A Tutorial on Mean Field and Refined Mean Field Approximation

Nicolas Gast
Inria, Grenoble, France
YEQT XI, December 2018, Toulouse

Good system design needs performance evaluation

 Example: load balancing
N servers

Which allocation policy?

- Random
- Round-robin
- JSQ
- JSQ(d)
- JIQ

Good system design needs performance evaluation

Example: load balancing

N servers

Which allocation policy?

- Random
- Round-robin
- JSQ
- JSQ(d)
- JIQ

We need methods to characterize emerging behavior starting from a stochastic model of interacting objects

- We use simulation analytical methods and approximations.

The main difficulty of probability : correlations

$$
\mathbf{P}[A, B] \neq \mathbf{P}[A] \mathbf{P}[B]
$$

Problem: state space explosion S states per object, N objects $\Rightarrow S^{N}$ states

"Mean field approximation" simplifies many problems

But how to apply it?

Where has it been used?

- Performance of load balancing / caching algorithms
- Communication protocols (CSMA, MPTCP, Simgrid)
- Mean field games (evacuation, Mexican wave)
- Stochastic approximation / learning
- Theoretical biology

Outline: Demystifying Mean Field Approximation

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(3) Conclusion and Open Questions

The supermarket model (SQ(2))

Arrival at each server ρ.

- Sample $d-1$ other queues.
- Allocate to the shortest queue Service rate $=1$.

$S Q(d)$: state representation

- Let $S_{n}(t)$ be the queue length of the nth queue at time t.

$S Q(d)$: state representation

- Let $S_{n}(t)$ be the queue length of the nth queue at time t.

- Alternative representation:

$$
X_{i}(t)=\frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{\left\{S_{n}(t) \geq i\right\}},
$$

which is the fraction of queues with queue length $\geq i$.

$$
X=(1,0.8,0.4,0.2,0,0,0, \ldots)
$$

$S Q(d)$: state transitions

- Arrival: $\quad x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.
- Departures: $x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.

$S Q(d)$: state transitions

- Arrival: $\quad x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.
- Departures: $x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.

Recall that x_{i} is the fraction of servers with i jobs or more. Pick two servers at random, what is the probability the least loaded has $i-1$ jobs?

$S Q(d)$: state transitions

- Arrival: $\quad x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.
- Departures: $x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}}$.

Recall that x_{i} is the fraction of servers with i jobs or more. Pick two servers at random, what is the probability the least loaded has $i-1$ jobs?

$$
\begin{array}{lr}
x_{i-1}^{2}-x_{i}^{2} & \text { when picked with replacement } \\
x_{i-1} \frac{N x_{i-1}-1}{N-1}-x_{i} \frac{N x_{i}-1}{N-1} & \text { when picked without replacement }
\end{array}
$$

Note: this becomes asymptotically the same as N goes to infinity.

Transitions and Mean Field Approximation

State changes on x :

$$
\begin{aligned}
& x \mapsto x+\frac{1}{N} \mathbf{e}_{\mathbf{i}} \text { at rate } N \rho\left(x_{i-1}^{d}-x_{i}^{d}\right) \\
& x \mapsto x-\frac{1}{N} \mathbf{e}_{\mathbf{i}} \text { at rate } N\left(x_{i}-x_{i+1}\right)
\end{aligned}
$$

The mean field approximation is to consider the ODE associated with the drift (average variation):

$$
\dot{x}_{i}=\underbrace{\rho\left(x_{i-1}^{d}-x_{i}^{d}\right)}_{\text {Arrival }}-\underbrace{\left(x_{i}-x_{i+1}\right)}_{\text {Departure }}
$$

Variants: push-pull model, centralized solution

 Suppose that:- At rate r, each server that has $i \geq 2$ or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$
x \mapsto x+\frac{1}{N}\left(-e_{i}+e_{1}\right) \text { at rate } \operatorname{Nr}\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)
$$

Variants: push-pull model, centralized solution

 Suppose that:- At rate r, each server that has $i \geq 2$ or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$
x \mapsto x+\frac{1}{N}\left(-e_{i}+e_{1}\right) \text { at rate } \operatorname{Nr}\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)
$$

- At rate $N \gamma$, a centralized server serves a job from the longests queue. Transitions is:

$$
x \mapsto x-\frac{1}{N} e_{i} \text { at rate } N \gamma x_{i} \mathbf{1}_{\left\{x_{i+1}=0\right\}}
$$

Variants: push-pull model, centralized solution

 Suppose that:- At rate r, each server that has $i \geq 2$ or more jobs probes a server and pushes a job to it if this server has 0 jobs. Transitions are:

$$
x \mapsto x+\frac{1}{N}\left(-e_{i}+e_{1}\right) \text { at rate } \operatorname{Nr}\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)
$$

- At rate $N \gamma$, a centralized server serves a job from the longests queue. Transitions is:

$$
x \mapsto x-\frac{1}{N} e_{i} \text { at rate } N \gamma x_{i} \mathbf{1}_{\left\{x_{i+1}=0\right\}}
$$

The mean field approximation becomes (for $i>1$):

$$
\begin{aligned}
& \dot{x}_{i}=\underbrace{\rho\left(x_{i-1}^{d}-x_{i}^{d}\right)}_{\text {Arrival }}-\underbrace{\left(x_{i}-x_{i+1}\right)}_{\text {Departure }}-\underbrace{r\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)}_{\text {Push }}-\underbrace{N \gamma x_{i} \mathbf{1}_{\left\{x_{i+1}=0\right\}}}_{\text {Centralized }} \\
& \dot{x}_{1}=\underbrace{\rho\left(x_{0}^{d}-x_{1}^{d}\right)}_{\text {Arrival }}-\underbrace{\left(x_{1}-x_{2}\right)}_{\text {Departure }}+\sum_{i=2}^{\infty} \underbrace{r\left(x_{i-1}-x_{i}\right)\left(1-x_{1}\right)}_{\text {Push }}-\underbrace{N \gamma x_{1} \mathbf{1}_{\left\{x_{2}=0\right\}}}_{\begin{array}{c}
\text { Centralized } \\
\text { Nicolas Gast }-11 / 57
\end{array}}
\end{aligned}
$$

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^{N}(t)$ indexed by the population size N, with state space $E^{N} \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

Density dependent population process (Kurtz, 70s)

A population process is a sequence of CTMCs $X^{N}(t)$ indexed by the population size N, with state space $E^{N} \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

The Mean field approximation
The drift is $f(x)=\sum_{\ell} \ell \beta_{\ell}(x)$ and the mean field
approximation is the solution of the ODE $\dot{x}=f(x)$.

Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs $X^{N}(t)$ indexed by the population size N, with state space $E^{N} \subset E$ and transitions (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

The Mean field approximation
The drift is $f(x)=\sum_{\ell} \ell \beta_{\ell}(x)$ and the mean field
approximation is the solution of the ODE $\dot{x}=f(x)$.

Example: $\mathrm{SQ}(\mathrm{d})$ load balancing

$$
\dot{x}_{i}=\rho\left(x_{i-1}^{d}-x_{i}^{d}\right)-\left(x_{i}-x_{i+1}\right)
$$

It has a unique attractor: $\pi_{i}=\rho^{\left(d^{i}-1\right) /(d-1)}$.

Accuracy of the mean field approximation

Numerical example of $\mathrm{SQ}(d)$ load balancing $(d=2)$

	Simulation (steady-state average queue length)					Fixed Point
N	10	20	30	50	100	∞ (mean field)
$\rho=0.7$	1.2194	1.1735	1.1584	1.1471	1.1384	1.1301
$\rho=0.9$	2.8040	2.5665	2.4907	2.4344	2.3931	2.3527
$\rho=0.95$	4.2952	3.7160	3.5348	3.4002	3.3047	3.2139

Fairly good accuracy for $N=100$ servers.

Accuracy of the mean field approximation

Numerical example of $\mathrm{SQ}(d)$ load balancing $(d=2)$

	Simulation (steady-state average queue length)					
N	10	20	30	50	100	Fixed Point
(mean field)						
$\rho=0.7$	1.2194	1.1735	1.1584	1.1471	1.1384	1.1301
$\rho=0.9$	2.8040	2.5665	2.4907	2.4344	2.3931	2.3527
$\rho=0.95$	4.2952	3.7160	3.5348	3.4002	3.3047	3.2139

Fairly good accuracy for $N=100$ servers.

Accuracy of the mean field approximation

Pull-push model (servers with ≥ 2 jobs push to empty)

| | Simulation (steady-state ave. queue length) | | | | Fixed point |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 10 | 20 | 50 | 100 | ∞ |
| $\rho=0.8$ | 1.5569 | 1.4438 | 1.3761 | 1.3545 | 1.3333 |
| $\rho=0.90$ | 2.3043 | 1.9700 | 1.7681 | 1.7023 | 1.6364 |
| $\rho=0.95$ | 3.4288 | 2.6151 | 2.1330 | 1.9720 | 1.8095 |

Fairly good accuracy for $N=100$ servers.

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Examples: the cache-replacement policy RAND

Model: There are n objects and a cache of size m.

- Objects i is requested according to a Poisson process of intensity λ_{i}.
- An requested object that is not the cache goes into the cache and ejects a random object.

Examples: the cache-replacement policy RAND

Model: There are n objects and a cache of size m.

- Objects i is requested according to a Poisson process of intensity λ_{i}.
- An requested object that is not the cache goes into the cache and ejects a random object.
The state of object i is $\{$ Out, $\ln \}$.

Extension: list-based caching (G. Van Houdt, Sigmetrics 2015)

RAND: mean field approximation

 Original model

RAND: mean field approximation

Original model
MF approx: let $x_{i}(t)=\mathbf{P}[i \notin\{$ cache $\}]$. If all objects are independent:

The "mean field" equations for the approximation model are:

$$
\dot{x}_{i}=-\lambda_{i} x_{i}+\frac{1}{m} \sum_{j=1}^{n} x_{j}(t) \lambda_{j}\left(1-x_{i}\right) .
$$

RAND: mean field approximation

Original model
MF approx: let $x_{i}(t)=\mathbf{P}[i \notin\{$ cache $\}]$. If all objects are independent:

The "mean field" equations for the approximation model are:

$$
\dot{x}_{i}=-\lambda_{i} x_{i}+\frac{1}{m} \sum_{j=1}^{n} x_{j}(t) \lambda_{j}\left(1-x_{i}\right) .
$$

It has a unique fixed point that satisfies:

$$
\pi_{i}=\frac{z}{z+\pi_{i}} \quad \text { with } z \text { such that } \sum_{i=1}^{n}\left(1-\pi_{i}\right)=m
$$

Same equations as Fagins (77).

Extension to the RAND(m) model (G , van Houdt SIGMETrics 2015)

Let $H_{i}(t)$ be the popularity in list i.

Extension to the RAND (m) model (G, Van Houdt SICMETrics 2015)

Let $H_{i}(t)$ be the popularity in list i.

If $x_{k, i}(t)$ is the probability that item k is in list i at time t, we approximately have:

$$
\begin{aligned}
\dot{x}_{k, i}(t)= & p_{k} x_{k, i-1}(t)-\sum_{i}^{\sum_{j} p_{j} x_{j, i-1}(t)} \frac{x_{k, i}(t)}{m_{i}} \\
& +\mathbf{1}_{\{i<h\}} \sum_{\sum_{i} p_{j} x_{j, i}(t) \frac{x_{k, i+1}(t)}{m_{i+1}}}^{m_{i}\left(p_{k} x_{k, i}(t)\right)}
\end{aligned}
$$

This approximation is of the form $\dot{x}=x Q(x)$.

The mean field approximation is very accurate

$n=1000$ objects with Zipf popularities.

The popularities change every 2000 requests

m_{1}	m_{2}	m_{3}	m_{4}	exact	mean field
2	2	96	-	0.3166	0.3169
10	30	60	-	0.3296	0.3299
20	2	78	-	0.3273	0.3276
90	8	2	-	0.4094	0.4100
1	4	10	85	0.3039	0.3041
5	15	25	55	0.3136	0.3139
25	25	25	25	0.3345	0.3348
60	2	2	36	0.3514	0.3517

Steady-state miss probabilities

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Benaïm-Le Boudec's model (PEVA 2007)

Time is discrete.

$$
\begin{aligned}
X_{i}(k) & =\text { Proportion of object in state } i \text { at time step } k \\
R(k) & =\text { State of the " resource" at time } k \text { (discrete) }
\end{aligned}
$$

Benaïm-Le Boudec's model (PEVA 2007)

Time is discrete.

$$
\begin{aligned}
X_{i}(k) & =\text { Proportion of object in state } i \text { at time step } k \\
R(k) & =\text { State of the " resource" at time } k \text { (discrete) }
\end{aligned}
$$

Assumptions:

- Only $O(1)$ objects change state at each time step and

$$
f(x, r)=\frac{1}{N} \mathbb{E}[X(k+1)-X(k) \mid X(k)=x, R(k)=r]
$$

- R evolves fast in a discrete state-space and:

$$
\mathbf{P}[R(k+1)=j \mid X(k)=x, R(k)=i]=P_{i j}(x)
$$

For all $x, P(x)$ is irreducible and has a unique stationary measure $\pi(x,$.$) .$

Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.

$$
\dot{x}=\sum_{r} f(x, r) \pi(x, r),
$$

where $\pi(x, r)$ is the stationary measure of the resource given x.

Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.

$$
\dot{x}=\sum_{r} f(x, r) \pi(x, r),
$$

where $\pi(x, r)$ is the stationary measure of the resource given x.

The analysis of such models is done by considering stochastic approximation algorithms. For example, without resource one has:

$$
X(k+1)=X(k)+\frac{1}{N}[f(X(k))+M(k+1)]
$$

where M is some noise process.
This is a noisy Euler discretization of an ordinary differential equation.

Take-home message on this part

Three ways to construct mean field approximation:

- Density dependent population process.
- Independence assumption $\dot{x}=x Q(x)$.
- Discrete-time model with vanishing intensity.

In what follows, I will assume that X is a density dependent population process (ex: $S Q(d)$, pull-push). Analysis of other models are similar.

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(3) Conclusion and Open Questions

Convergence Result as N Goes to Infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If $X^{N}(0)$ converges to x_{0}, then for any finite T :

$$
\sup _{0 \leq t \leq T}\left\|X^{N}(t)-x(t)\right\| \rightarrow 0
$$

where $x(t)$ is the unique solution of the ODE $\dot{x}=f(x)$.

Illustration: An Infection Model

Nodes can be Dormant, Active or Susceptible.

	Transition	Rate
Activation	$(D, A, S) \mapsto\left(D-\frac{1}{N}, A+\frac{1}{N}, S\right)$	$N\left(0.15+10 X_{A}\right) X_{D}$
Immunization	$(D, A, S) \mapsto\left(D, A-\frac{1}{N}, S+\frac{1}{N}\right)$	$N 5 X_{A}$
De-immunization	$(D, A, S) \mapsto\left(D+\frac{1}{N}, A, S-\frac{1}{N}\right)$	$N\left(1+\frac{10 X_{A}}{X_{D}+\delta}\right) X_{S}$

Illustration: An Infection Model

Nodes can be Dormant, Active or Susceptible.

	Transition	Rate
Activation	$(D, A, S) \mapsto\left(D-\frac{1}{N}, A+\frac{1}{N}, S\right)$	$N\left(0.15+10 X_{A}\right) X_{D}$
Immunization	$(D, A, S) \mapsto\left(D, A-\frac{1}{N}, S+\frac{1}{N}\right)$	$N 5 X_{A}$
De-immunization	$(D, A, S) \mapsto\left(D+\frac{1}{N}, A, S-\frac{1}{N}\right)$	$N\left(1+\frac{10 X_{A}}{X_{D}+\delta}\right) X_{S}$

The fixed point method

Markov chain

Transient regime

Stationary

$$
\begin{gathered}
\dot{p}=p K \\
\prod_{t \rightarrow \infty}^{\downarrow} \\
\pi K=0
\end{gathered}
$$

The fixed point method

Markov chain

Transient regime

Method was used in many papers:

- Bianchi 00 , Performance analysis of the IEEE 802.11 distributed coordination function.
- Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.
- Kwak et al. 05, Performance analysis of exponenetial backoff.
- Kumar et al 08 , New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.

Does the fixed point method always work?

	Transition	Rate
Activation	$(D, A, S) \mapsto\left(D-\frac{1}{N}, A+\frac{1}{N}, S\right)$	$N\left(a+10 X_{A}\right) X_{D}$
Immunization	$(D, A, S) \mapsto\left(D, A-\frac{1}{N}, S+\frac{1}{N}\right)$	$N 5 X_{A}$
De-immunization	$(D, A, S) \mapsto\left(D+\frac{1}{N}, A, S-\frac{1}{N}\right)$	$N\left(1+\frac{10 X_{A}}{X_{D}+\delta}\right) X_{S}$

- Markov chain is irreducible
- Mean field approximation has a unique fixed point $x Q(x)=0$.

Does the fixed point method always work?

	Transition	Rate
Activation	$(D, A, S) \mapsto\left(D-\frac{1}{N}, A+\frac{1}{N}, S\right)$	$N\left(a+10 X_{A}\right) X_{D}$
Immunization	$(D, A, S) \mapsto\left(D, A-\frac{1}{N}, S+\frac{1}{N}\right)$	$N 5 X_{A}$
De-immunization	$(D, A, S) \mapsto\left(D+\frac{1}{N}, A, S-\frac{1}{N}\right)$	$N\left(1+\frac{10 X_{A}}{X_{D}+\delta}\right) X_{S}$

- Markov chain is irreducible
- Mean field approximation has a unique fixed point $x Q(x)=0$.

	Fixed point $x Q(x)=0$		Stat. measure (simulation)		
	π_{D}	π_{A}	π_{D}	π_{A}	
$a=.3$	0.211	0.241	0.219	0.242	$\left(N=10^{3}\right)$
			0.212	0.242	$\left(N=10^{4}\right)$

Does the fixed point method always work?

	Transition	Rate
Activation	$(D, A, S) \mapsto\left(D-\frac{1}{N}, A+\frac{1}{N}, S\right)$	$N\left(a+10 X_{A}\right) X_{D}$
Immunization	$(D, A, S) \mapsto\left(D, A-\frac{1}{N}, S+\frac{1}{N}\right)$	$N 5 X_{A}$
De-immunization	$(D, A, S) \mapsto\left(D+\frac{1}{N}, A, S-\frac{1}{N}\right)$	$N\left(1+\frac{10 X_{A}}{X_{D}+\delta}\right) X_{S}$

- Markov chain is irreducible
- Mean field approximation has a unique fixed point $x Q(x)=0$.

	Fixed point $x Q(x)=0$		Stat. measure (simulation)		
	π_{D}	π_{A}	π_{D}	π_{A}	
$a=.3$	0.211	0.241	0.219	0.242	$\left(N=10^{3}\right)$
			0.212	0.242	$\left(N=10^{4}\right)$
$a=.15$	0.115	0.177	0.154	0.197	$N=10^{3}$
			0.151	0.195	$N=10^{4}$

What happened?

Fixed point $=$ attractor
Fixed point method works!

ODE has a cyclic behavior
Fixed point method does not work.

Convergence result (steady-state)

Theorem If the mean field approximation has a unique attractor $x(\infty)$, then

$$
\left\|x^{N}(\infty)-x(\infty)\right\| \rightarrow 0
$$

Fixed points?

Markov chain

Transient regime

$$
\begin{gathered}
\dot{p}=p K \\
\underset{t}{\text { | }} \infty \\
\downarrow \\
\pi K=0
\end{gathered}
$$

Fixed points?

Markov chain

Transient regime

Stationary

Fixed points?

Markov chain

Mean-field

Transient regime

Fixed points?

Markov chain Mean-field

Transient regime

Theorem (Benaim Le Boudec 08)
If all trajectories of the ODE converges to the fixed points, the stationary distribution π^{N} concentrates on the fixed points

In that case, we also have:

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left[S_{1}=i_{1} \ldots S_{k}=i_{k}\right]=x_{1}^{*} \ldots x_{k}^{*}
$$

Steady-state: illustration

$a=.1$

$a=.3$

Quiz

Consider the SIRS model:

Under the stationary distribution π^{N} :
(A) As the trajectory converge to a fixed point, there is no such stationary distribution.
(B) $P\left(S_{1}=S, S_{2}=S\right) \approx$ $P\left(S_{1}=S\right) P\left(S_{2}=S\right)$
(C) $P\left(S_{1}=S, S_{2}=S\right)>$ $P\left(S_{1}=S\right) P\left(S_{2}=S\right)$
(D) $P\left(S_{1}=S, S_{2}=S\right)<$ $P\left(S_{1}=S\right) P\left(S_{2}=S\right)$

Quiz

Consider the SIRS model:

Under the stationary distribution π^{N} :
(A) As the trajectory converge to a fixed point, there is no such stationary distribution.
(B) $P\left(S_{1}=S, S_{2}=S\right) \approx$ $P\left(S_{1}=S\right) P\left(S_{2}=S\right)$
(C) $P\left(S_{1}=S, S_{2}=S\right)>$ $P\left(S_{1}=S\right) P\left(S_{2}=S\right)$
(D) $P\left(S_{1}=S, S_{2}=S\right)<$ $P\left(S_{1}=S\right) P\left(S_{2}=S\right)$

Answer: C

$P\left(S_{1}(t)=S, S_{2}(t)=S\right)=x_{1}(t)^{2}$. Thus: positively correlated.

How to show that trajectories converge to a fixed point?

Main solutions:

- Find a Lyapunov function
- How to find a Lyapunov function: Energy? Entropy? Luck? (ex: G. 2016 for cache)
- Use reversibility (Le Boudec 2013)
- Monotonicity property (ex, load-balancing, see Van Houdt 2018)

Fixed point method in practice

From the examples coming from queuing theory, many models have a unique attractor.

- This holds for classical load balancing policies such as $\mathrm{SQ}(\mathrm{d})$, pull-push, JIQ,...
- Often comes from monotonicity
- This holds in many cases in statistical physics
- Lyapunov methods (entropy, reversibility)
- It does not always work
- Theoretical biology / chemistry
- Multi-stable models (ex: Kelly)
- Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang 2011)

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Mean Field Accuracy

Theorem (Kurtz (1970s), Ying (2016)):
If the drift f is Lipschitz-continuous:

$$
X^{N}(t) \approx x(t)+\frac{1}{\sqrt{N}} G_{t}
$$

If in addition the ODE has a unique attractor π :

$$
\mathbb{E}\left[X^{N}(\infty)-\pi\right]=O(1 / \sqrt{N})
$$

Expected values estimated by mean field are $1 / \mathrm{N}$-accurate

Some experiments (for $\mathrm{SQ}(2)$ with $\rho=0.9$):

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean field	0.4513	0.0404	0.0040	0

Expected values estimated by mean field are $1 / \mathrm{N}$-accurate

Some experiments (for $\mathrm{SQ}(2)$ with $\rho=0.9$):

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean field	0.4513	0.0404	0.0040	0

Error seems to decrease as $1 / N$

Expected values estimated by mean field are $1 / \mathrm{N}$-accurate

Some experiments (for $\mathrm{SQ}(2)$ with $\rho=0.9$):

N	10	100	1000	∞
Average queue length (simulation)	2.8040	2.3931	2.3567	2.3527
Error of mean field	0.4513	0.0404	0.0040	0

Error seems to decrease as $1 / \mathrm{N}$

Theorem (Kolokoltsov 2012, G. 2017\& 2018). If the drift f is C^{2} and has a unique exponentially stable attractor, then for any $t \in[0, \infty) \cup\{\infty\}$, there exists a constant V_{t} such that:

$$
\mathbb{E}\left[h\left(X^{N}(t)\right)\right]=h(x(t))+\frac{V(t)}{N}+O\left(1 / N^{2}\right)
$$

The refined mean field approximation...

\ldots is defined as the classic mean field plus the $1 / N$ correction term:

$$
\mathbb{E}\left[X^{N}\right]=x(t)+\frac{V(t)}{N}
$$

where $V(t)$ is computed analytically.

The refined mean field approximation...

\ldots is defined as the classic mean field plus the $1 / N$ correction term:

$$
\mathbb{E}\left[X^{N}\right]=x(t)+\frac{V(t)}{N}
$$

where $V(t)$ is computed analytically.
To compute $V(t)$, we need:

- Derivative of the drifts:

$$
F_{j}^{i}(t)=\frac{\partial f_{i}}{\partial x_{j}}(x(t)) \text { and } F_{j k}^{j}(t)=\frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}(x(t))
$$

- A variance term:

$$
Q(t)=\sum_{\ell} \ell \otimes \ell \beta_{\ell}(X(t))
$$

Computational methods

Theorem (G, Van Houdt 2018) Given a density dependent process with twice-differentiable drift. Let $h: E \rightarrow \mathbb{R}$ be a twice-differentiable function, then for $t>0$:
$\mathbb{E}\left[h\left(X^{N}(t)\right)\right]=h(x(t))+\frac{1}{N}\left(\sum_{i} \frac{\partial h(x(t))}{\partial x_{i}} V_{i}(t)+\frac{1}{2} \sum_{i j} \frac{h(x(t))}{\partial x_{i} \partial x_{j}} W_{i j}(t)\right)+O\left(\frac{1}{N^{2}}\right)$
where

$$
\begin{aligned}
\frac{d}{d t} V^{i} & =\sum_{j} F_{j}^{i} V^{j}+\sum_{j k} F_{j, k}^{i} W^{j, k} \\
\frac{d}{d t} W^{j, k} & =Q^{j k}+\sum_{m} F_{m}^{j} W^{m, k}+\sum_{m} W^{j, m} F_{m}^{k}
\end{aligned}
$$

Theorem (G, Van Houdt 2018) The previous theorem also holds for the stationary regime $(t=+\infty)$ if the ODE has a unique exponentially stable attractor.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\rho=0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	-
Refined mf	1.2150	1.1726	1.1584	1.1471	1.1386	1.1301
$\rho=0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	-
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\rho=0.95$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	-
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\rho=0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	-
Refined mf 1.21501 .17261.						
$\rho=0.9$						
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	-
Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
"-7-0.95						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	-
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

The supermarket model (SQ(2))

N	10	20	30	50	100	∞
$\rho=0.7$						
Simulation	1.2194	1.1735	1.1584	1.1471	1.1384	-
Refined mf	1.2150	1.1726	1.1584	1.1471	11386	1.1301
$\rho=0.9$					an field	approxim
Simulation	2.8040	2.5665	2.4907	2.4344	2.3931	-
: Refined mf	2.7513	2.5520	2.4855	2.4324	2.3925	2.3527
$\vec{\rho}=\overline{0} \cdot \overline{95}$						
Simulation	4.2952	3.7160	3.5348	3.4002	3.3047	-
Refined mf	4.1017	3.6578	3.5098	3.3915	3.3027	3.2139

Average queue length: Refined mean field approximation gives a significant improvement.

Pull-push model (servers with ≥ 2 jobs push to empty)

N	10	20	50	100	∞
$\rho=0.8$					
Simulation	1.5569	1.4438	1.3761	1.3545	-
Refined mean field					
$\rho=0.90$	Mean field approxim				
Simulation	2.3043	1.9700	1.7681	1.7023	
Refined mean field	2.2945	1.9654	1.7680	1.7022	1.6364
- $-=0=0.95^{\circ}$					
Simulation	3.4288	2.6151	2.1330	1.9720	-
Refined mean field	3.4369	2.6232	2.1350	1.9723	1.8095

Average queue length: Refined mean field approximation is remarkably accurate

$S Q(2)$: the impact of choosing with/without replacement

 Reminder: the least loaded of two servers has i jobs with probability:$$
\begin{array}{lr}
x_{i-1}^{2}-x_{i}^{2} & \text { when picked with replacement } \\
x_{i-1} \frac{N x_{i-1}-1}{N-1}-x_{i} \frac{N x_{i}-1}{N-1} & \text { when picked without replacement }
\end{array}
$$

Asymptotically equal but there is a $1 / \mathrm{N}$-difference!
$S Q(2)$: the impact of choosing with/without replacement Reminder: the least loaded of two servers has i jobs with probability:

$$
\begin{aligned}
& x_{i-1}^{2}-x_{i}^{2} \\
& x_{i-1} \frac{N x_{i-1}-1}{N-1}-x_{i} \frac{N x_{i}-1}{N-1}
\end{aligned}
$$

when picked with replacement

Asymptotically equal but there is a $1 / \mathrm{N}$-difference!

	$N=10$ servers	Simulation	Refined mean field	Mean field
$\rho=0.7$	with	1.215	1.215	1.1301
	without	1.173	1.169	1.1301
	with-without	0.042	0.046	-
$\rho=0.9$	with	2.820	2.751	2.3527
	without	2.705	2.630	2.3527
	with-without	0.115	0.121	-
$\rho=0.95 \quad$ with	4.340	4.102	3.2139	
	without	4.169	3.923	3.2139
	with-without	0.171	0.179	-

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Main Elements of the Proof

1: Semi-groups and generators

For a Markov process, we define the operator Ψ_{t} that associates to a function h the functions $\Psi_{t} h$.

$$
\Psi_{t} h x=\mathbb{E}[h(X(t)) \mid X(0)=x]
$$

The generator is the derivative of ψ_{t} at time 0 :

$$
G h(x)=\frac{1}{d t} \mathbb{E}[h(X(t+d t))-h(X(t)) \mid X(t)=x]
$$

Main Elements of the Proof

1: Semi-groups and generators

For a Markov process, we define the operator Ψ_{t} that associates to a function h the functions $\Psi_{t} h$.

$$
\Psi_{t} h x=\mathbb{E}[h(X(t)) \mid X(0)=x]
$$

The generator is the derivative of ψ_{t} at time 0 :

$$
G h(x)=\frac{1}{d t} \mathbb{E}[h(X(t+d t))-h(X(t)) \mid X(t)=x] .
$$

Examples:

- For a Markov process that jumps from i to j at rate $Q_{i j}$:

$$
G h(i)=\sum_{j}(h(j)-h(i)) Q_{i j}
$$

- For a deterministic ODE $\dot{x}=f(x)$:

$$
G h(x)=D h(x) \cdot f(x) .
$$

Main Elements of the Proof

2: Comparison of Generators

The generators of the system N and the mean field approximation are:

$$
\begin{aligned}
\left(L^{(N)} h\right)(x) & =\sum_{\ell \in \mathcal{L}} N \beta_{\ell}(x)\left(h\left(x+\frac{\ell}{N}\right)-h(x)\right) \\
(\wedge h)(x) & =\sum_{\ell \in \mathcal{L}} \beta_{\ell}(x) D h(x) \cdot \ell=D h(x) \cdot f(x)
\end{aligned}
$$

Main Elements of the Proof

2: Comparison of Generators

The generators of the system N and the mean field approximation are:

$$
\begin{aligned}
\left(L^{(N)} h\right)(x) & =\sum_{\ell \in \mathcal{L}} N \beta_{\ell}(x)\left(h\left(x+\frac{\ell}{N}\right)-h(x)\right) \\
(\Lambda h)(x) & =\sum_{\ell \in \mathcal{L}} \beta_{\ell}(x) D h(x) \cdot \ell=D h(x) \cdot f(x)
\end{aligned}
$$

If h is a twice-differentiable function, then:

$$
\lim _{N \rightarrow \infty} N\left(L^{(N)}-\Lambda\right) h(x)=\frac{1}{2} \sum_{\ell \in \mathcal{L}} \beta_{\ell}(x) D^{2} h(x) \cdot(\ell, \ell)
$$

Main Elements of the Proof

3. Stein's method

If X^{N} is distributed according to the stationary distribution of $L^{(N)}$, then for any function g :

$$
\mathbb{E}\left[\left(L^{(N)} g\right)\left(X^{N}\right)\right]=0
$$

Main Elements of the Proof

3. Stein's method

If X^{N} is distributed according to the stationary distribution of $L^{(N)}$, then for any function g :

$$
\mathbb{E}\left[\left(L^{(N)} g\right)\left(X^{N}\right)\right]=0
$$

Now, assume that there exists a function g such that

$$
h(x)-h(\pi)=(\wedge g)(x)
$$

Main Elements of the Proof

3. Stein's method

If X^{N} is distributed according to the stationary distribution of $L^{(N)}$, then for any function g :

$$
\mathbb{E}\left[\left(L^{(N)} g\right)\left(X^{N}\right)\right]=0
$$

Now, assume that there exists a function g such that

$$
h(x)-h(\pi)=(\wedge g)(x)
$$

Then, we have:

$$
\begin{aligned}
N \mathbb{E}\left[h\left(X^{N}\right)-h(\pi)\right] & =N \mathbb{E}\left[(\Lambda g)\left(X^{N}\right)\right] \\
& =N \mathbb{E}\left[\left(\Lambda-L^{(N)}\right)(g)\left(X^{N}\right)\right] \\
& =\frac{1}{2} \mathbb{E}\left[\sum_{\ell} \beta_{\ell}\left(X^{N}\right) D^{2} g\left(X^{N}\right) \cdot(\ell, \ell)\right]+O(1 / N) \\
& \rightarrow \frac{1}{2} \sum_{\ell} \beta_{\ell}(\pi) D^{2} g(\pi) \cdot(\ell, \ell)
\end{aligned}
$$

Main Elements of the Proof

4. Perturbation theory

Let g be $g(x)=\int_{0}^{\infty}\left(h(\pi)-h\left(\Phi_{t}(x)\right)\right) d t$, where $\Phi_{t}(x)$ is the solution of the ODE $\dot{x}=f(x)$ starting in x at time 0 . Then:

$$
\begin{aligned}
g(x) & =\int_{0}^{d t}\left(h(\pi)-h\left(\Phi_{t}(x)\right)\right) d t+\int_{d t}^{\infty}\left(h(\pi)-h\left(\Phi_{t}(x)\right)\right) d t \\
& \approx(h(\pi)-h(x)) d t+g\left(\Phi_{d t}(x)\right)
\end{aligned}
$$

This "shows" that $(\Lambda g)(x)=h(x)-h(\pi)$.

Main Elements of the Proof

4. Perturbation theory

Let g be $g(x)=\int_{0}^{\infty}\left(h(\pi)-h\left(\Phi_{t}(x)\right)\right) d t$, where $\Phi_{t}(x)$ is the solution of the ODE $\dot{x}=f(x)$ starting in x at time 0 . Then:

$$
\begin{aligned}
g(x) & =\int_{0}^{d t}\left(h(\pi)-h\left(\Phi_{t}(x)\right)\right) d t+\int_{d t}^{\infty}\left(h(\pi)-h\left(\Phi_{t}(x)\right)\right) d t \\
& \approx(h(\pi)-h(x)) d t+g\left(\Phi_{d t}(x)\right)
\end{aligned}
$$

This "shows" that $(\Lambda g)(x)=h(x)-h(\pi)$.
To finish, we need to show that g is twice-differentiable. This comes from perturbation theory.

$$
D^{2} g(x)=-\int_{0}^{t} D^{2} h\left(\Phi_{t}(x)\right) d t
$$

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Where does the $O(1 / N)$-term comes from?

Going back to the $S Q(2)$ example
Transitions on $X_{i}:+\frac{1}{N}$ at rate $N\left(x_{i-1}^{2}-x_{i}^{2}\right)$ and $-\frac{1}{N}$ at rate $N\left(x_{i}-x_{i+1}\right)$. Hence:

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left[X_{i}(t)\right]=\mathbb{E}\left[X_{i-1}^{2}(t)-X_{i}^{2}(t)-\left(X_{i}(t)-X_{i+1}(t)\right)\right] \quad \text { (exact) } \\
& \quad=\mathbb{E}\left[X_{i-1}^{2}(t)\right]-\mathbb{E}\left[X_{i}^{2}(t)\right]-\mathbb{E}\left[X_{i}(t)\right]+\mathbb{E}\left[X_{i+1}(t)\right] \\
& \quad \approx \mathbb{E}\left[X_{i-1}(t)\right]^{2}-\mathbb{E}\left[X_{i}(t)\right]^{2}-\mathbb{E}\left[X_{i}(t)\right]+\mathbb{E}\left[X_{i+1}(t)\right] \quad \text { (mean field approx. }
\end{aligned}
$$

Where does the $O(1 / N)$-term comes from?

Going back to the $S Q(2)$ example
Transitions on $X_{i}:+\frac{1}{N}$ at rate $N\left(x_{i-1}^{2}-x_{i}^{2}\right)$ and $-\frac{1}{N}$ at rate $N\left(x_{i}-x_{i+1}\right)$. Hence:

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left[X_{i}(t)\right]=\mathbb{E}\left[X_{i-1}^{2}(t)-X_{i}^{2}(t)-\left(X_{i}(t)-X_{i+1}(t)\right)\right] \quad \text { (exact) } \\
& \quad=\mathbb{E}\left[X_{i-1}^{2}(t)\right]-\mathbb{E}\left[X_{i}^{2}(t)\right]-\mathbb{E}\left[X_{i}(t)\right]+\mathbb{E}\left[X_{i+1}(t)\right] \\
& \quad \approx \mathbb{E}\left[X_{i-1}(t)\right]^{2} \quad \mathbb{E}\left[X_{i}(t)\right]^{2} \quad \mathbb{E}\left[X_{i}(t)\right]+\mathbb{E}\left[X_{i+1}(t)\right] \quad \text { (mean field approx. }
\end{aligned}
$$

If we now consider how $\mathbb{E}\left[X_{i}^{2}\right]$ evolves, we have:

$$
\begin{aligned}
\frac{d}{d t} \mathbb{E}\left[X_{i}^{2}\right] & =\mathbb{E}\left[\left(2 X_{i}+\frac{1}{N}\right)\left(X_{i-1}^{2}-X_{i}^{2}\right)+\left(-2 X_{i}+\frac{1}{N}\right)\left(X_{i}-X_{i+1}\right)\right] \\
& =\mathbb{E}[\underbrace{2 X_{i} X_{i-1}^{2}}_{\mathbb{E}\left[X_{i} X_{i-1}^{2} \approx ?\right]}+\ldots \ldots \ldots \ldots .]
\end{aligned}
$$

where we denote X instead of $X(t)$ for simplicity.

System Size Expansion Approach

Recall that the transitions are $X \mapsto X+\frac{\ell}{N}$ at rate $N \beta_{\ell}(x)$.

$$
\begin{array}{rlrl}
\frac{d}{d t} \mathbb{E}[X] & =\mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X) \ell\right]=\mathbb{E}[f(X)] \quad \text { (Exact) } \\
\frac{d}{d t} x & =f(x) & & \text { (Mean Field Approx.) }
\end{array}
$$

System Size Expansion Approach

Recall that the transitions are $X \mapsto X+\frac{\ell}{N}$ at rate $N \beta_{\ell}(x)$.

$$
\begin{array}{rlrl}
\frac{d}{d t} \mathbb{E}[X] & =\mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X) \ell\right]=\mathbb{E}[f(X)] \quad \text { (Exact) } \\
\frac{d}{d t} x & =f(x) & & \text { (Mean Field Approx.) }
\end{array}
$$

We can now look at the second moment:

$$
\begin{align*}
\mathbb{E}[(X-x) \otimes(X-x)]= & \mathbb{E}[(f(X)-f(x)) \otimes(X-x)] \tag{Exact}\\
& +\mathbb{E}[(X-x) \otimes(f(X)-f(x))] \\
& +\frac{1}{N} \mathbb{E}\left[\sum_{\ell \in \mathcal{L}} \beta_{\ell}(X) \ell \otimes \ell\right]
\end{align*}
$$

System Size Expansion Approach

Recall that the transitions are $X \mapsto X+\frac{\ell}{N}$ at rate $N \beta_{\ell}(x)$.

$$
\begin{align*}
\frac{d}{d t} \mathbb{E}[X] & =\mathbb{E}\left[\sum_{\ell} \beta_{\ell}(X) \ell\right]=\mathbb{E}[f(X)] \tag{Exact}\\
\frac{d}{d t} x & =f(x)
\end{align*}
$$

(Mean Field Approx.)
We can now look at the second moment:

$$
\begin{align*}
\mathbb{E}[(X-x) \otimes(X-x)]= & \mathbb{E}[(f(X)-f(x)) \otimes(X-x)] \tag{Exact}\\
& +\mathbb{E}[(X-x) \otimes(f(X)-f(x))] \\
& +\frac{1}{N} \mathbb{E}\left[\sum_{\ell \in \mathcal{L}} \beta_{\ell}(X) \ell \otimes \ell\right]
\end{align*}
$$

... We can also look at higher order moments

$$
\mathbb{E}\left[(X-x)^{\otimes 3}\right]=3 \operatorname{Sym} \mathbb{E}[(f(X)-f(x)) \otimes(X-x) \otimes(X-x)]
$$

$$
+\frac{3}{N} \operatorname{SymE}\left[\sum_{\ell=\mathcal{C}} \beta_{\ell}(X) \ell \otimes \ell \otimes(X-x)\right]+\frac{1}{N} \mathbb{E}\left[\sum_{\text {N }} \beta_{\ell}(X) \ell \otimes \ell \otimes \ell\right]
$$

System Size Expansion and Moment Closure

Let $x(t)$ be the mean field approximation and $Y(t)=X(t)-x(t)$, and $Y(t)^{(k)}=\underbrace{Y(t) \otimes \cdots \otimes Y(t)}_{k \text { times }}$

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left[Y(t)^{(k)}\right] \text { can be expressed as an exact } \\
& \text { function of } Y(t)^{(j)} \text { for } j \in\{0 \ldots, k+1\} \text {. }
\end{aligned}
$$

System Size Expansion and Moment Closure

Let $x(t)$ be the mean field approximation and $Y(t)=X(t)-x(t)$, and $Y(t)^{(k)}=\underbrace{Y(t) \otimes \cdots \otimes Y(t)}_{k \text { times }}$

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left[Y(t)^{(k)}\right] \text { can be expressed as an exact } \\
& \text { function of } Y(t)^{(j)} \text { for } j \in\{0 \ldots, k+1\} \text {. }
\end{aligned}
$$

You can close the equations by assuming that $Y^{(k)}=0$ for $k \geq K$.

- For $K=1$, this gives the mean field approximation ($1 / N$-accurate)
- For $K=3$, this gives the refined mean field ($1 / N^{2}$-accurate).
- For $K=5$, this gives a second order expansion ($1 / N^{3}$-accurate).

Limit of the approach: For a system of dimension $d, Y(t)^{(k)}$ has d^{k} equations.

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Outline

(1) Construction of the Mean Field Approximation: 3 models

- Density Dependent Population Processes
- A Second Point of View: Zoom on One Object
- Discrete-Time Models
(2) On the Accuracy of Mean Field: Positive and Negative Results
- Transient Analysis
- Steady-state Regime
(3) The Refined Mean Field
- Main Results
- Generator Comparison and Stein's Method
- Alternative View: System Size Expansion Approach
(4) Demo
(5) Conclusion and Open Questions

Recap and extensions

For a mean field model with twice differentiable drift, then :
(1) The accuracy of the classical mean field approximation is $O(1 / N)$.
(2) We can use this to define a refined approximation.
(3) The refined approximation is often accurate for $N=10$.

Extensions:

- Transient regime
- Discrete-time (Synchronous)
- Next expansion term in $1 / N^{2}$.

In many cases, the refined approximation is very accurate

"Truth"	Refined mean field approximation	Mean field approximation
$\mathbb{E}\left[X^{N}\right]$	$\pi+\frac{V}{N}$	π (=fixed point)

	Coupon	Supermarket	Pull/push
Simulation $(N=10)$	1.530	2.804	2.304
Refined mean field $(N=10)$	1.517	2.751	2.295
Mean field $(N=\infty)$	1.250	2.353	1.636

Some References

Job opening - Game theory, privacy and mean field.

http://mescal.imag.fr/membres/nicolas.gast
nicolas.gast@inria.fr

- A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)
- Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis Gast, Bortolussi, Tribastone
- Expected Values Estimated via Mean Field Approximation are $\mathrm{O}(1 / \mathrm{N})$-accurate by Gast. SIGMETRICS 2017.
- https://github.com/ngast/rmf_tool/

