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Good system design needs performance evaluation
Example : caches

N contents

Which cache replacement policies?

LRU

2-LRU

RAND

RAND(m)

FIFO

We need models and methods to characterize emerging behavior starting
from a stochastic model of interacting objects

We use simulation analytical methods and approximations.
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The main difficulty of probability : correlations

P [A,B] 6= P [A]P [B]

Problem: state space explosion
S states per object, N objects ⇒ SN states
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“Mean field approximation” ≈ assume that all objects are
independent
Where has it been used?

Statistical mechanics, chemical reaction networks Gillepsie 92

Communication protocols ex: CSMA, Bianchi 00

Performance of caching algorithms ex: TTL-approximation, Fagins 77 +

many recent papers

Mean field games ex: evacuation, Mexican wave, Larsi-Lions 06

Understanding of Deep Neural Networks ex: Xiao et al. 2018

This talk
1 What is mean field approximation

and how to apply it?

2 When is it valid?

3 How can we do better?
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Outline: Demystifying Mean Field Approximation

1 How to Construct a Mean Field Approximation (via an example)

2 How Accurate is the Classical Mean Field Approximation

3 We can Refine this Approximation

4 Conclusion and Open Questions
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Outline

1 How to Construct a Mean Field Approximation (via an example)
Approach 1: Zoom on One Object and Independence
Approach 2: Density Dependent Population Processes
Approach 3: Discrete-Time Models

2 How Accurate is the Classical Mean Field Approximation
Transient Analysis
Steady-state Regime

3 We can Refine this Approximation
Main Results
Idea of the Proof: System Size Expansion

4 Conclusion and Open Questions
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Analysis of Cache (Re)placement Policies

Popularity-oblivious policies (LRU, RANDOM1, TTL-caches2)

Popularity-aware policies / learning (LFU and variants3, network of
caches4)

1started with [King 1971, Gelenbe 1973]
2e.g., Fofack et al 2013, Berger et al. 2014
3
Optimizing TTL Caches under Heavy-Tailed Demands (Ferragut et al. SIGMETRICS 2016)

4
Adaptive Caching Networks with Optimality Guarantees (Ioannidis and Yeh,

SIGMETRICS16)
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The RAND( ~m) policy 5

RANDOM: exchange the requested item with a random item

exchange cache

virtual

exchange

5Can be generalized in LRU( ~m) or FIFO( ~m), see [ITC16,QUESTA16]
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Our model is a heterogeneous population model

N items of identical sizes but different popularities.

The state of an item is the list in which it is {∅} ∪ {1, . . . , h}.
The item k is requested at rate λk .

We write: Xk,i (t) = 1 if object k is in list i .

We want to find an approximation of E [Xk,i (t)]

(= probability that the object k is in state i).
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Construction of the mean-field approximation (RANDOM)

Out In

λi

1

m

∑
j 6∈{cache}

λj

Out In

λi

1

m

n∑
j=1

xjλj

Original model for RANDOM

MF approx: let xi (t) = P [i 6∈ {cache}].

(only one list)

If all objects are independent:

The “mean field” equations for the approximation model are:

ẋi = −λixi +
1

m

n∑
j=1

xj(t)λj(1− xi ).
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Steady-state analysis for RANDOM

The mean field equation ẋi = −λixi +
1

m

n∑
j=1

xj(t)λj(1− xi ). has a unique

fixed point that satisfies:

πi =
z

z + λi
with z such that

n∑
i=1

(1− πi ) = m.

Same equations as Fagins (77).
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Extension to the RAND(m) model (G, Van Houdt SIGMETRICS 2015)

Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This approximation is of the form ẋ = xQ(x).
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The mean field approximation is very accurate

n = 1000 objects with Zipf popularities.
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A population model

Consider now that we have K types of items with N items per type.

The state of an item is the list in which it is {∅} ∪ {1, . . . , h}.
An item of type k is requested at rate λk .

We define Xk,i (t) has the fraction of type k items in list i .

The transitions are:

X 7→ X +
1

N
(−ek,i + ek,i+1 + e`,i − e`,i+1) at rate NλkXk,i

X`,i+1

mi+1
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This is an example of a density dependent population
process (Kurtz, 70s)

A population process is a sequence of CTMCs XN(t) indexed by the
population size N, with state space EN ⊂ E and transitions (for ` ∈ L):

X 7→ X +
`

N
at rate Nβ`(X ).

The Mean field approximation

The drift is f (x) =
∑
`

`β`(x) and the mean field

approximation is the solution of the ODE ẋ = f (x).
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Other examples of density dependent population processes
Load Balancing and JSQ(2)

Xi (t) =
1

N

N∑
n=1

1{Sn(t)≥i} = fraction of queues with queue length ≥ i .

Arrival: x 7→ x +
1

N
ei.

Departures: x 7→ x − 1

N
ei.

Pick two servers at random, what is the probability the least loaded has
i − 1 jobs?

x2
i−1 − x2

i when picked with replacement

xi−1
Nxi−1 − 1

N − 1
− xi

Nxi − 1

N − 1
when picked without replacement

Note: this becomes asymptotically the same as N goes to infinity.
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Transitions and Mean Field Approximation
State changes on x :

x 7→ x +
1

N
ei at rate Nρ(x2

i−1 − x2
i )

x 7→ x − 1

N
ei at rate N(xi − xi+1)

The mean field approximation is to consider the ODE associated with the
drift (average variation):

ẋi = ρ(x2
i−1 − x2

i )︸ ︷︷ ︸
Arrival

− (xi − xi+1)︸ ︷︷ ︸
Departure

There is a unique fixed point (which also is an attractor):

πi = ρ2i−1
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Outline

1 How to Construct a Mean Field Approximation (via an example)
Approach 1: Zoom on One Object and Independence
Approach 2: Density Dependent Population Processes
Approach 3: Discrete-Time Models

2 How Accurate is the Classical Mean Field Approximation
Transient Analysis
Steady-state Regime

3 We can Refine this Approximation
Main Results
Idea of the Proof: System Size Expansion

4 Conclusion and Open Questions
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Benäım-Le Boudec’s model (PEVA 2007)
Time is discrete.

Xi (k) = Proportion of object in state i at time step k

R(k) = State of the ”resource” at time k (discrete)

Assumptions:

Only O(1) objects change state at each time step and

f (x , r) =
1

N
E [X (k + 1)− X (k)|X (k) = x ,R(k) = r ] .

R evolves fast in a discrete state-space and:

P [R(k + 1) = j |X (k) = x ,R(k) = i ] = Pij(x).

For all x , P(x) is irreducible and has a unique stationary measure π(x , .).
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Mean Field Approximation

Examples with resource: CSMA protocols, Opportunistic networks.

ẋ =
∑
r

f (x , r)π(x , r),

where π(x , r) is the stationary measure of the resource given x .

The analysis of such models is done by considering stochastic
approximation algorithms. For example, without resource one has:

X (k + 1) = X (k) +
1

N
[f (X (k)) + M(k + 1)] ,

where M is some noise process.
This is a noisy Euler discretization of an ordinary differential equation.
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Take-home message on this part

Three ways to construct mean field
approximation:

Independence assumption ẋ = xQ(x).

Density dependent population process.

Discrete-time model with vanishing intensity.

In what follows, I will assume that X is a density dependent population
process (ex: SQ(d)). Analysis of other models are similar.
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Outline

1 How to Construct a Mean Field Approximation (via an example)
Approach 1: Zoom on One Object and Independence
Approach 2: Density Dependent Population Processes
Approach 3: Discrete-Time Models

2 How Accurate is the Classical Mean Field Approximation
Transient Analysis
Steady-state Regime

3 We can Refine this Approximation
Main Results
Idea of the Proof: System Size Expansion

4 Conclusion and Open Questions
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Convergence Result as N Goes to Infinity

Theorem (under technical conditions), for any density dependent
population process XN whose drift is Lipschitz-continuous, if XN(0)
converges to x0, then for any finite T :

sup
0≤t≤T

∥∥∥XN(t)− x(t)
∥∥∥→ 0.

where x(t) is the unique solution of the ODE ẋ = f (x).
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Illustration (cache model)
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Example. Fraction of popular
items in cache. m1 = N/4, m2 =
N/4, N/2 popular object (popu-
larity 4N/(5N), N/2 non-popular
objects (popularity N/(5N)).
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The fixed point method

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = xQ(x)

x∗Q(x∗) = 0
fixed points

N →∞

N →∞

t →∞if yes

then yes

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary
distribution πN concentrates on the fixed points

In that case, we also have:

lim
N→∞

P [S1 = i1 . . . Sk = ik ] = x∗1 . . . x
∗
k .
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ẋ = xQ(x)

x∗Q(x∗) = 0
fixed points

N →∞

N →∞

t →∞if yes

then yes

Theorem (Benaim Le Boudec 08)

If all trajectories of the ODE converges to the fixed points, the stationary
distribution πN concentrates on the fixed points

In that case, we also have:

lim
N→∞

P [S1 = i1 . . . Sk = ik ] = x∗1 . . . x
∗
k .

Nicolas Gast – 25 / 47



The fixed point method does not always work
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The fixed point methods does
not work for a = 0.1 It works for a = 0.3

Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang 2011)
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Fixed point method in practice

From the examples coming from queuing theory, many models have a
unique attractor.

This holds for classical load balancing policies such as SQ(d),
pull-push, JIQ,...

I Often comes from monotonicity

This holds in many cases in statistical physics
I Lyapunov methods (entropy, reversibility) (ex: G. 2016 for cache)

It does not always work
I Theoretical biology / chemistry
I Multi-stable models (ex: Kelly)
I Counter-examples for specific CSMA models (Cho, Le Boudec, Jiang

2011)
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For which system size N can mean-field be used?

Recall: XN
i (t) = fraction of objects in state i .

Theorem (Kurtz (1970s), Ying (2016)):

If the drift f is Lipschitz-continuous:

XN(t) ≈ x(t) +
1√
N
Gt

If in addition the ODE has a
unique attractor π:

E
[
XN(∞)− π

]
= O(1/

√
N)
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Example. Fraction of popular
items in cache. m1 = N/4, m2 =
N/4, N/2 popular object (popu-
larity 4, N/2 non-popular objects
(popularity 1).
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In practice, mean field works well even for “small” systems
How small?

Cache size (N/2) 10 100 1000 +∞
Proba popular∈cache 0.7604 0.7553 0.7548 0.7547

Error 0.0060 0.0006 <0.0001 –

Also works for load balancing policies (two-choice allocation):
N-servers 10 100 1000 +∞

Average queue length (mN) 3.81 3.39 3.36 3.35

Error (mN −m∞) 0.45 0.039 0.004 0

Xi = fraction of
objects in state i

xi = Proba(one ob-
ject is in i) = E [Xi ]

xi (mean-field
approx)

O(1/
√
N)

O(1/
√
N) (CLT) ?
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Expected values estimated by mean field are 1/N-accurate

Theorem (Kolokoltsov 2012, G. 2017, G. and Van Houdt 2018). If the
drift f is C 2 and has a unique exponentially stable attractor, then for any
t ∈ [0,∞) ∪ {∞},

there exists a (deterministic) vector V (t) such that:

E
[
XN(t)

]
= x(t) +

V (t)

N
+ O(1/N2)

V (t) can be easily computed numerically
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The refined mean field approximation...
... is defined as the classic mean field plus the 1/N correction term:

E
[
XN
]

= x(t) +
V (t)

N︸ ︷︷ ︸
refined mean field

+O(1/N2),

where V (t) is computed analytically.

To compute V (t), we need:

Derivative of the drifts:

F i
j (t) =

∂fi
∂xj

(x(t)) and F i
jk(t) =

∂2fi
∂xj∂xk

(x(t))

A variance term:

Q(t) =
∑
`

`⊗ `β`(X (t))
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Computational methods
Theorem (G, Van Houdt 2018, G. 2018) Given a density dependent
process with twice-differentiable drift. Let h : E → R be a
twice-differentiable function, then for t > 0:

E
[
XN(t)

]
= x(t) +

1

N
V (t) +

1

N2
A(t) + O(

1

N3
),

where

d

dt
V i =

∑
j

F i
j V

j +
∑
jk

F i
j ,kW

j ,k

d

dt
W j ,k = Q jk +

∑
m

F j
mW

m,k +
∑
m

W j ,mF k
m

Theorem (G, Van Houdt 2018) The previous theorem also holds for the
stationary regime (t = +∞) if the ODE has a unique exponentially stable
attractor.
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Numerical example: caching and RANDOM(m) policy

Cache size (N/2) 10 20 30 50 100 +∞
Simulation 0.7604 0.7575 0.7566 0.7559 0.7553 –
Refined mf 0.7607 0.7576 0.7567 0.7558 0.7553 0.7547

Average fraction of most popular items in cache.
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The SQ(2)

Arrival at each server ρ.

Sample another
queue.

Allocate to the
shortest of the two.

Service rate=1.

N = 10 N = 20 N = 50 N = 100

Mean Field 2.3527 2.3527 2.3527 2.3527
1/N-expansion 2.7513 2.5520 2.4324 2.3925

1/N2-expansion 2.8045 2.5653 2.4345 2.3930
Simulation 2.8003 2.5662 2.4350 2.3931

SQ(2): Steady-state average queue length (ρ = 0.9).
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How does the expected queue length evolve with time?

0 10 20 30 40 50 60 70 80
Time

2.4

2.5

2.6

2.7

2.8

Av
er

ag
e 

qu
eu

e 
le

ng
th

Mean Field Approximation
Simulation (N = 1000)

Remark about computation time :

10min/1h (simulation N = 1000/N = 10), C++ code. Requires many simulations,
confidence intervals,...

80ms (mean field), 700ms (1/N-expansion), 9s (1/N2-expansion), Python numpy
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Analysis of the computation time

For the numerical examples of SQ(2), I used a bounded queue size d .
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Does it always work?
Can I always exchange the limits N → ∞, k → ∞, t → ∞?

E [X (t)] = x(t) +
1

N
V (t) +

1

N2
A(t) + · · ·+ O(

1

Nk+1
)

NO:
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Time t
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X A
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simulation (N = 200)
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Outline

1 How to Construct a Mean Field Approximation (via an example)
Approach 1: Zoom on One Object and Independence
Approach 2: Density Dependent Population Processes
Approach 3: Discrete-Time Models

2 How Accurate is the Classical Mean Field Approximation
Transient Analysis
Steady-state Regime

3 We can Refine this Approximation
Main Results
Idea of the Proof: System Size Expansion

4 Conclusion and Open Questions
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Where does V /N come from? (SQ(2) example)
Transitions on Xi : +

1

N
at rate N(x2

i−1 − x2
i ) and − 1

N
at rate N(xi−xi+1).

Hence:

d

dt
E [Xi (t)] = E

[
X 2
i−1(t)− X 2

i (t)− (Xi (t)− Xi+1(t))
]

(exact)

= E
[
X 2
i−1(t)

]
− E

[
X 2
i (t)

]
− E [Xi (t)] + E [Xi+1(t)]

≈E [Xi−1(t)]2 − E [Xi (t)]2 − E [Xi (t)] + E [Xi+1(t)] (mean field approx.)

If we now consider how E
[
X 2
i

]
evolves, we have:

d

dt
E
[
X 2
i

]
= E

[
(2Xi +

1

N
)(X 2

i−1 − X 2
i ) + (−2Xi +

1

N
)(Xi − Xi+1)

]

= E

 2XiX
2
i−1︸ ︷︷ ︸

E[XiX
2
i−1≈?]

+ . . . . . . . . . . . .


where we denote X instead of X (t) for simplicity.
To close the equation: we assume that E

[
(Xi − xi )

2(Xi−1 − xi−1)
]
≈ 0.
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System Size Expansion Approach
Recall that the transitions are X 7→ X +

`

N
at rate Nβ`(x).

d

dt
E [X ] = E

[∑
`

β`(X )`

]
= E [f (X )] (Exact)

d

dt
x = f (x) (Mean Field Approx.)

We can now look at the second moment:

E [(X − x)⊗ (X − x)] = E [(f (X )− f (x))⊗ (X − x)] (Exact)

+ E [(X − x)⊗ (f (X )− f (x))]

+
1

N
E

[∑
`∈L

β`(X )`⊗ `

]
... We can also look at higher order moments

E
[
(X − x)⊗3

]
= 3SymE [(f (X )− f (x))⊗ (X − x)⊗ (X − x)]

+
3

N
SymE

[∑
`∈L

β`(X )`⊗ `⊗ (X − x)

]
+

1

N
E

[∑
`∈L

β`(X )`⊗ `⊗ `

]
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System Size Expansion and Moment Closure

Let x(t) be the mean field approximation and Y (t) = X (t)− x(t), and
Y (t)(k) = Y (t)⊗ · · · ⊗ Y (t)︸ ︷︷ ︸

k times

d

dt
E
[
Y (t)(k)

]
can be expressed as an exact

function of Y (t)(j) for j ∈ {0 . . . , k + 1}.

You can close the equations by assuming that Y (k) ≈ 0 for k ≥ K .

For K = 1, this gives the mean field approximation (1/N-accurate)

For K = 3, this gives the refined mean field (1/N2-accurate).

For K = 5, this gives a second order expansion (1/N3-accurate).

Limit: For a system of dimension d , Y (t)(k) has dk equations.
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Recap and extensions

For a mean field model with twice differentiable drift, then :

1 The accuracy of the classical mean field approximation is O(1/N).

2 We can use this to define a refined approximation.

3 The refined approximation is often accurate for N = 10.

Extensions:

Transient regime

Discrete-time (Synchronous)

Next expansion term in 1/N2.
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In many cases, the refined approximation is very accurate

“Truth” Refined mean field approximation Mean field approximation

E
[
XN
]

π +
V

N
π (=fixed point)

6

6Ref : G., Van Houdt, 2018
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Some open questions

Optimization (mean field games, reinforcement learning)

Non-exponential models (ex: general service time, TTL&LRU)

Heterogeneous models

Multi-timescale models
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