{(k)}$ has d^k equations.

Outline

Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

3 The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

🕨 Demo

Conclusion and Open Questions

Outline

Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models

2 On the Accuracy of Mean Field : Positive and Negative Results

- Transient Analysis
- Steady-state Regime

3 The Refined Mean Field

- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach

Demo

Recap and extensions

For a mean field model with twice differentiable drift, then :

- **()** The accuracy of the classical mean field approximation is O(1/N).
- 2 We can use this to define a refined approximation.
- **③** The refined approximation is often accurate for N = 10.

Extensions:

- Transient regime
- Discrete-time (Synchronous)
- Next expansion term in $1/N^2$.

In many cases, the refined approximation is very accurate

	Coupon	Supermarket	Pull/push]
Simulation ($N = 10$)	1.530	2.804	2.304	$ _1$
Refined mean field ($N = 10$)	1.517	2.751	2.295	1
Mean field $(N = \infty)$	1.250	2.353	1.636	1

¹Ref : G., Van Houdt, 2018

Nicolas Gast - 56 / 57

Some References

Job opening – Game theory, privacy and mean field.

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)

• Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis Gast, Bortolussi, Tribastone

• Expected Values Estimated via Mean Field Approximation are O(1/N)-accurate by Gast. SIGMETRICS 2017.

https://github.com/ngast/rmf_tool/