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Good system design needs performance evaluation

Example : caches

Which cache replacement policies?
e LRU

2-LRU

RAND

RAND(m)

FIFO

N contents
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Good system design needs performance evaluation

Example : caches

Which cache replacement policies?
e LRU

2-LRU

RAND

RAND(m)

FIFO

N contents

We need models and methods to characterize emerging behavior starting
from a stochastic model of interacting objects

@ We use simulation analytical methods and approximations.
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The main difficulty of probability : correlations

P[A B] # P[A]P[B]

Problem: state space explosion
S states per object, N objects = S states
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“Mean field approximation” = assume that all objects are
independent
Where has it been used?

@ Statistical mechanics, chemical reaction networks Gillepsie 92

o Communication protocols ex: CSMA, Bianchi 00

@ Performance of caching algorithms ex: TTL-approximation, Fagins 77 +
many recent papers

@ Mean field games ex: evacuation, Mexican wave, Larsi-Lions 06

@ Understanding of Deep Neural Networks ex: Xiao et al. 2018
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“Mean field approximation” = assume that all objects are
independent
Where has it been used?

@ Statistical mechanics, chemical reaction networks Gillepsie 92

o Communication protocols ex: CSMA, Bianchi 00

@ Performance of caching algorithms ex: TTL-approximation, Fagins 77 +
many recent papers

Mean field games ex: evacuation, Mexican wave, Larsi-Lions 06

Understanding of Deep Neural Networks ex: Xiao et al. 2018

This talk

©@ What is mean field approximation
and how to apply it?

@ When is it valid?

© How can we do better?

Nicolas Gast — 4 / 47



Outline: Demystifying Mean Field Approximation

© How to Construct a Mean Field Approximation (via an example)
© How Accurate is the Classical Mean Field Approximation
e We can Refine this Approximation

@ Conclusion and Open Questions
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Outline

@ How to Construct a Mean Field Approximation (via an example)
@ Approach 1: Zoom on One Object and Independence
@ Approach 2: Density Dependent Population Processes
@ Approach 3: Discrete-Time Models
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Analysis of Cache (Re)placement Policies

Cache

e Popularity-oblivious policies (LRU, RANDOM?, TTL-caches?)

o Popularity-aware policies / learning (LFU and variants®, network of
caches*)

!started with [King 1971, Gelenbe 1973]
2e.g., Fofack et al 2013, Berger et al. 2014
3Optimizing TTL Caches under Heavy-Tailed Demands (Ferragut et al. SIGMETRICS 2016)

4Adaptive Caching Networks with Optimality Guarantees (loannidis and Yeh,
SIGMETRICS16)
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The RAND(ri) policy °

@ RANDOM: exchange the requested item with a random item

cache
/

.

exchange

>Can be generalized in LRU(r) or FIFO(rii), see [ITC16,QUESTA16]

Nicolas Gast — 8 / 47



The RAND(ri) policy °

@ RAND(m): exchange the requested item with an item from next list

virtual - cache

exchange '

Lt Tl .....N.......,:
L ] L ]

. - !
n n [] [

| PR e | l..............':

| |

| |

>Can be generalized in LRU(r) or FIFO(rii), see [ITC16,QUESTA16]
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The RAND(ri) policy °

@ RAND(m): exchange the requested item with an item from next list

Y
: []

virtual cache

]
7

>Can be generalized in LRU(r) or FIFO(rii), see [ITC16,QUESTA16]
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The RAND(ri) policy °
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virtual cache
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The RAND(ri) policy °
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The RAND(ri) policy °

@ RAND(m): exchange the requested item with an item from next list
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The RAND(ri) policy °
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virtual - cache

h
seneananng€XChange

&
m iilm

HE B EEEEDN
-

>Can be generalized in LRU(r) or FIFO(rii), see [ITC16,QUESTA16]

Nicolas Gast — 8 / 47



The RAND(ri) policy °

@ RAND(m): exchange the requested item with an item from next list
cache

exchange

virtual

]

HE BB EEENERN
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>Can be generalized in LRU(r) or FIFO(rii), see [ITC16,QUESTA16]
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Our model is a heterogeneous population model

N items of identical sizes but different popularities.
@ The state of an item is the list in which it is {0} U{1,..., h}.

@ The item k is requested at rate A.
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Our model is a heterogeneous population model

N items of identical sizes but different popularities.
@ The state of an item is the list in which it is {0} U{1,..., h}.

@ The item k is requested at rate A.

We write: X ;(t) = 1 if object k is in list /.

We want to find an approximation of E [Xj ;(t)]
o (= probability that the object k is in state 7).
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Construction of the mean-field approximation (RANDOM)

Jjé&{cache}
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Construction of the mean-field approximation (RANDOM)

FIp IR Ly
m / EZXJ')‘J'
Jj#{cache} j=1

Original model for RANDOM  MF approx: let x;(t) = P[i & {cache}].
(only one list) If all objects are independent:

Nicolas Gast — 10 / 47



Construction of the mean-field approximation (RANDOM)
Ai

. BN
DI LI
Jj#{cache} j=1

Original model for RANDOM  MF approx: let x;(t) = P[i & {cache}].
(only one list) If all objects are independent:

The “mean field” equations for the approximation model are:

X; = —A\jx; + — ZXJ (1 —x;).
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Steady-state analysis for RANDOM

1< :
The mean field equation x; = —\jx; + — E xj(t)Aj(1 — x;). has a unique
m
j=1

fixed point that satisfies:

Zj)\,- with z such that ;(1 — ) =m.

=

Same equations as Fagins (77).
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Extension to the RAN D(m) model (G, Van Houdt SIGMETRICS 2015)
Let H;(t) be the popularity in list i.

Pk Pk Pk Pk
Ho(t Hq(t Ha(t) Hp_1(t)
mi m2 m3 mhp
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Extension to the RAN D(m) model (G, Van Houdt SIGMETRICS 2015)
Let H;(t) be the popularity in list i.

Pr Pr Pr Pr
Ho(t Hi(t Ha(t) Hy_1(t)
mq mo m3 Tmn

mp

If xx i(t) is the probability that item k is in list / at time t, we
approximately have:

Popularity in cache i-1

. Tk,i(t
Tk,i(t) = prr,i-1(t) — ijmj,,;_l(t)#

- pkmk,i(t))

Popularity in cache i

This approximation is of the form x = xQ(x).
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The mean field approximation is very accurate

n = 1000 objects with Zipf popularities.

probability in cache

e
o
&

0.10

0.05

1 list (200)
4 lists (50/50/50/50
== ode aprox (1 list)

== ode approx (4 lists)

)

2000 4000 6000 8000
number of requests

The popularities change
every 2000 requests

10000

mi1 m2 m3 m4 exact mean field
2 2 96 — 0.3166 0.3169
10 30 60 - 0.3296 0.3299
20 2 78 - 0.3273 0.3276
90 8 2 - 0.4094 0.4100

1 4 10 85 0.3039 0.3041
5 15 25 55 0.3136 0.3139
25 25 25 25 0.3345 0.3348
60 2 2 36 0.3514 0.3517

Steady-state miss probabilities
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A population model

Consider now that we have K types of items with N items per type.
@ The state of an item is the list in which it is {0} U{1,..., h}.
@ An item of type k is requested at rate \g.
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A population model

Consider now that we have K types of items with N items per type.
@ The state of an item is the list in which it is {0} U{1,..., h}.
@ An item of type k is requested at rate \g.

We define X ;(t) has the fraction of type k items in list /.

The transitions are:

Xe,i+1

1
X=X+ = (—exi+ekit1+ eni— erip1) at rate N\ X
N mijt1
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This is an example of a density dependent population
process (Kurtz, 70s)

A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EV c E and transitions (for £ € L):

X=X +% at rate NGy (X).
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This is an example of a density dependent population
process (Kurtz, 70s)

A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EV c E and transitions (for £ € L):

X=X +% at rate NGy (X).

The Mean field approximation

The drift is £(x) = Y 8,(x) and the mean field
l

approximation is the solution of the ODE x = f(x).
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Other examples of density dependent population processes
Load Balancing and JSQ(2)

N

1
Xi(t) = N Z 1¢s,()>iy = fraction of queues with queue length > /.
n=1
| 1
p— e :“:D @ Arrival: X = X+ N
v —E0 1
*—1O o Departures: x — x — Ne;.
T )
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Other examples of density dependent population processes
Load Balancing and JSQ(2)

N

1
Xi(t) = N Z 1¢s,()>iy = fraction of queues with queue length > /.
n=1
| 1
p— e :“:D @ Arrival: X = X+ N
v —E0 1
*C— @ Departures: x — x — Ne;.
T )

Pick two servers at random, what is the probability the least loaded has
i — 1 jobs?
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Other examples of density dependent population processes
Load Balancing and JSQ(2)

N
1
Xi(t) = N Z 1¢s,()>iy = fraction of queues with queue length > /.
n=1
CC—0 1
N __: @ Arrival: X — X+ Nei.
W —E0 1
*C— @ Departures: x — x — Ne;.
=0

Pick two servers at random, what is the probability the least loaded has
i — 1 jobs?

x? | —x? when picked with replacement
Nx;_1—1 Nx; — 1 i i
Xi_1 );\Ii T~ X; I\)I<— 1 when picked without replacement

Note: this becomes asymptotically the same as N goes to infinity.
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Transitions and Mean Field Approximation
State changes on x:

1
X = X+ N at rate Np(x?_y — x7)

1
X = X — Nei at rate N(X,‘ — X,'+1)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

xi = p(xi_1 — %) — (xi — xi41)

Arrival Departure

There is a unique fixed point (which also is an attractor):

2i—1
i =p
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Outline

@ How to Construct a Mean Field Approximation (via an example)

@ Approach 3: Discrete-Time Models

9 How Accurate is the Classical Mean Field Approximation

9 We can Refine this Approximation

@ Conclusion and Open Questions
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Benaim-Le Boudec’s model (PEVA 2007)

Time is discrete.

Xi(k) = Proportion of object in state i at time step k
R(k) = State of the "resource” at time k (discrete)
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Benaim-Le Boudec’s model (PEVA 2007)

Time is discrete.

Xi(k) = Proportion of object in state i at time step k
R(k) = State of the "resource” at time k (discrete)

Assumptions:
@ Only O(1) objects change state at each time step and

f(x,r)= %E [X(k+1) — X(k)|X(k) =x,R(k) =r].

@ R evolves fast in a discrete state-space and:

P[R(k + 1) = jIX(k) = x, R(k) = i] = P;(x).

For all x, P(x) is irreducible and has a unique stationary measure 7(x,.).
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Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.
X = Z f(x,r)m(x,r),
r

where 7(x, r) is the stationary measure of the resource given x.
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Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.
X = Z f(x,r)m(x,r),
r

where 7(x, r) is the stationary measure of the resource given x.

The analysis of such models is done by considering stochastic
approximation algorithms. For example, without resource one has:

X(k+1) = X(k)+ % [f(X(k)) + M(k+1)],

where M is some noise process.
This is a noisy Euler discretization of an ordinary differential equation.
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Take-home message on this part

Three ways to construct mean field
approximation:

@ Independence assumption x = xQ(x).
@ Density dependent population process.

@ Discrete-time model with vanishing intensity.

In what follows, | will assume that X is a density dependent population
process (ex: SQ(d)). Analysis of other models are similar.
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Outline

9 How Accurate is the Classical Mean Field Approximation
@ Transient Analysis
@ Steady-state Regime
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Convergence Result as N Goes to Infinity

Theorem (under technical conditions), for any density dependent
population process X" whose drift is Lipschitz-continuous, if XN(O)
converges to xp, then for any finite T:

sup HXN(t) - x(t)H 0.

0<t<T

where x(t) is the unique solution of the ODE x = f(x).
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lllustration (cache model)

2080 L eeemeeeanoaoand xample.  Fraction of popular
£o6l ] items in cache. my = N/4, mp =
20'4 ',' N/4, N/2 popular object (popu-
s larity 4N /(5N), N /2 non-popular
g% objects (popularity N/(5N)).

§ 0'00 10 20 3‘0 40 50

time
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lllustration (cache model)

Fraction of popular items in cache

1.0
08 R e
"‘—
06} o
.
04y
02| == ode
— N=5
0.0 . . . .
0 10 20 30 40
time

50

Example.  Fraction of popular
items in cache. my = N/4, mp =
N/4, N/2 popular object (popu-
larity 4N /(5N), N /2 non-popular
objects (popularity N/(5N)).
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lllustration (cache model)

® 1.0
E 0.8 Example.  Fraction of popular
206 items in cache. my = N/4, my =
20.4. N/4, N/2 popular object (popu-
g larity 4N /(5N), N /2 non-popular
5% objects (popularity N/(5N)).
§ 0'00 1‘0 2‘0 3‘0 4‘0 50

time
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lllustration (cache model)

lcré 1.0

E 0.8 Example.  Fraction of popular
206 items in cache. my = N/4, mp =
H -- N/4, N/2 popular object (popu-
o 0.4 — N=5 .

g — newo larity 4N /(5N), N /2 non-popular
5% — n~=s00|]  objects (popularity N/(5N)).

§ 0'00 1‘0 2‘0 3‘0 4‘0 50

time
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The fixed point method

Transient regime

Stationary

Markov chain
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The fixed point method

Markov chain Mean-field
Transient regime p=pK N — o0 =——s x = xQ(x)
t— o0
4
Stationary 7K =0 ? >|X*Q(X*) = OI

fixed points

Method was used in many papers:

BlanChI 00, Performance analysis of the IEEE 802.11 distributed coordination function.

(] Ramaiya n et al. 08, Fixed point analys is of single cell IEEE 802.11e WLANSs: Uniqueness, multistability.
o Kwak et al. 05, Performance analysis of exponenetial backoff.
o

Kumar et al 08, New insights from a fixed-point analysis of single cell IEEE 802.11 WLANSs.
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The fixed point method
Markov chain Mean-field

Transient regime p=pK N — o0 =——s x = xQ(x)

I
t — o0 t
4 +

Stationary K =0 }( )m
fixed points
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The fixed point method
Markov chain Mean-field

Transient regime P = PK = N 3 00 m—) X = xQ(X)

| \
t — oo > if yes

J "4
Stationary 7K =0 - | X" Q(x") =0
\>< fixed points

then yes

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary
distribution =V concentrates on the fixed points

In that case, we also have:

*

lim P[51:I'l...Sk:I'k]:Xf...Xk.
N—oo
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The fixed point method does not always work

OF

1+ 10x; 5

xs+a \

@«mxs + 10—3-@

The fixed point methods does
not work for a = 0.1 It works for a=0.3

Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang 2011)
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Fixed point method in practice

From the examples coming from queuing theory, many models have a
unique attractor.

@ This holds for classical load balancing policies such as SQ(d),
pull-push, JIQ,...

» Often comes from monotonicity

@ This holds in many cases in statistical physics
» Lyapunov methods (entropy, reversibility) (ex: G. 2016 for cache)

@ It does not always work

» Theoretical biology / chemistry

» Multi-stable models (ex: Kelly)

» Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang
2011)
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Outline

e We can Refine this Approximation
@ Main Results
@ Idea of the Proof: System Size Expansion
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For which system size N can mean-field be used?

Recall: XN(t) = fraction of objects in state i.

Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous:

[f in addition the ODE has a
unique attractor 7:

E [XN(oo) - 77} = 0(1/VN)

o
©

° ©°

> o
.

~

o
N

-
o

Fraction of popular items in cache

o
=)

time

50

Example.  Fraction of popular
items in cache. my = N/4, mp =
N/4, N/2 popular object (popu-
larity 4, N/2 non-popular objects
(popularity 1).
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For which system size N can mean-field be used?

Recall: XN(t) = fraction of objects in state i.

Theorem (Kurtz (1970s), Ying (2016)):
If the drift f is Lipschitz-continuous:

[f in addition the ODE has a
unique attractor 7:

E [XN(oo) - 77} = 0(1/VN)

2

8 10 . " . "

wosl ...l H__ ___l___1  Example. Fraction of popular
206l items in cache. my = N/4, my =
20,4 ',' N/4, N/2 popular object (popu-
R larity 4, N/2 non-popular objects
g% — N=s 1 (popularity 1).
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For which system size N can mean-field be used?

Recall: XN(t) = fraction of objects in state i.

Theorem (Kurtz (1970s), Ying (2016)):
If the drift f is Lipschitz-continuous:

[f in addition the ODE has a
unique attractor 7:
1

XN(t) ~ x(t) + —=G
(€) = x(e) + = Ge E [XN(oo) —W] = 0(1/VN)

% 1.0
208 1 41,1 Example. Fraction of popular
é 06 _L-I-rt items in cache. my = N/4, my =
%04 N/4, N/2 popular object (popu-
g o ?Vdjs larity 4, N/2 non-popular objects
_§°‘2 — N=50|] (popularity 1).
§ 0‘00 10 20 3‘0 40 50

time
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For which system size N can mean-field be used?

Recall: XN(t) = fraction of objects in state i.

Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous:

1
XN(t) ~ x(t) + N

[f in addition the ODE has a
unique attractor 7:

E [XN(oo) - 77} = 0(1/VN)

=
=}

o
©

o
o

I
IS

o
N

Fraction of popular items in cache

o
o

10 20 30 40 50
time

o

Example.  Fraction of popular
items in cache. my = N/4, mp =
N/4, N/2 popular object (popu-
larity 4, N/2 non-popular objects
(popularity 1).
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In practice, mean field works well even for “small” systems

How small?

Cache size (N/2) 10 100 1000 +00
Proba popularecache | 0.7604 | 0.7553 | 0.7548 | 0.7547
Error 0.0060 | 0.0006 | <0.0001 -

Also works for load balancing policies (two-choice allocation):

N-servers 10 100 | 1000 | +o0
Average queue length (m") | 3.81 | 3.39 | 3.36 | 3.35
Error (m" — m™) 0.45 | 0.039 | 0.004 | 0
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In practice, mean field works well even for “small” systems

How small?

Cache size (N/2) 10 100 1000 +00
Proba popularecache | 0.7604 | 0.7553 | 0.7548 | 0.7547
Error 0.0060 | 0.0006 | <0.0001 -

Also works for load balancing policies (two-choice allocation):

X; = fraction of
objects in state i

/_\)

N-servers 10 100 | 1000 | +o0
Average queue length (m") | 3.81 | 3.39 | 3.36 | 3.35
Error (m" — m™) 0.45 | 0.039 | 0.004 | 0
O(1/V'N)

x; (mean-field
approx)
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In practice, mean field works well even for “small” systems

How small?

Cache size (N/2) 10 100 1000 +00
Proba popularecache | 0.7604 | 0.7553 | 0.7548 | 0.7547
Error 0.0060 | 0.0006 | <0.0001 -
Also works for load balancing policies (two-choice allocation):
N-servers 10 100 | 1000 | +o0
Average queue length (m") | 3.81 | 3.39 | 3.36 | 3.35
Error (m" — m™) 0.45 | 0.039 | 0.004 | 0
O(1/VN)

X; = fraction of
objects in state i

x; = Proba(one ob-
jectisin i) = E[Xi]

x; (mean-field
approx)

O(1/V'N) (CLT) ?
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Expected values estimated by mean field are 1/N-accurate

Theorem (Kolokoltsov 2012, G. 2017, G. and Van Houdt 2018). If the

drift f is C2 and has a unique exponentially stable attractor, then for any
t €]0,00) U{oo},

@ there exists a (deterministic) vector V/(t) such that:

v(r)

E [X’V(t)} = x(t) +

+ O(1/N?)

e V/(t) can be easily computed numerically
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The refined mean field approximation...
. is defined as the classic mean field plus the 1/N correction term:

E [X’V} - x(t)—i—VIEIt) +O(1/N?),

refined mean field

where V/(t) is computed analytically.
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The refined mean field approximation...

. is defined as the classic mean field plus the 1/N correction term:

E [X’V} - x(t)+V,E/t) +O(1/N?),

refined mean field

where V/(t) is computed analytically.

To compute V/(t), we need:
@ Derivative of the drifts:

of, : 02f,

Fi(t) = iy, (X(2)) and

J

@ A variance term:

Q(t) =D L@ Be(X(t))

4

jk(t) = anan x(t )
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Computational methods

Theorem (G, Van Houdt 2018, G. 2018) Given a density dependent
process with twice-differentiable drift. Let h: E — R be a
twice-differentiable function, then for t > 0:

E [XN(t)} () + 2v() +

1
LV + 55A() + O(s),

where
_ i\/J i i,k
SIS WAL
J Jjk

ik _ ~Ajk i k im k
W= +Zm:F{,,W'" +y WimEk

Theorem (G, Van Houdt 2018) The previous theorem also holds for the

stationary regime (t = +00) if the ODE has a unique exponentially stable
attractor.
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Numerical example: caching and RANDOM(m) policy

Cache size (N/2) 10 20 30 50 100 +o0
Simulation 0.7604 | 0.7575 | 0.7566 | 0.7559 | 0.7553 -
Refined mf 0.7607 | 0.7576 | 0.7567 | 0.7558 | 0.7553 || 0.7547

Average fraction of most popular items in cache.
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Numerical example: caching and RANDOM(m) policy

Cache size (N/2) 10 20 30 50 100 +o0
Simulation 0.7604 | 0.7575 | 0.7566 | 0.7559 | 0.7553 -
Refined mf 0.7607 | 0.7576 | 0.7567 | 0.7558 | 0.7553 || 0.7547

Average fraction of most popular items in cache.
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Arrival at each server p.
0@, g

e S | th
P = | 11 @) qz?uze another
', [ '
‘.;\ I D o Allocate to the
I D shortest of the two.
| ..O Service rate=1.

N=10 | N=20| N=50 | N =100
Mean Field 2.3527 | 2.3527 | 2.3527 | 2.3527
1/N-expansion | 2.7513 | 2.5520 | 2.4324 | 2.3925
1/N2-expansion | 2.8045 | 2.5653 | 2.4345 | 2.3930
Simulation 2.8003 | 2.5662 | 2.4350 | 2.3931
SQ(2): Steady-state average queue length (p = 0.9).

Nicolas Gast — 35 / 47



How does the expected queue length evolve with time?

—— Mean Field Approximation
—— Simulation (N =1000)

2.8 1

p—t e |

0 10 20 30 40 50 60 70 80
Time
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How does the expected queue length evolve with time?

—— Mean Field Approximation
—— Simulation (N =10)

2.8 1
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How does the expected queue length evolve with time?

289 e
=
5 2.7 4
c
:D % —— Mean Field Approximation
! =] ~ == 1/N-expansion
p— ey [T L 2.6 1 )
L—ws | N L expansion
N —c % —— Simulation (N = 10)
@ 2.5
=0 2
<
2.4 4
0 10 20 30 40 50 60 70 80

Time
Remark about computation time :

@ 10min/1h (simulation N = 1000/N = 10), C++ code. Requires many simulations,
confidence intervals,...

@ 80ms (mean field), 700ms (1/N-expansion), 9s (1/N’-expansion), Python numpy
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Analysis of the computation time

For the numerical examples of SQ(2), | used a bounded queue size d.

17.5 20 1
m 15.0 %\
g g
g 125 817
c £
< 10.0 >
: £ o]
F 75 -
5 S
g 507 .
£ £
S 251 o

0.0 A 0

100 200 300 400 500 10 20 30 40
Number of dimensions (d) Number of dimensions (d)
Time to compute the 1/N-expansion | Time to compute the 1/N2—expansior

Analysis of the computation time (Python numpy implementation)
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Does it always work?
Can | always exchange the limits N — oo, k — o0, t — c0?

1

E [X(£)] = x(t) + %V(t) + %A(t) o+ O )
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Does it always work?
Can | always exchange the limits N — oo, k — o0, t — c0?

1 1 1
E[X(1)] = x(t) + 3, V(D) + 35A0) + -+ O(57)
3.0
—— mean-field i
2.54 === 1/N-expansion "
—-- 1/N%-expansion ”
201 simulation (N = 200) ||
1.5- il
i} | i
3 10 I ||

NO: il

Time t Nicolas Gast — 38 / 47



Outline

@ How to Construct a Mean Field Approximation (via an example)

9 How Accurate is the Classical Mean Field Approximation

9 We can Refine this Approximation
@ Idea of the Proof: System Size Expansion

@ Conclusion and Open Questions
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Where does V /N come from? (SQ(2) example)
Transitions on X;: +N at rate N(x? ; — x?) and —y atrate N(x;i—xXj+1)-

Hence:
%E [Xi()] = E [X71(8) = XP(t) — (Xi(t) = Xi1a(t))]  (exact)

=E [X21(t)] — E [X?(t)] — E[Xi(£)] + E [Xiy(2)]
~E[Xi_1(8)]* — E[Xi(t)] — E[Xi(t)] + E[Xiy1(t)] (mean field approx.
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Where does V /N come from? (SQ(2) example)
Transitions on X;: +N at rate N(x? ; — x?) and —y atrate N(x;i—xXj+1)-

Hence:
%E [Xi()] = E [X71(8) = XP(t) — (Xi(t) = Xi1a(t))]  (exact)
=E [X21(1)] — E [X?(t)] — E[Xi(1)] + E [Xia(2)]
2

SE X — B X P — B+ EX(8)]  (mean field approx.
If we now consider how [E [X?] evolves, we have:
9g (X?] = (2X + )(x2 — X?) 4 (—=2X; + )(x Xit1)
=B | 2X;X?, +............
——
_E[X"X,?qz?]

where we denote X instead of X(t) for simplicity.
To close the equation: we assume that E [(X; — x;)?(Xi—1 — xi_1)] ~ 0.
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System Size Expansion Approach
Recall that the transitions are X — X + — at rate Nfy(x).

N
%E X]=E ;ﬁg(X)f = E[f(X)] (Exact)
%X =f(x) (Mean Field Approx.)
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System Size Expansion Approach

Recall that the transitions are X — X + m at rate Nfy(x).

%E X] = Zﬁe =E[f(X)]  (Exact)
%x = f(x) (Mean Field Approx.)

We can now look at the second moment:

E[(X =x)@ (X =x)] =E[(f(X) = f(x)) @ (X =x)]  (Bxact)
+E[(X =x) @ (f(X) = f(x))]

S ax) et

el

—IE
+N
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System Size Expansion Approach
Recall that the transitions are X — X + — at rate Nfy(x).

N
%E X] = Zﬁe =E[f(X)]  (Exact)
%x = f(x) (Mean Field Approx.)

We can now look at the second moment:

E[(X —x)® (X —x)] =E[(f(X) — f(x)) ® (X — x)] (Exact)
+E[(X —x) @ (f(X) = f(x))]

S ax) et

lel
... We can also look at higher order moments

E [(X — x)®*] = 3SymE [(f(X) — f(x)) ® (X — x) ® (X — x)]

1
—E
+N

+%SymE {;@(X)mz@( —x)} + 4 E LZ@(X £®£®4
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System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y(t) = X(t) — x(t), and
YO =y e oY)

k times

d
p [Y(t) ] can be expressed as an exact
function of Y(t)U) for j € {0..., k+1}.
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System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y(t) = X(t) — x(t), and
Y)W =v(t)@- @ Y(t)

k times

d
EE [Y(t)(k)} can be expressed as an exact

function of Y(t)U) for j € {0..., k+1}.

You can close the equations by assuming that YK ~ 0 for k > K.
e For K =1, this gives the mean field approximation (1/N-accurate)
o For K = 3, this gives the refined mean field (1/N?-accurate).

@ For K = 5, this gives a second order expansion (1/N3-accurate).

Limit: For a system of dimension d, Y (t)*) has d* equations.
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Outline

@ Conclusion and Open Questions
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Recap and extensions

For a mean field model with twice differentiable drift, then :
@ The accuracy of the classical mean field approximation is O(1/N).
@ We can use this to define a refined approximation.

© The refined approximation is often accurate for N = 10.

Extensions:
@ Transient regime
o Discrete-time (Synchronous)

o Next expansion term in 1/N?.
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In many cases, the refined approximation is very accurate

“Truth” | Refined mean field approximation ‘ Mean field approximation
N V o .
E [X } . 7 (=fixed point)
N
Coupon Supermarket Pull/push
Simulation (N = 10) 1.530 2.804 2304 |g
Refined mean field (N = 10)| 1.517 2.751 2.295
Mean field (N = o0) 1.250 2.353 1.636

®Ref : G., Van Houdt, 2018
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Some open questions

Optimization (mean field games, reinforcement learning)
Non-exponential models (ex: general service time, TTL&LRU)

Heterogeneous models

e 6 o ¢

Multi-timescale models
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@ A Refined Mean Field Approximation by Gast and Van Houdt. SIGMETRICS 2018 (best paper award)
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