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Good system design needs performance evaluation

Example : load balancing

Which allocation policy?
@ Random

@ Round-robin

e JSQ

e JSQ(d)

e JIQ

N servers
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Good system design needs performance evaluation

Example : load balancing

S

N servers

Which allocation policy?

o Random

@ Round-robin
e JSQ

e JSQ(d)

e JIQ

We need methods to characterize emerging behavior starting from a
stochastic model of interacting objects

o We use simulatien analytical methods and approximations.
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The main difficulty of probability : correlations

P[A B] # P[A]P[B]

Problem: state space explosion
S states per object, N objects = S states
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“Mean field approximation” simplifies many problems
But how to apply it?

0.34{ — N=100 0.3
0.2 A 0.2 A
NI'_T)O 0.1 =~ 011
0.0 T 0.0
0 2 4
Time

—— ODE (N = )

Mean field approximation

Where has it been used?

Performance of load balancing / caching algorithms
Communication protocols (CSMA, MPTCP, Simgrid)
Mean field games (evacuation, Mexican wave)

Stochastic approximation / learning
Theoretical biology
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Outline: Demystifying Mean Field Approximation

o Construction of the Mean Field Approximation: 3 models
@ Density Dependent Population Processes
@ A Second Point of View: Zoom on One Object
@ Discrete-Time Models

© On the Accuracy of Mean Field : Positive and Negative Results
@ Transient Analysis
@ Steady-state Regime

e The Refined Mean Field
@ Main Results
@ Generator Comparison and Stein's Method
@ Alternative View: System Size Expansion Approach

@ Demo

© Conclusion and Open Questions
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Outline

o Construction of the Mean Field Approximation: 3 models
@ Density Dependent Population Processes
@ A Second Point of View: Zoom on One Object
@ Discrete-Time Models
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The supermarket model (SQ(2))

| .O Arrival at each server p.
f) e == =3 | ...O @ Sample d — 1 other
' queues.
L]
* I .O e Allocate to the

.
3 | O shortest queue

| ..O Service rate=1.
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SQ(d): state representation

o Let S,(t) be the queue length of the nth queue at time t¢.

'O
[) ey = = D llll )
L/ S=1(1,3,1,0,2)
i —
— O
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SQ(d): state representation

o Let S,(t) be the queue length of the nth queue at time t¢.

——
[) ey = = D [ L]
Lm0 $S=(1,3,1,0,2)
i E—"
—TO)

@ Alternative representation:

N
1
Xi(t) = N Z 1is,0>0
n=1

which is the fraction of queues with queue length > J.
X =(1,0.8,0.4,0.2,0,0,0,...)
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SQ(d) : state transitions

C———— =0 . 1
PR = @ Arrival: X — X+ Nei.
*—1O @ Departures: x — x — Ne;.
T )
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SQ(d) : state transitions

p—p oy |

C—— 0 . 1
| = @ Arrival: X+ X+ —€.

HEN N

N 1
FY
C——1O @ Departures: x — x — —e;.

T O) N

Recall that

x; is the fraction of servers with i/ jobs or more. Pick two

servers at random, what is the probability the least loaded has / — 1 jobs?
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SQ(d) : state transitions

C———— =0 . 1
PR = @ Arrival: X — X+ Nei.
*—1O @ Departures: x — x — Ne;.
T )

Recall that x; is the fraction of servers with i jobs or more. Pick two
servers at random, what is the probability the least loaded has / — 1 jobs?
x? | — x? when picked with replacement

Nxi_1 —1 Nx; — 1

Xi_1 N1 — Xj N1 when picked without replacement

Note: this becomes asymptotically the same as N goes to infinity.
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Transitions and Mean Field Approximation
State changes on x:

1
X = X+ i at rate Np(x? ; — x7)

1
X X = e at rate N(x; — xj41)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

X = p(xy = xf') = (% — Xit1)

Arrival Departure
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Variants: push-pull model, centralized solution

Suppose that:
o At rate r, each server that has i > 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

1
X=X+ N(—e,- + e1) at rate Nr(xi—1 — x;)(1 — x1)

Nicolas Gast — 11 / 57



Variants: push-pull model, centralized solution

Suppose that:
o At rate r, each server that has i > 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

1
X=X+ N(—e,- + e1) at rate Nr(xi—1 — x;)(1 — x1)

o At rate N+, a centralized server serves a job from the longests queue.
Transitions is:

1
X = X — Nei at rate N”)/Xi]-{x,-+1:0}
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Variants: push-pull model, centralized solution
Suppose that:

o At rate r, each server that has i > 2 or more jobs probes a server and
pushes a job to it if this server has 0 jobs. Transitions are:

1
X=X+ N(—e,- + e1) at rate Nr(xi—1 — x;)(1 — x1)

o At rate N+, a centralized server serves a job from the longests queue.
Transitions is:

1
X = X — Nei at rate N”)/Xi]-{x,-+1:0}

The mean field approximation becomes (for i > 1):

xi = p(xfly = xf) = (xi = xit1) — r(xie1 — x:) (1 — x1) — Nyxilis, o
Ar?irval Dep;?ture Push Centralized
0
x1=p(x¢ = xf) — (x1 — x0) + Z r(xi-1 —xi)(1 —x1) = Nyxalg,—o)
—_— —— 5
Arrival Departure - Push Centralized
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XV (t) indexed by the
population size N, with state space EN C E and transitions (for £ € L):

4
X=X+ N at rate Nj3,(X).
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XV (t) indexed by the
population size N, with state space EN C E and transitions (for £ € L):

4
X=X+ N at rate Nj3,(X).

The Mean field approximation

The drift is £(x) = Y £8,(x) and the mean field
l

approximation is the solution of the ODE x = f(x).
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Density dependent population process (Kurtz, 70s)
A population process is a sequence of CTMCs XV (t) indexed by the
population size N, with state space EN C E and transitions (for £ € L):

4
X=X+ N at rate Nj3,(X).

The Mean field approximation

The drift is £(x) = Y £8,(x) and the mean field
l

approximation is the solution of the ODE x = f(x).

Example: SQ(d) load balancing

X = p(xy — xf) — (% — xig1)

It has a unique attractor: m; = p(difl)/(dfl).
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Accuracy of the mean field approximation
Numerical example of SQ(d) load balancing (d = 2)

Simulation (steady-state average queue length) Fixed Point
N 10 20 30 50 100 oo (mean field)
p=0.7 [ 12194 11735 1.1584 1.1471 1.1384 1.1301
p=0.9 [28040 25665 24907 24344 23931 | 2.3527
p=0.95]42052 3.7160 3.5348 3.4002  3.3047 | 3.2139

Fairly good accuracy for N = 100 servers.
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Accuracy of the mean field approximation
Numerical example of SQ(d) load balancing (d = 2)

Simulation (steady-state average queue length) | ~ Fixed Point

N 10 20 30 50 + 100 0o (mean field)
p=07 [1.2194 11735 1.1584 1.1471 . 1.1384 1.1301 .
p=09 [ 28040 2.5665 24907 2.4344 ; 23931 | 23507
p=0.95]42952 37160 3.5348 3.4002 @ 3.3047 | _ 3.2139

s ssmssm.

Fairly good accuracy for N = 100 servers.

Nicolas Gast — 13 / 57



Accuracy of the mean field approximation
Pull-push model (servers with > 2 jobs push to empty)

Simulation (steady-state ave. queue length) | Fixed point _

N 10 20 50 . 100 © i
p=08 | 15569 14438 13761  : 1.3545 13333 |
p=090]23043 19700 1.7681 . 17023 | 1.6364 :
p=095]34288 26151 21330  :10720 | 18095 _:

L

Fairly good accuracy for N = 100 servers.
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Outline

0 Construction of the Mean Field Approximation: 3 models

@ A Second Point of View: Zoom on One Object

© On the Accuracy of Mean Field : Positive and Negative Results

© The Refined Mean Field

@ Demo

© Conclusion and Open Questions
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Examples: the cache-replacement policy RAND

Model: There are n objects and a cache of size m.
@ Objects i is requested according to a Poisson process of intensity A;.

@ An requested object that is not the cache goes into the cache and
ejects a random object.
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Examples: the cache-replacement policy RAND

Model: There are n objects and a cache of size m.
@ Objects i is requested according to a Poisson process of intensity A;.

@ An requested object that is not the cache goes into the cache and
ejects a random object.

The state of object i is {Out,In}.

Jjé&{cache}

Extension: list-based caching (G. Van Houdt, Sigmetrics 2015)
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RAND: mean field approximation

Original model

Jjé&{cache}
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RAND: mean field approximation
Original model MF approx: let x;(t) = P [i & {cache}].

If all objects are independent:
Ai

: 1 ¢

) DR O BELY
Jj&{cache} j=1

The “mean field” equations for the approximation model are:

X; = —\jx; + — ZXJ (1 —x;).
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RAND: mean field approximation
Original model MF approx: let x;(t) = P [i & {cache}].
If all objects are independent:

Ai

1 n
Aj il N\
PO L3
Jj&{cache} =

The “mean field” equations for the approximation model are:

3+

1
X; = —A\jX;] + — ()N (1 — x;).
A PR

It has a unique fixed point that satisfies:

zZ
Z+ T

with z such that Z(l — i) = m.
i=1

m=

Same equations as Fagins (77).
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Extension to the RAN D(m) model (G, Van Houdt SIGMETRICS 2015)
Let H;(t) be the popularity in list i.

Pk Pk Pk Pk
Ho(t Hq(t Ha(t) Hp_1(t)
mi m2 m3 mhp
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Extension to the RAN D(m) model (G, Van Houdt SIGMETRICS 2015)
Let H;(t) be the popularity in list i.

Pr Pr Pr Pr
Ho(t Hi(t Ha(t) Hy_1(t)
mq mo m3 Tmn

mp

If xx i(t) is the probability that item k is in list / at time t, we
approximately have:

Popularity in cache i-1

. Tk,i(t
Tk,i(t) = prr,i-1(t) — ijmj,,;_l(t)#

- pkmk,i(t))

Popularity in cache i

This approximation is of the form x = xQ(x).
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The mean field approximation is very accurate

n = 1000 objects with Zipf popularities.

probability in cache

e
o
&

0.10

0.05

1 list (200)
4 lists (50/50/50/50
== ode aprox (1 list)

== ode approx (4 lists)

)

2000 4000 6000 8000
number of requests

The popularities change
every 2000 requests

10000

mi1 m2 m3 m4 exact mean field
2 2 96 — 0.3166 0.3169
10 30 60 - 0.3296 0.3299
20 2 78 - 0.3273 0.3276
90 8 2 - 0.4094 0.4100

1 4 10 85 0.3039 0.3041
5 15 25 55 0.3136 0.3139
25 25 25 25 0.3345 0.3348
60 2 2 36 0.3514 0.3517

Steady-state miss probabilities
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Outline

9 Construction of the Mean Field Approximation: 3 models

@ Discrete-Time Models

© On the Accuracy of Mean Field : Positive and Negative Results

© The Refined Mean Field

@ Demo

© Conclusion and Open Questions
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Benaim-Le Boudec’s model (PEVA 2007)

Time is discrete.

Xi(k) = Proportion of object in state i at time step k
R(k) = State of the "resource” at time k (discrete)
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Benaim-Le Boudec’s model (PEVA 2007)

Time is discrete.

Xi(k) = Proportion of object in state i at time step k
R(k) = State of the "resource” at time k (discrete)

Assumptions:
@ Only O(1) objects change state at each time step and

f(x,r)= %E [X(k+1) — X(k)|X(k) =x,R(k) =r].

@ R evolves fast in a discrete state-space and:

P[R(k + 1) = jIX(k) = x, R(k) = i] = P;(x).

For all x, P(x) is irreducible and has a unique stationary measure 7(x,.).
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Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.
X = Z f(x,r)m(x,r),
r

where 7(x, r) is the stationary measure of the resource given x.
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Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.
X = Z f(x,r)m(x,r),
r

where 7(x, r) is the stationary measure of the resource given x.

The analysis of such models is done by considering stochastic
approximation algorithms. For example, without resource one has:

X(k+1) = X(k)+ % [f(X(k)) + M(k+1)],

where M is some noise process.
This is a noisy Euler discretization of an ordinary differential equation.
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Take-home message on this part

Three ways to construct mean field
approximation:

@ Density dependent population process.
@ Independence assumption x = xQ(x).

@ Discrete-time model with vanishing intensity.

In what follows, | will assume that X is a density dependent population
process (ex: SQ(d), pull-push). Analysis of other models are similar.
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Outline

© On the Accuracy of Mean Field : Positive and Negative Results
@ Transient Analysis
@ Steady-state Regime
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Convergence Result as N Goes to Infinity

Theorem (under some mild conditions, mostly Lipschitz continuity): If
XM(0) converges to xo, then for any finite T:

sup HXN(t) - x(t)H 0.

0<t<T

where x(t) is the unique solution of the ODE x = f(x).
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[llustration: An Infection Model

Nodes can be Dormant, Active or Susceptible.
Transition

Rate

Activation

Immunization

De-immunization

(D,A,S)— (D

(D,A,S) — (D,
(D,A,S)— (D

A- .5+ =

+ o AS -

N(0.15 + 10X4)Xp

N5Xa
10X4
Xp+9

N(1 + )Xs
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lllustration: An Infection Model
Nodes can be Dormant, Active or Susceptible.

Transition Rate
1 1
Activation (D,A,S)— (D — N A+ m S) | N(0.15 4 10Xa)Xp
1 1
Immunization (D,A,S)— (D, A— N,S + N) N5Xa
De-immunization | (D, A, S) — (D + % AS— %) N(1 + ;giAé)xs

eta 5

xs+a

1+

@110@ + 10_3-@ 0.0 ,
0

0.5

0.4

0.3

Xo(t)

0.2

0.1

—— Mean field approximation
—— N=1000
—— N=10000

5
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The fixed point method

Transient regime

Stationary

Markov chain
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The fixed point method

Markov chain Mean-field
Transient regime p=pK N — o0 =——— x = xQ(x)
t — o0
4
Stationary 7K =0 ? P x*Q(x*) =0

==fixed points™

Method was used in many papers:

@ Bianchi 00, performance analysis of the IEEE 802.11 distributed coordination function.

@ Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.
@ Kwak et al. 05, Performance analysis of exponenetial backoff.
°

Kumar et al 08, New insights from a fixed-point analysis of single cell IEEE 802.11 WLANSs.
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Does the fixed point method always work?

| Transition | Rate
I I
Activation (D,A,S) — (D — N’A+ N,S) N(a+ 10X4)Xp
1
Immunization (D,A,S)— (D,A— i S+ N) N5X4
) o 1 1 10X,
De-immunization (D,A,S)— (D+ —,A,S——) N(1+ )Xs
N N Xp + 6

@ Markov chain is irreducible

@ Mean field approximation has a unique fixed point xQ(x) =0
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Does the fixed point method always work?

‘ Transition

| Rate

Activation
Immunization

De-immunization

T

T
(DA, S) = (D= — A+ . S) N(a + 10X4)Xp

N
1
(D,A,S) = (D, A= =5+ ) N5X,s
1 1 10X4
(D,A,S)— (D+ —,A,S— —) | N1+ )Xs
N N Xp + 6

@ Markov chain is irreducible

@ Mean field approximation has a unique fixed point xQ(x) = 0.

Fixed point Stat. measure
xQ(x) =0 (simulation)
D TA D TA
a=.3 || 0211 | 0.241 || 0.219 | 0.242 | (N = 10%)
0.212 [ 0.242 | (N = 10%)
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Does the fixed point method always work?

‘ Transition

Rate

Activation

Immunization

De-immunization

I
(DA,A,S)H(D—N,/H—f,S)

(D,A,$) > (D, A= =, S+ )

1
(D,A,S)»—)(D+N,A,Sf

T

Ny

1

@ Markov chain is irreducible

N

n

N(a + 10X4)Xp

N5X4

N(L+

10X,

)Xs

Xp + 8

@ Mean field approximation has a unique fixed point xQ(x) = 0.

Fixed point Stat. measure
xQ(x) =0 (simulation)
D TA D TA
a=.3 | 0211|0241 | 0.219 | 0.242 | (N = 10%)
0.212 [ 0.242 | (N = 10%)
a=.15 ] 0.115 [ 0.177 || 0.154 [ 0.197 | N =10°
0.151 | 0.195 | N = 10*
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What happened?

Fixed point = attractor
Fixed point method works!

i
A

ODE has a cyclic behavior
Fixed point method does not work.
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Convergence result (steady-state)

Theorem If the mean field approximation has a unique attractor x(o0),
then

HXN(oo) — X(OO)H —0
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Fixed points?
Markov chain

Transient regime p=pK
t — o0

4

Stationary K =
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Fixed points?
Markov chain Mean-field

Transient regime p=pK N — o0 =——s x = xQ(x)

t — o0

2

Stationary 7K =0 ? >|X*Q(X*) = OI

fixed points
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Fixed points?
Markov chain Mean-field

Transient regime P = PK = N 3 00 m—) X = xQ(X)

I
t — o0 t
4 +

Stationary K = }( )m
fixed points
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Fixed points?
Markov chain Mean-field

Transient regime P = PK = N 3 00 m—) X = xQ(X)

| \
t — oo > if yes

J "4
Stationary 7K =0 - | X" Q(x") =0
\>< fixed points

then yes

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary
distribution =V concentrates on the fixed points

In that case, we also have:

*

lim P[51:I'l...Sk:I'k]:Xf...Xk.
N—oo
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Steady-state: illustration

OF

10x,
N

«10xs + 1073

©)

o drue stationnaristri

0.0 .0 0.0
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Quiz

Consider the SIRS model: ) S
Under the stationary distribution

O D (A) A i

A s the trajectory converge

) to a fixed point, there is no

such stationary distribution.

(B) P(51=5,%=95)~
P(S1=S)P(5=Y5)

(
(C) P(51=5,5=5)>
P(S, = S)P(S, = S)
(D) P(51=5,5=S5) <
P(S1 = S)P(S, = S)
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Quiz

Consider the SIRS model: ) S
Under the stationary distribution

O D (A) A i

A s the trajectory converge

) ‘ to a fixed point, there is no
such stationary distribution.

(B) P(51 = SSQ:S)AVJ

P(51 = 5)P(%2 = 5)
()ms_sg_g
P(51 = 5)P(52 = 5)
(D) P(51=5,5%=S5) <
P(51 = 5)P(% = 5)

Answer: C
P(S1(t) = S, S:(t) = S) = x1(t). Thus: positively correlated.
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How to show that trajectories converge to a fixed point?

Main solutions:
@ Find a Lyapunov function

» How to find a Lyapunov function: Energy? Entropy? Luck? (ex: G.
2016 for cache)

@ Use reversibility (Le Boudec 2013)
@ Monotonicity property (ex, load-balancing, see Van Houdt 2018)
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Fixed point method in practice

From the examples coming from queuing theory, many models have a
unique attractor.

@ This holds for classical load balancing policies such as SQ(d),
pull-push, JIQ,...

» Often comes from monotonicity

@ This holds in many cases in statistical physics
» Lyapunov methods (entropy, reversibility)

@ It does not always work

» Theoretical biology / chemistry

» Multi-stable models (ex: Kelly)

» Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang
2011)
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Outline

© The Refined Mean Field
@ Main Results
@ Generator Comparison and Stein's Method
@ Alternative View: System Size Expansion Approach
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Mean Field Accuracy
Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous:

1

[f in addition the ODE has a
unique attractor 7:

N+ ~
X~ () + 5 E [X¥(c0) - ] = 0(1/VR)

0.35

0.30 A

0.25 A

0.20

0.15 A

0.101 —— ODE (N=) |
—— N=10

0.05 1 —— N=100
—— N=1000

0.00 T —t

0 1 2 3 4

5
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with p = 0.9):
N | 10 100 1000 | oo
Average queue length (simulation) | 2.8040 2.3931 2.3567 | 2.3527
Error of mean field 0.4513 0.0404 0.0040 0
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with p = 0.9):

N | 10 100 1000 | oo
Average queue length (simulation) | 2.8040 2.3931 2.3567 | 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error seems to decrease as 1/N
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Expected values estimated by mean field are 1/N-accurate

Some experiments (for SQ(2) with p = 0.9):

N | 10 100 1000 | oo
Average queue length (simulation) | 2.8040 2.3931 2.3567 | 2.3527
Error of mean field 0.4513 0.0404 0.0040 0

Error seems to decrease as 1/N

Theorem (Kolokoltsov 2012, G. 2017& 2018). If the drift f is C? and has

a unique exponentially stable attractor, then for any t € [0,00) U {o0},
there exists a constant V; such that:

V(t)

E [h(X"(1))] = h(x(£) + = + O(1/N?)
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The refined mean field approximation...
. is defined as the classic mean field plus the 1/N correction term:

E [X’V} = x(t) + V,Ef)

where V/(t) is computed analytically.
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The refined mean field approximation...
. is defined as the classic mean field plus the 1/N correction term:

E [X’V} = x(t) + V,Ef)

where V/(t) is computed analytically.
To compute V/(t), we need:
@ Derivative of the drifts:

Fi(e) = SLx(0) and Fi(e) = 50 (x(1)

@ A variance term:

Q(t) =) L@ LB(X(t))
l
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Computational methods

Theorem (G, Van Houdt 2018) Given a density dependent process with

twice-differentiable drift. Let h: E — R be a twice-differentiable function
then for t > 0:

£ [h(X" ()] =h<x(t>>+%<§_j P vty 3 ';;;ggjw,,-(t))wwg)

where

—V’—ZF VJ+ZF’ Wk

%Wf’k =QF 4+ F{;, W™k 4y " wimEk

Theorem (G, Van Houdt 2018) The previous theorem also holds for the

stationary regime (t = +o00) if the ODE has a unique exponentially stable
attractor.
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The supermarket model (SQ(2))

N 10 20 30 50 100 00
p=07
Simulation | 1.2194 1.1735 1.1584 1.1471 1.1384 -
Refined mf | 1.2150 1.1726 1.1584 1.1471 1.1386 | 1.1301
p=209
Simulation | 2.8040 2.5665 2.4907 2.4344 23931 -
Refined mf | 2.7513 2.5520 2.4855 2.4324 2.3925 | 2.3527
p=0.95
Simulation | 4.2952 3.7160 3.5348 3.4002 3.3047 -
Refined mf | 4.1017 3.6578 3.5098 3.3915 3.3027 | 3.2139

Average queue length: Refined mean field approximation gives a
significant improvement.
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The supermarket model (SQ(2))

N 10 20 30 50 100 00
p=0.7
Simulation | 1.2194 1.1735 1.1584 1.1471 1.1384 -
_Refined mf | 1.2150 1.1726 1.1584 1.1471 1.1386 | 1.1301
E p=20.9 Mean field approxim%tion
v Simulation || 2.8040 | 2.5665 2.4907 2.4344 2.3931 =
i Refined mf | 2.7513 | 2.5520 2.4855 2.4324 2.3925 ||2.3527 E
=005
Simulation | 4.2952 3.7160 3.5348 3.4002 3.3047 -
Refined mf | 4.1017 3.6578 3.5098 3.3915 3.3027 | 3.2139

Average queue length: Refined mean field approximation gives a

significant improvement.
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Pull-push model (servers with > 2 jobs push to empty)

N 10 20 50 100 00
p=20.8
Simulation 1.5569 1.4438 1.3761 1.3545 -
=efined meap figld L. L0831 4803, 13700, L 130dl . L 13333, .
: p = 0.90 Mean field approxim?tion
. Simulation 2.3043| 1.9700 1.7681 1.7023 = .
E Refined mean field [|2.2945] 1.9654 1.7680 1.7022 | 1.6364| :
T Tp=095 T T '
Simulation 3.4288 2.6151 2.1330 1.9720 -
Refined mean field | 3.4369 2.6232 2.1350 1.9723 | 1.8095

Average queue length: Refined mean field approximation is remarkably
accurate
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SQ(2): the impact of choosing with/without replacement
Reminder: the least loaded of two servers has i jobs with probability:
when picked with replacement

Nxi_1—1 _X_NX,-—l
N—1 "N—-1

when picked without replacement

Asymptotically equal but there is a 1/N-difference!

Nicolas Gast — 43 / 57



SQ(2): the impact of choosing with/without replacement
Reminder: the least loaded of two servers has i jobs with probability:
when picked with replacement

_ Nxi_1—1 _NX,-—l
A Y A VI

when picked without replacement

Asymptotically equal but there is a 1/N-difference!

N = 10 servers | Simulation | Refined mean field | Mean field

p=0.7 with 1.215 1.215 1.1301

without 1.173 1.169 1.1301
with-without 0.042 0.046 -

p=20.9 with 2.820 2.751 2.3527

without 2.705 2.630 2.3527
with-without 0.115 0.121 -

p=0.95 with 4.340 4.102 3.2139

without 4.169 3.923 3.2139
with-without 0.171 0.179 -

Nicolas Gast — 43 / 57



Outline

0 Construction of the Mean Field Approximation: 3 models

© On the Accuracy of Mean Field : Positive and Negative Results

© The Refined Mean Field

@ Generator Comparison and Stein's Method

@ Demo

© Conclusion and Open Questions
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Main Elements of the Proof

1: Semi-groups and generators
For a Markov process, we define the operator W, that associates to a
function h the functions V;h.

Wehx = E[A(X(t)) | X(0) = x].

The generator is the derivative of W; at time 0:

Gh(x) = %E [h(X(t + dt)) — h(X(t)) | X(t) = x].
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Main Elements of the Proof

1: Semi-groups and generators

For a Markov process, we define the operator W, that associates to a
function h the functions V;h.

Wehx = E[A(X(t)) | X(0) = x].

The generator is the derivative of W; at time 0:

Gh(x) = %E [h(X(t + dt)) — h(X(t)) | X(t) = x].

Examples:
@ For a Markov process that jumps from i to j at rate Qj:

Gh(i) = Z(h(J) — h(i)Qj
@ For a deterministic ODE x = f(x):
Gh(x) = Dh(x) - f(x).
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Main Elements of the Proof

2: Comparison of Generators

The generators of the system N and the mean field approximation are:

(LNB)(x) =D NBi(x %) — h(x))
lel
= Bi(x)Dh(x) - £ = Dh(x) - f(x)
lel
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Main Elements of the Proof

2: Comparison of Generators

The generators of the system N and the mean field approximation are:

(LNB)(x) =D NBi(x %) — h(x))
lel
= Bi(x)Dh(x) - £ = Dh(x) - f(x)
lel

If his a twice-differentiable function, then:

lim N(LY) — A)h(x) = ZB«X)Dz ) (£.0)

N—oo
@Gﬁ
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Main Elements of the Proof

3. Stein’s method

If X"V is distributed according to the stationary distribution of L
for any function g:

(N), then

E [(LMg)(x")] =0
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Main Elements of the Proof

3. Stein’s method

If X"V is distributed according to the stationary distribution of L™ then
for any function g:

E|(LMg)(xM)| =0
Now, assume that there exists a function g such that

h(x) = h(m) = (Ag)(x)
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Main Elements of the Proof

3. Stein’s method

If X"V is distributed according to the stationary distribution of L™ then
for any function g:
E |(LMg)(x")] =0
Now, assume that there exists a function g such that
h(x) = h(m) = (Ag)(x)
Then, we have:
NE [h(XN) — h(w)] — NE _(/\g)(XN)}
= NE (A~ tM)(g)(xM)]
= 2B | Y aUxM)D%a(xXM) - (.0)| + 0(/N)
L ¢

R % S u(m)Dg () - (£, 0).
V4
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Main Elements of the Proof

4. Perturbation theory
o

Let g be g(x) = / (h(m) — h(®¢(x)))dt, where ®.(x) is the solution of
the ODE x = f(x)ostarting in x at time 0. Then:
dt 00
800 = [ (h(m) = @) + [ (h(m) = h(O:()l

~ (h(m) — h(x))dt + g(Pq4t(x))

This “shows” that (Ag)(x) = h(x) — h(m).
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Main Elements of the Proof

4. Perturbation theory
o

Let g be g(x) = / (h(m) — h(®¢(x)))dt, where ®.(x) is the solution of
0
the ODE x = f(x) starting in x at time 0. Then:

dt 0
an—A(mw—M%umm+Agmm—M@umm

~ (h(m) — h(x))dt + g(Pq4t(x))

This “shows” that (Ag)(x) = h(x) — h(m).

To finish, we need to show that g is twice-differentiable. This comes from
perturbation theory.

2x:—t2tx
D2g(x) th@(»m
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0 Construction of the Mean Field Approximation: 3 models
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Where does the O(1/N)-term comes from?
Going back to the SQ(2) example

o 1
Transitions on X;: +N at rate N(x? ; — x?) and N at rate
N(x; — xj+1). Hence:

SEXi(t)] =E [XZ1(t) = XP(8) = (Xi(t) = Xisa(1)]  (exact)
=E [X21(t)] — E [X?()] — E[Xi()] + E [Xiya(2)]
~E[Xi_1(8)]* — E[Xi(t)] = E[Xi(t)] + E[Xiy1(t)] (mean field approx
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Where does the O(1/N)-term comes from?

Going back to the SQ(2) example

1
Transitions on X;: +— at rate N(x? ; — x?) and N at rate
N(x; — xj+1). Hence:

%E [Xi()] = E[XZ1(t) = XP(£) = (Xi(t) = Xisa(1))]  (exact)
=E [X24(1)] = E[X2(t)] —E[Xi(t)] + E [Xisa(t)]

i
2 2
i— i i

If we now consider how E [X,-2] evolves, we have:
d [ 1
—E[X?] =E [(2X; + —)(X?
SEDE] =E (2% + )X

; (mean field approx.

=X+ (- 2X+N)(X Xit1)

|E[X:X2 ~7]
where we denote X instead of X(t) for simplicity.
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System Size Expansion Approach
Recall that the transitions are X — X + — at rate Nfy(x).

N
%E X]=E ;ﬁg(X)f = E[f(X)] (Exact)
%X =f(x) (Mean Field Approx.)
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System Size Expansion Approach

Recall that the transitions are X — X + m at rate Nfy(x).

%E X] = Zﬁe =E[f(X)]  (Exact)
%x = f(x) (Mean Field Approx.)

We can now look at the second moment:

E[(X =x)@ (X =x)] =E[(f(X) = f(x)) @ (X =x)]  (Bxact)
+E[(X =x) @ (f(X) = f(x))]

S ax) et

el

—IE
+N
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System Size Expansion Approach
Recall that the transitions are X — X + — at rate Nfy(x).

N
%E X] = Zﬁe =E[f(X)]  (Exact)
%x = f(x) (Mean Field Approx.)

We can now look at the second moment:

E[(X —x)® (X —x)] =E[(f(X) — f(x)) ® (X — x)] (Exact)
+E[(X —x) @ (f(X) = f(x))]

S ax) et

lel
... We can also look at higher order moments

E [(X — x)®*] = 3SymE [(f(X) — f(x)) ® (X — x) ® (X — x)]

1
—E
+N

+%SymE {;@(X)mz@( —x)} + 4 E LZ@(X £®£®4
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System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y (t) = X(t) — x(t), and
Y)W =v(t) o @ Y(t)

k times

d
EE [Y(t)(k)] can be expressed as an exact

function of Y(t)¥) for j € {0... k+1}.
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System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y (t) = X(t) — x(t), and
Y)W =v(t) o @ Y(t)

k times

d
EE [Y(t)(k)} can be expressed as an exact

function of Y(t)¥) for j € {0... k+1}.

You can close the equations by assuming that Y(K) =0 for k > K.

@ For K =1, this gives the mean field approximation (1/N-accurate)

o For K = 3, this gives the refined mean field (1/N?-accurate).

@ For K =5, this gives a second order expansion (1/N3-accurate).
Limit of the approach: For a system of dimension d, Y(t)(k) has d*
equations.
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Recap and extensions

For a mean field model with twice differentiable drift, then :
@ The accuracy of the classical mean field approximation is O(1/N).
@ We can use this to define a refined approximation.

© The refined approximation is often accurate for N = 10.

Extensions:
@ Transient regime
o Discrete-time (Synchronous)

o Next expansion term in 1/N?.
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In many cases, the refined approximation is very accurate

“Truth” | Refined mean field approximation ‘ Mean field approximation
N V o .
E [X } . 7 (=fixed point)
N
Coupon Supermarket Pull/push
Simulation (N = 10) 1.530 2.804 2304 |
Refined mean field (N = 10)| 1.517 2.751 2.295
Mean field (N = o0) 1.250 2.353 1.636

'Ref : G., Van Houdt, 2018
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