Utilisation des méthodes champ moyen pour l'évaluation de performance

Nicolas Gast (Inria)
Inria, Grenoble, France

Séminaire de l'institut Fourier, Octobre 2016

Models of interacting objects (in computer science)

Models of interacting objects (in computer science) Wifi: object 圆 $\quad \square$

Cluster: object $=$ server

Problem: state space explosion S states per object, N objects
$\Rightarrow S^{N}$ states
(and $\left.4^{20}=10^{12}\right)$

Mean-field model

Population of N objects.

$$
X_{i}(t)=\text { fraction of objects in state } i
$$

Mean-field model

Population of N objects.

$$
X_{i}(t)=\text { fraction of objects in state } i
$$

Example: N servers

The state is $\left(X_{0}, X_{1}, X_{2} \ldots\right)$.
$X_{i}(t)=$ fraction of servers with i jobs

Randomly choose two, and select one

Some systems simplify as N grows

Example. Two-choice model
Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Some systems simplify as N grows

Example. Two-choice model
Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Some systems simplify as N grows

Example. Two-choice model
Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Some systems simplify as N grows

Example. Two-choice model
Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Some systems simplify as N grows

Example. Two-choice model
Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Some systems simplify as N grows

Objective of this talk

- When is the ODE approximation valid / not valid?
- What is the accuracy?
Example. Two-choice model
Fraction of servers with 3 jobs

At time 0: all servers have 1 jobs.

Outline

(1) (Classical) Kurtz Population Model
(2) Accuracy of the Approximation
(3) Example: jobs allocation
(4) Conclusion and recap

Population CTMC

A population process is a sequence of CTMC \mathbf{X}^{N}, indexed by the population size N, with state spaces $\mathbf{E}^{N} \subset \mathbf{E}$ such that the transitions are (for $\ell \in \mathcal{L}$):

$$
X \mapsto X+\frac{\ell}{N} \quad \text { at rate } N \beta_{\ell}(X)
$$

The drift is $f(x)=\sum_{\ell} \ell \beta_{\ell}(x)$.
We denote by x the solution of the associated ODE

$$
\dot{x}=f(x)
$$

Transient regime

Let Φ_{t} denotes the (unique) solution of the ODE:

$$
\Phi_{t} x=x+\int_{0}^{t} \Phi_{s} x d s
$$

Theorem (Kurtz 70s)
If f is Lipschitz-continuous with constant L, then for any fixed T :

$$
\lim _{N \rightarrow \infty} \sup _{t<T}\left\|X^{N}(t)-x(t)\right\|=0
$$

Proof.

Martingale concentration + Gronwall.

The fixed point method

Markov chain

Transient regime

Stationary

$$
\begin{gathered}
\dot{p}=p K \\
\mathbf{\|}_{t \rightarrow \infty} \\
\downarrow \\
\pi K=0
\end{gathered}
$$

The fixed point method

Markov chain Mean-field

Transient regime

Method was used in many papers:

- Bianchi 00 , Performance analysis of the IEEE 802.11 distributed coordination function.
- Ramaiyan et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.
- Kwak et al. 05, Performance analysis of exponenetial backoff.
- Kumar et al 08 , New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.

Does it always work?

SIRS model:

S $40 x_{5}+10^{-3}-R$

- Markov chain is irreducible.
- Unique fixed point $f\left(x^{*}\right)=0$.

	Fixed point $f(x)=0$		Stat. measure x_{S}	
x_{I}	π_{S}	π_{I}		
$a=.3$	0.209	0.234	0.209	0.234

Does it always work?

SIRS model:

S $40 x_{5}+10^{-3}-R$

- Markov chain is irreducible.
- Unique fixed point $f\left(x^{*}\right)=0$.

	Fixed point $f(x)=0$		Stat. measure $N=10^{3}, 10^{4} \ldots$	
	x_{S}	x_{I}	π_{S}	π_{I}
$a=.3$	0.209	0.234	0.209	0.234
$a=.1$	0.078	0.126	0.11	0.13

What happened?

Fixed points?

Markov chain

Transient regime

Stationary

Fixed points?

Markov chain

Transient regime

Fixed points?

Markov chain

Mean-field

Transient regime

Stationary

Fixed points?

Markov chain Mean-field

Transient regime

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary distribution π^{N} concentrates on the fixed points

In that case, we also have:

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left[Z_{1}=i_{1} \ldots Z_{k}=i_{k}\right]=x_{1}^{*} \ldots x_{k}^{*} .
$$

Example of 802.11^{1}

${ }^{1}$ Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protoco. 2010

Quiz

Consider the 802.11 model:
Under the stationary distribution
 π^{N} :
(A) $P\left(Z_{1}=0, Z_{2}=0\right) \approx$ $P\left(Z_{1}=0\right) P\left(Z_{2}=0\right)$
(B) $P\left(Z_{1}=0, Z_{2}=0\right)>$ $P\left(Z_{1}=0\right) P\left(Z_{2}=0\right)$
(C) $P\left(Z_{1}=0, Z_{2}=0\right)<$ $P\left(Z_{1}=0\right) P\left(Z_{2}=0\right)$
(D) There is no stationary distribution
(E) I do not know

Quiz

Consider the 802.11 model:
Under the stationary distribution
 π^{N} :
(A) $P\left(Z_{1}=0, Z_{2}=0\right) \approx$ $P\left(Z_{1}=0\right) P\left(Z_{2}=0\right)$
(B) $P\left(Z_{1}=0, Z_{2}=0\right)>$ $P\left(Z_{1}=0\right) P\left(Z_{2}=0\right)$
(C) $P\left(Z_{1}=0, Z_{2}=0\right)<$ $P\left(Z_{1}=0\right) P\left(Z_{2}=0\right)$
(D) There is no stationary distribution
(E) I do not know

Answer: B

$P\left(Z_{1}(t)=0, Z_{2}(t)=0\right)=x_{1}(t)^{2}$. Thus: positively correlated.

Outline

(1) (Classical) Kurtz Population Model

(2) Accuracy of the Approximation
(3) Example: jobs allocation
(4) Conclusion and recap

How accurate is mean-field approximation?

- $X_{i}^{N}(t)=$ fraction of objects in state i.

Theorem (Kurtz 70s')

When f is Lipschitz:

$$
x^{N}(t)-x(t)=O\left(\frac{1}{\sqrt{N}}\right)
$$

Example. Two-choice model, Fraction of servers with 3 jobs

In practice, we use mean-field for $N \geq 50$. Are we wrong?

How accurate is mean-field approximation?

- $X_{i}^{N}(t)=$ fraction of objects in state i.

Theorem (Kurtz 70s')
When f is Lipschitz:

$$
x^{N}(t)-x(t)=O\left(\frac{1}{\sqrt{N}}\right)
$$

Example. Two-choice model, Fraction of servers with 3 jobs

In practice, we use mean-field for $N \geq 50$. Are we wrong?

N	10	100	1000	$+\infty$
Average queue length $\left(m^{N}\right)$	3.81	3.39	3.36	3.35
Error $\left(m^{N}-m^{\infty}\right)$	0.45	0.039	0.004	0

Where is the catch?

Where is the catch?

Where is the catch?

$$
O(1 / \sqrt{N})
$$

Numerical example: steady-state probability of having 3 jobs.

Transient regime

Theorem

If f differentiable and if Df is Lipschitz-continuous, then there exists a constant $C(t)$ such that:

$$
\left|\mathbb{E}\left[X^{N}(t)\right]-x(t)\right| \leq \frac{C(t)}{N}
$$

The classical result only requires f to be Lipschitz-continuous and implies

$$
\mathbb{E}\left[\left\|X^{N}(t)-x(t)\right\|\right] \leq \frac{C^{\prime}(t)}{\sqrt{N}}
$$

Steady-state analysis

We say that $\dot{x}=f(x)$ has an exponentially stable attractor x^{*} if for any solution:

$$
\left\|x(t)-x^{*}\right\| \leq C e^{-\alpha t}\left\|x(0)-x^{*}\right\| .
$$

Steady-state analysis

We say that $\dot{x}=f(x)$ has an exponentially stable attractor x^{*} if for any solution:

$$
\left\|x(t)-x^{*}\right\| \leq C e^{-\alpha t}\left\|x(0)-x^{*}\right\|
$$

Theorem

If f differentiable, Df is Lipschitz-continuous and the ODE has an exponentially stable attractor x^{*}, then there exists a constant C such that:

$$
\left|\mathbb{E}\left[X^{N}\right]-x^{*}\right| \leq \frac{C}{N}
$$

Idea of the proof

We study:

$$
\mathbb{E}\left[X^{N}(t)\right]-x(t)=\int_{0}^{t} \frac{d}{d s} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s)=x(s)\right] d s
$$

Idea of the proof

We study:

$$
\begin{aligned}
\mathbb{E}\left[X^{N}(t)\right]-x(t) & =\int_{0}^{t} \frac{d}{d s} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s)=x(s)\right] d s \\
& =\int_{0}^{t} \frac{d}{d s} \Psi_{t-s}^{(N)} \Phi_{s} d s
\end{aligned}
$$

where

$$
\Psi_{t}^{(N)} h(x)=\mathbb{E}\left[h\left(X^{N}(t)\right) \mid X^{N}(0)=x\right] \quad \Phi_{t} h(x)=h\left(\Phi_{t} x\right)
$$

Idea of the proof

We study:

$$
\begin{aligned}
\mathbb{E}\left[X^{N}(t)\right]-x(t) & =\int_{0}^{t} \frac{d}{d s} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s)=x(s)\right] d s \\
& =\int_{0}^{t} \frac{d}{d s} \Psi_{t-s}^{(N)} \Phi_{s} d s \\
& =\int_{0}^{t} \Psi_{t-s}^{(N)}\left(\Lambda-L^{(N)}\right) \Phi_{s} d s
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
\Psi_{t}^{(N)} h(x) & =\mathbb{E}\left[h\left(X^{N}(t)\right) \mid X^{N}(0)=x\right] & \Phi_{t} h(x) & =h\left(\Phi_{t} x\right) \\
L^{(N)} h(x) & =\sum_{\ell \in \mathcal{L}} N \beta_{\ell}(x)\left(h\left(x+\frac{\ell}{N}\right)-h(x)\right) & \Lambda h(x)=D h(x) \cdot f(x)
\end{array}
$$

Idea of the proof

We study:

$$
\begin{aligned}
\mathbb{E}\left[X^{N}(t)\right]-x(t) & =\int_{0}^{t} \frac{d}{d s} \mathbb{E}\left[X^{N}(t) \mid X^{N}(s)=x(s)\right] d s \\
& =\int_{0}^{t} \frac{d}{d s} \Psi_{t-s}^{(N)} \Phi_{s} d s \\
& =\int_{0}^{t} \Psi_{t-s}^{(N)}\left(\Lambda-L^{(N)}\right) \Phi_{s} d s
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
\Psi_{t}^{(N)} h(x) & =\mathbb{E}\left[h\left(X^{N}(t)\right) \mid X^{N}(0)=x\right] & \Phi_{t} h(x) & =h\left(\Phi_{t} x\right) \\
L^{(N)} h(x) & =\sum_{\ell \in \mathcal{L}} N \beta_{\ell}(x)\left(h\left(x+\frac{\ell}{N}\right)-h(x)\right) & \Lambda h(x)=D h(x) \cdot f(x)
\end{array}
$$

We then obtain a $O(1 / N)$ convergence if $\int_{0}^{t} D \Phi_{s} d s$ exists and is Lipschitz-continuous with respect to the initial condition (also works for steady-state).

Outline

(1) Classical) Kurtz Population Model
(2) Accuracy of the Approximation
(3) Example: jobs allocation
(4) Conclusion and recap

The two choice model ${ }^{2}$

Infinite state-space:

$$
X_{0}(t), X_{1}(t), \ldots
$$

where
$X_{i}(t)=$ fraction with i or more jobs.
Randomly choose two, and select one
${ }^{2}$ This model or variants have been heavily studied (Vvedenskaya 96, Mitzenmacher 98, ...Fricker G. 2014, Tsitsiklis 2016).

Why is this called the power of two-choices?

As N goes to infinity, in steady-state,

$$
\lim _{N \rightarrow \infty} X_{i}^{N}=\rho^{2^{i}-1}
$$

The average queue length $m^{N}(\rho)$ satisfies:

$$
\lim _{N \rightarrow \infty} m^{N}(\rho)=m^{\infty}(\rho)=\Theta_{\rho \rightarrow 1}\left(\log \frac{1}{1-\rho}\right)
$$

One-choice

ρ^{i}

$$
\frac{1}{1-\rho}
$$

Our result shows that $\limsup _{N \rightarrow \infty} N\left|m^{N}(\rho)-m^{\infty}(\rho)\right|<\infty$.

Can we quantify the $O(1 / N)$?

In particular, the average queue length satisfies:
$m^{N}(\rho)=\Theta_{\rho \rightarrow 1}\left(\log \frac{1}{1-\rho}\right)+O(1 / N)$

Can we quantify the $O(1 / N)$?

$$
N\left(m^{N}(\rho)-m^{\infty}(\rho)\right)
$$

In particular, the average queue length satisfies:

$$
m^{N}(\rho)=\Theta_{\rho \rightarrow 1}\left(\log \frac{1}{1-\rho}\right)+\frac{1}{N} \underbrace{\Theta_{\rho \rightarrow 1}\left(\frac{1}{1-\rho}\right)}_{\text {order of magnitude larger }}+o\left(\frac{1}{N}\right)
$$

Outline

(1) Classical) Kurtz Population Model
(2) Accuracy of the Approximation
(3) Example: jobs allocation
(4) Conclusion and recap

Recap

(1) Convergence of mean-field model is $O(1 / N)$.

- Works for transient and steady-state
- Works for infinite-dimensional state space.
(2) Our approach is to focus on the expected values

Extension and open questions

(1) Technical question:

- Can we compute the constant in $O(1 / N)$?
- Steady-state + only Lipschitz-continuous: is the convergence rate $O(1 / \sqrt{N})$?
(2) Hitting/mixing-time + fluid approximation.
(3) Non-homogeneous population.
- e.g., caching

Thank you!

http://mescal.imag.fr/membres/nicolas.gast
nicolas.gast@inria.fr

Mean-field and decoupling

Benaïm,
Le Boudec 08

Le Boudec 10
A class of mean field interaction models for computer and communication systems, M.Benaïm and J.Y. Le Boudec., Performance evaluation, 2008.
The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points., J.-Y. L. Boudec. , Arxiv:1009.5021, 2010
Darling Norris 08 R.W. R. Darling and J. R. Norris, Differential equation approximations for Markov chains, Probability Surveys 2008
G. $16 \quad$ Construction of Lyapunov functions via relative entropy with application to caching, Gast, N., ACM MAMA 2016
Budhiraja et al. Limits of relative entropies associated with weakly interacting particle
15 systems., A. S. Budhiraja, P. Dupuis, M. Fischer, and K. Ramanan. , Electronic journal of probability, 20, 2015.

References (continued)

Optimal control and mean-field games:
G.,Gaujal

Boudec 12
G. Gaujal 12

Puterman

Lasry Lions
Tembine at al 09

Le Mean field for Markov decision processes: from discrete to continuous optimization, N.Gast,B.Gaujal, J.Y.Le Boudec, IEEE TAC, 2012
Markov chains with discontinuous drifts have differential inclusion limits., Gast N. and Gaujal B., Performance Evaluation, 2012
Markov decision processes: discrete stochastic dynamic programming, M.L. Puterman, John Wiley \& Sons, 2014.

Mean field games, J.-M. Lasry and P.-L. Lions, Japanese Journal of Mathematics, 2007. Mean field asymptotics of markov decision evolutionary games and teams, H. Tembine, J.-Y. L. Boudec, R. El-Azouzi, and E. Altman., GameNets 00
Applications: caches, bikes
Don and Towsley An approximate analysis of the LRU and FIFO buffer replacement schemes, A. Dan and D. Towsley., SIGMETRICS 1990
G. Van Houdt 15 Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms., Gast, Van Houdt., ACM Sigmetrics 2015
Fricker-Gast 14 Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity., C. Fricker and N. Gast. , EJTL, 2014.
Fricket et al. 13 Mean field analysis for inhomogeneous bike sharing systems, Fricker, Gast, Mohamed, Discrete Mathematics and Theoretical Computer Science DMTCS
G. et al 15 Probabilistic forecasts of bike-sharing systems for journey planning, N. Gast, G. Massonnet, D. Reijsbergen, and M. Tribastone, CIKM 2015

