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Models of interacting objects (in computer science)
Wifi: object = device

object = content

Cluster: object = server

Problem: state space explosion
S states per object, N objects

⇒ SN states

(and 420 = 1012)
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Mean-field model

Population of N objects.

Xi (t) = fraction of objects in state i

Example:

N servers

Randomly choose two, and select one

Nρ

1

1

...
...

The state is (X0,X1,X2 . . . ).

Xi (t) = fraction of servers

with i jobs
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Some systems simplify as N grows
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Example. Two-choice model
Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Objective of this talk

When is the ODE
approximation
valid / not valid?

What is the
accuracy?
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Outline

1 (Classical) Kurtz Population Model

2 Accuracy of the Approximation

3 Example: jobs allocation

4 Conclusion and recap
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Population CTMC

A population process is a sequence of CTMC XN , indexed by the
population size N, with state spaces EN ⊂ E such that the transitions are
(for ` ∈ L):

X 7→ X +
`

N
at rate Nβ`(X ).

The drift is f (x) =
∑
`

`β`(x).

We denote by x the solution of the associated ODE

ẋ = f (x).
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Transient regime

Let Φt denotes the (unique) solution of the ODE:

Φtx = x +

∫ t

0
Φsxds.

Theorem (Kurtz 70s)

If f is Lipschitz-continuous with constant L, then for any fixed T :

lim
N→∞

sup
t<T

∥∥∥XN(t)− x(t)
∥∥∥ = 0.

Proof.

Martingale concentration + Gronwall.
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The fixed point method

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = f (x)

f (x∗) = 0
fixed points

N →∞

Method was used in many papers:

Bianchi 00, Performance analysis of the IEEE 802.11 distributed coordination function.

Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.

Kwak et al. 05, Performance analysis of exponenetial backoff.

Kumar et al 08, New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.
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Does it always work?

SIRS model:

S

I

R

1 +
10xI
xS + a

5

10xS + 10−3

Markov chain is irreducible.

Unique fixed point f (x∗) = 0.

Fixed point Stat. measure

f (x) = 0 N = 103, 104. . .

xS xI πS πI
a = .3 0.209 0.234 0.209 0.234

a = .1 0.078 0.126 0.11 0.13
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What happened?
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Fixed points?

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = f (x)

f (x∗) = 0
fixed points

N →∞

?

N →∞

t →∞if yes

then yes

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary
distribution πN concentrates on the fixed points

In that case, we also have:

lim
N→∞

P [Z1 = i1 . . .Zk = ik ] = x∗1 . . . x
∗
k .
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Example of 802.111

1Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling Assumption
for Analyzing 802.11 MAC Protoco. 2010
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Quiz

Consider the 802.11 model:
Under the stationary distribution
πN :

(A) P(Z1 = 0,Z2 = 0) ≈
P(Z1 = 0)P(Z2 = 0)

(B) P(Z1 = 0,Z2 = 0) >
P(Z1 = 0)P(Z2 = 0)

(C) P(Z1 = 0,Z2 = 0) <
P(Z1 = 0)P(Z2 = 0)

(D) There is no stationary
distribution

(E) I do not know

Answer: B

P(Z1(t) = 0,Z2(t) = 0) = x1(t)2. Thus: positively correlated.
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How accurate is mean-field approximation?
XN
i (t) = fraction of

objects in state i .

Theorem (Kurtz 70s’)

When f is Lipschitz:

XN(t)− x(t) = O
( 1√

N
) 0 1 2 3 4 5

Time

0.00

0.05
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0.35

ODE (N=∞)

N=10

N=100

N=1000

Example. Two-choice model, Fraction of servers with 3 jobs

In practice, we use mean-field for N ≥ 50. Are we wrong?

N 10 100 1000 +∞
Average queue length (mN) 3.81 3.39 3.36 3.35

Error (mN −m∞) 0.45 0.039 0.004 0
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Where is the catch?

Xi = fraction of
servers with i jobs

Proba(one server
has i jobs) = E [Xi ]

xi (mean-field
approx)

O(1/
√
N)

O(1/
√
N) (CLT) ?O(1/N)
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Limit (N=∞)

Steady-state probability for fixed N

Numerical example : steady-state probability of having 3 jobs.
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Transient regime

Theorem

If f differentiable and if Df is Lipschitz-continuous, then there exists a
constant C (t) such that:∣∣∣E [XN(t)

]
− x(t)

∣∣∣ ≤ C (t)

N
.

The classical result only requires f to be Lipschitz-continuous and implies

E
[∥∥∥XN(t)− x(t)

∥∥∥] ≤ C ′(t)√
N
.
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Steady-state analysis

We say that ẋ = f (x) has an exponentially stable attractor x∗ if for any
solution:

‖x(t)− x∗‖ ≤ Ce−αt ‖x(0)− x∗‖ .

Theorem

If f differentiable, Df is Lipschitz-continuous and the ODE has an
exponentially stable attractor x∗, then there exists a constant C such that:

∣∣∣E [XN
]
− x∗

∣∣∣ ≤ C

N
.
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Idea of the proof
We study:

E
[
XN(t)

]
− x(t) =

∫ t

0

d

ds
E
[
XN(t) | XN(s) = x(s)

]
ds.

=

∫ t

0

d

ds
Ψ

(N)
t−sΦsds

=

∫ t

0
Ψ

(N)
t−s(Λ− L(N))Φsds,

where

Ψ
(N)
t h(x) = E

[
h(XN(t)) | XN(0) = x

]
Φth(x) = h(Φtx)

L(N)h(x) =
∑
`∈L

Nβ`(x)(h(x +
`

N
)− h(x)) Λh(x) = Dh(x) · f (x)

We then obtain a O(1/N) convergence if

∫ t

0
DΦsds exists and is

Lipschitz-continuous with respect to the initial condition (also works for
steady-state).
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The two choice model2

Randomly choose two, and select one

Nρ

1

1

...
...

Infinite state-space:

X0(t),X1(t), . . .

where

Xi (t) = fraction with i or more jobs.

2This model or variants have been heavily studied (Vvedenskaya 96, Mitzenmacher 98, . . . Fricker G.

2014, Tsitsiklis 2016).
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Why is this called the power of two-choices?

One-choice
As N goes to infinity, in steady-state,

lim
N→∞

XN
i = ρ2i−1

The average queue length mN(ρ) satisfies:

lim
N→∞

mN(ρ) = m∞(ρ) = Θρ→1

(
log

1

1− ρ

)
ρi

1

1− ρ

Our result shows that lim sup
N→∞

N
∣∣∣mN(ρ)−m∞(ρ)

∣∣∣ <∞.
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Can we quantify the O(1/N)?
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N

In particular, the average queue length satisfies:

mN(ρ) = Θρ→1

(
log

1

1− ρ

)
+ O(1/N)

+
1

N
Θρ→1

( 1

1− ρ

)
︸ ︷︷ ︸

order of magnitude larger

+ o
( 1

N

)
,

Nicolas Gast (Inria) – 23 / 26



Can we quantify the O(1/N)?

0 50 100 150 200 250 300
N

2

4

6

8

10

12

14

N
∑ i

(x
i
−
π
i)

ρ= 0. 7

ρ= 0. 8

ρ= 0. 9

ρ= 0. 95

ρ= 0. 99

mN(ρ)

0 50 100 150 200 250 300
N

0

10

20

30

40

50

60

70

N
∑ i

(x
i
−
π
i)

ρ= 0. 99

ρ= 0. 95

ρ= 0. 9

ρ= 0. 8

ρ= 0. 7

N(mN(ρ)−m∞(ρ))

N

In particular, the average queue length satisfies:

mN(ρ) = Θρ→1

(
log

1

1− ρ

)
+

1

N
Θρ→1

( 1

1− ρ

)
︸ ︷︷ ︸

order of magnitude larger

+ o
( 1

N

)
,

Nicolas Gast (Inria) – 23 / 26



Outline

1 (Classical) Kurtz Population Model

2 Accuracy of the Approximation

3 Example: jobs allocation

4 Conclusion and recap

Nicolas Gast (Inria) – 24 / 26



Recap

1 Convergence of mean-field model is O(1/N).
I Works for transient and steady-state
I Works for infinite-dimensional state space.

2 Our approach is to focus on the expected values

Xi = fraction of
servers with i jobs

Proba(one server
has i jobs)=E [Xi ]

xi (mean-field
approx)

CLT: O(1/
√
N)

O(1/N)
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Extension and open questions

1 Technical question:
I Can we compute the constant in O(1/N)?
I Steady-state + only Lipschitz-continuous: is the convergence rate

O(1/
√
N)?

2 Hitting/mixing-time + fluid approximation.

3 Non-homogeneous population.
I e.g., caching
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Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Mean-field and decoupling
Benäım,
Le Boudec 08 A class of mean field interaction models for computer and

communication systems, M.Benäım and J.Y. Le Boudec., Performance evaluation, 2008.
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