Utilisation des méthodes champ moyen pour l'évaluation de performance

Nicolas Gast (Inria)

Inria, Grenoble, France

Séminaire de l'institut Fourier, Octobre 2016

Nicolas Gast (Inria) – 1 / 26

Models of interacting objects (in computer science)

Wifi: object 🚍 device

Cluster: object = server

Problem: state space explosion S states per object, N objects

$$\Rightarrow S^N$$
 states

(and
$$4^{20} = 10^{12}$$
)

Mean-field model

Population of N objects.

 $X_i(t) =$ fraction of objects in state *i*

Mean-field model

Population of N objects.

 $X_i(t) =$ fraction of objects in state *i*

Randomly choose two, and select one

The state is $(X_0, X_1, X_2...)$. $X_i(t) =$ fraction of servers with *i* jobs

Example. Two-choice model Fraction of servers with 3 jobs

Example. Two-choice model Fraction of servers with 3 jobs

Example. Two-choice model Fraction of servers with 3 jobs

Example. Two-choice model Fraction of servers with 3 jobs

Example. Two-choice model Fraction of servers with 3 jobs

Example. Two-choice model Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Objective of this talk

- When is the ODE approximation valid / not valid?
- What is the accuracy?

Outline

1 (Classical) Kurtz Population Model

- 2 Accuracy of the Approximation
- 3 Example: jobs allocation
- 4 Conclusion and recap

Population CTMC

A population process is a sequence of CTMC \mathbf{X}^N , indexed by the population size N, with state spaces $\mathbf{E}^N \subset \mathbf{E}$ such that the transitions are (for $\ell \in \mathcal{L}$):

$$X\mapsto X+rac{\ell}{N}$$
 at rate $Neta_\ell(X).$

The drift is
$$f(x) = \sum_{\ell} \ell \beta_{\ell}(x).$$

We denote by x the solution of the associated ODE

 $\dot{x} = f(x).$

Transient regime

Let Φ_t denotes the (unique) solution of the ODE:

$$\Phi_t x = x + \int_0^t \Phi_s x ds.$$

Theorem (Kurtz 70s)

If f is Lipschitz-continuous with constant L, then for any fixed T:

$$\lim_{N\to\infty}\sup_{t<\tau}\left\|X^N(t)-x(t)\right\|=0.$$

Proof.

Martingale concentration + Gronwall.

The fixed point method

Markov chain

Transient regime $\dot{p} = pK$ I $t \rightarrow \infty$ \downarrow Stationary $\pi K = 0$

The fixed point method

Method was used in many papers:

- Bianchi 00, Performance analysis of the IEEE 802.11 distributed coordination function.
- Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.
- Kwak et al. 05, Performance analysis of exponenetial backoff.
- Kumar et al 08, New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.

Does it always work?

- Markov chain is irreducible.
- Unique fixed point $f(x^*) = 0$.

	Fixed point $f(x) = 0$		Stat. measure $N = 10^3$, 10^4		
	xs	XJ	π_{S}	π_I	
a = .3	0.209	0.234	0.209	0.234	

Does it always work?

- Markov chain is irreducible.
- Unique fixed point $f(x^*) = 0$.

	Fixed point		Stat. measure $N = 10^3$, 10^4		
	f(x) = 0		N = 10 , 10		
	xs	XI	π_{S}	π_I	
a = .3	0.209	0.234	0.209	0.234	
a = .1	0.078	0.126	0.11	0.13	

What happened?

a = .1

a = .3

Nicolas Gast (Inria) - 10 / 26

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary distribution π^N concentrates on the fixed points

In that case, we also have:

$$\lim_{N\to\infty}\mathbf{P}[Z_1=i_1\ldots Z_k=i_k]=x_1^*\ldots x_k^*.$$

Nicolas Gast (Inria) - 11 / 26

Example of 802.11¹

¹Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protoco. 2010

Nicolas Gast (Inria) - 12 / 26

Quiz

Consider the 802.11 model:

Under the stationary distribution π^N :

(A) $P(Z_1 = 0, Z_2 = 0) \approx P(Z_1 = 0)P(Z_2 = 0)$

(B)
$$P(Z_1 = 0, Z_2 = 0) > P(Z_1 = 0)P(Z_2 = 0)$$

(C)
$$P(Z_1 = 0, Z_2 = 0) < P(Z_1 = 0)P(Z_2 = 0)$$

- (D) There is no stationary distribution
- (E) I do not know

Quiz

Consider the 802.11 model:

Under the stationary distribution π^N :

(A) $P(Z_1 = 0, Z_2 = 0) \approx P(Z_1 = 0)P(Z_2 = 0)$

(B)
$$P(Z_1 = 0, Z_2 = 0) > P(Z_1 = 0)P(Z_2 = 0)$$

(C)
$$P(Z_1 = 0, Z_2 = 0) < P(Z_1 = 0)P(Z_2 = 0)$$

- (D) There is no stationary distribution
- (E) I do not know

Answer: B

 $P(Z_1(t) = 0, Z_2(t) = 0) = x_1(t)^2$. Thus: positively correlated.

Outline

1 (Classical) Kurtz Population Model

2 Accuracy of the Approximation

3 Example: jobs allocation

How accurate is mean-field approximation?

In practice, we use mean-field for $N \ge 50$. Are we wrong?

How accurate is mean-field approximation?

 $X^{N}(t) - x(t) = O\left(\frac{1}{\sqrt{N}}\right)$

In practice, we use mean-field for $N \ge 50$. Are we wrong?

N	10	100	1000	$+\infty$
Average queue length (m^N)	3.81	3.39	3.36	3.35
Error $(m^N - m^\infty)$	0.45	0.039	0.004	0

Numerical example : steady-state probability of having 3 jobs.

Nicolas Gast (Inria) - 16 / 26

Transient regime

Theorem

If f differentiable and if Df is Lipschitz-continuous, then there exists a constant C(t) such that:

$$\left|\mathbb{E}\left[X^{N}(t)
ight]-x(t)
ight|\leqrac{C(t)}{N}.$$

The classical result only requires f to be Lipschitz-continuous and implies

$$\mathbb{E}\left[\left\|X^{N}(t)-x(t)\right\|\right] \leq \frac{C'(t)}{\sqrt{N}}.$$

Nicolas Gast (Inria) - 17 / 26

Steady-state analysis

We say that $\dot{x} = f(x)$ has an exponentially stable attractor x^* if for any solution:

$$||x(t) - x^*|| \le Ce^{-\alpha t} ||x(0) - x^*||.$$

Steady-state analysis

We say that $\dot{x} = f(x)$ has an exponentially stable attractor x^* if for any solution:

$$||x(t) - x^*|| \le Ce^{-\alpha t} ||x(0) - x^*||.$$

Theorem

If f differentiable, Df is Lipschitz-continuous and the ODE has an exponentially stable attractor x^* , then there exists a constant C such that:

$$\left|\mathbb{E}\left[X^{N}\right]-x^{*}\right|\leq\frac{C}{N}.$$

Idea of the proof

We study:

$$\mathbb{E}\left[X^{N}(t)\right] - x(t) = \int_{0}^{t} \frac{d}{ds} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s) = x(s)\right] ds.$$

Idea of the proof

We study:

$$\mathbb{E}\left[X^{N}(t)\right] - x(t) = \int_{0}^{t} \frac{d}{ds} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s) = x(s)\right] ds.$$
$$= \int_{0}^{t} \frac{d}{ds} \Psi_{t-s}^{(N)} \Phi_{s} ds$$

where

$$\Psi_t^{(N)}h(x) = \mathbb{E}\left[h(X^N(t)) \mid X^N(0) = x\right] \qquad \Phi_t h(x) = h(\Phi_t x)$$

Idea of the proof

We study:

$$\mathbb{E}\left[X^{N}(t)\right] - x(t) = \int_{0}^{t} \frac{d}{ds} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s) = x(s)\right] ds.$$
$$= \int_{0}^{t} \frac{d}{ds} \Psi_{t-s}^{(N)} \Phi_{s} ds$$
$$= \int_{0}^{t} \Psi_{t-s}^{(N)} (\Lambda - L^{(N)}) \Phi_{s} ds,$$

where

$$\Psi_t^{(N)}h(x) = \mathbb{E}\left[h(X^N(t)) \mid X^N(0) = x\right] \qquad \Phi_t h(x) = h(\Phi_t x)$$
$$L^{(N)}h(x) = \sum_{\ell \in \mathcal{L}} N\beta_\ell(x)(h(x + \frac{\ell}{N}) - h(x)) \qquad \Lambda h(x) = Dh(x) \cdot f(x)$$

Nicolas Gast (Inria) - 19 / 26

Idea of the proof

We study:

$$\mathbb{E}\left[X^{N}(t)\right] - x(t) = \int_{0}^{t} \frac{d}{ds} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s) = x(s)\right] ds.$$
$$= \int_{0}^{t} \frac{d}{ds} \Psi_{t-s}^{(N)} \Phi_{s} ds$$
$$= \int_{0}^{t} \Psi_{t-s}^{(N)} (\Lambda - L^{(N)}) \Phi_{s} ds,$$

where

$$\Psi_t^{(N)}h(x) = \mathbb{E}\left[h(X^N(t)) \mid X^N(0) = x\right] \qquad \Phi_t h(x) = h(\Phi_t x)$$
$$L^{(N)}h(x) = \sum_{\ell \in \mathcal{L}} N\beta_\ell(x)(h(x + \frac{\ell}{N}) - h(x)) \qquad \Lambda h(x) = Dh(x) \cdot f(x)$$

We then obtain a O(1/N) convergence if $\int_0^t D\Phi_s ds$ exists and is Lipschitz-continuous with respect to the initial condition (also works for steady-state).

Outline

(Classical) Kurtz Population Model

- 2 Accuracy of the Approximation
- 3 Example: jobs allocation
- 4 Conclusion and recap

The two choice model²

Infinite state-space:

$$X_0(t), X_1(t), \ldots$$

where

 $X_i(t) =$ fraction with *i* or more jobs.

Randomly choose two, and select one

²This model or variants have been heavily studied (Vvedenskaya 96, Mitzenmacher 98, ... Fricker G. 2014, Tsitsiklis 2016).

Why is this called the power of two-choices?

As N goes to infinity, in steady-state,

$$\lim_{N\to\infty}X_i^N=\rho^{2^i-1}$$

The average queue length $m^{N}(\rho)$ satisfies:

$$\lim_{N \to \infty} m^N(\rho) = m^\infty(\rho) = \Theta_{\rho \to 1} \Big(\log \frac{1}{1 - \rho} \Big)$$

One-choice ρ^i $\frac{1}{1-\rho}$

Our result shows that $\limsup_{N\to\infty} N \left| m^N(\rho) - m^\infty(\rho) \right| < \infty.$

Nicolas Gast (Inria) – 22 / 26

Can we quantify the O(1/N)?

In particular, the average queue length satisfies:

$$m^{N}(
ho) = \Theta_{
ho
ightarrow 1} \Big(\log rac{1}{1-
ho} \Big) + O(1/N) \; .$$

Can we quantify the O(1/N)?

In particular, the average queue length satisfies:

$$m^{N}(\rho) = \Theta_{\rho \to 1} \Big(\log \frac{1}{1-\rho} \Big) + \frac{1}{N} \underbrace{\Theta_{\rho \to 1} \Big(\frac{1}{1-\rho} \Big)}_{\text{order of magnitude larger}} + o\Big(\frac{1}{N} \Big),$$

Nicolas Gast (Inria) - 23 / 26

Outline

(Classical) Kurtz Population Model

- 2 Accuracy of the Approximation
- 3 Example: jobs allocation
- 4 Conclusion and recap

Recap

• Convergence of mean-field model is O(1/N).

- Works for transient and steady-state
- Works for infinite-dimensional state space.

② Our approach is to focus on the expected values

Extension and open questions

Technical question:

- Can we compute the constant in O(1/N)?
- Steady-state + only Lipschitz-continuous: is the convergence rate $O(1/\sqrt{N})$?
- Witting/mixing-time + fluid approximation.
- Son-homogeneous population.
 - e.g., caching

Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Mean-field and decoupling

Benaïm, Le Boudec 08	A class of mean field interaction models for computer and communication systems, M.Benaïm and J.Y. Le Boudec., Performance evaluation, 2008.
Le Boudec 10	The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points., JY. L. Boudec., Arxiv:1009.5021, 2010
Darling Norris 08	<i>R. W. R. Darling and J. R. Norris</i> , Differential equation approximations for Markov chains, Probability Surveys 2008
G. 16	Construction of Lyapunov functions via relative entropy with application to caching, Gast, N., ACM MAMA 2016
Budhiraja et al. 15	Limits of relative entropies associated with weakly interacting particle
	systems., A. S. Budhiraja, P. Dupuis, M. Fischer, and K. Ramanan. , Electronic journal of probability, 20, 2015.

References (continued)

Optimal control and mean-field games:

G.,Gaujal Boudec 12	Le	Mean field for Markov decision processes: from discrete to continuous optimization, N.Gast,B.Gaujal,J.Y.Le Boudec, IEEE TAC, 2012
G. Gaujal 12		Markov chains with discontinuous drifts have differential inclusion limits., Gast N. and Gaujal B., Performance Evaluation, 2012
Puterman		Markov decision processes: discrete stochastic dynamic programming, M.L. Puterman, John Wiley & Sons, 2014.
Lasry Lions		Mean field games, JM. Lasry and PL. Lions, Japanese Journal of Mathematics, 2007.
Tembine at al 0)9	Mean field asymptotics of markov decision evolutionary games and teams, H. Tembine, JY. L. Boudec, R. El-Azouzi, and E. Altman., GameNets 00

Applications: caches, bikes

Don and Towsley	An approximate analysis of the LRU and FIFO buffer replacement schemes, A. Dan and D. Towsley., SIGMETRICS 1990
G. Van Houdt 15	Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms., Gast, Van Houdt., ACM Sigmetrics 2015
Fricker-Gast 14	Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity., C. Fricker and N. Gast. , EJTL, 2014.
Fricket et al. 13	Mean field analysis for inhomogeneous bike sharing systems, Fricker, Gast, Mohamed, Discrete Mathematics and Theoretical Computer Science DMTCS
G. et al 15	Probabilistic forecasts of bike-sharing systems for journey planning, N. Gast, G. Massonnet, D. Reijsbergen, and M. Tribastone, CIKM 2015