Asymptotic properties of bike-sharing systems

Nicolas Gast 1

SICSA workshop - Edinburgh, May 2016

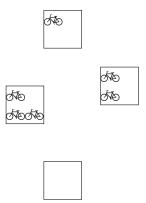
homogeneous Heterogeneous Control Conclusion and future work

Question: What is your experience of bike-sharing systems?

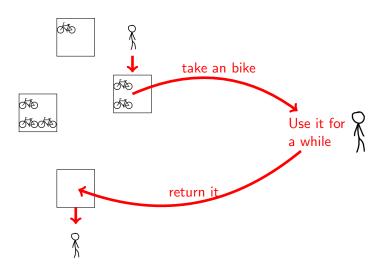
Question: What is your experience of bike-sharing systems?

▶ Problems : lack of resources.

Bike-sharing systems



Bike-sharing systems



homogeneous Heterogeneous Control Conclusion and future work 3/28

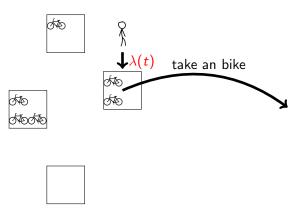
I will focus on large bike-sharing systems

Map of Velib' stations in Paris (France).

Example of Velib':

- ▶ 20 000 bikes
- ▶ 1 200 stations.

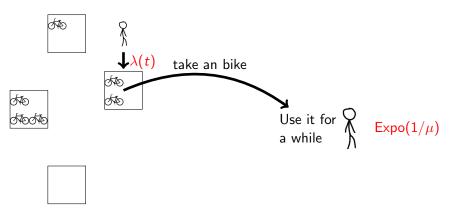
Goal: model the randomness of BSSs



Closed-queuing networks

Scaling : $N \to \infty$ stations, s bikes per station.

Goal: model the randomness of BSSs

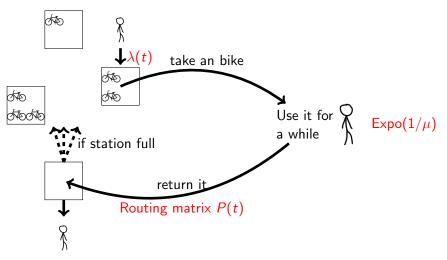


Closed-queuing networks

Scaling : $N \to \infty$ stations, *s* bikes per station.

5/28

Goal: model the randomness of BSSs



Closed-queuing networks

Scaling : $N \to \infty$ stations, s bikes per station.

5/28

A few questions...

- Are there some typical regimes?
- What is the optimal fleet sizes?
- What should be the station capacity?
- What is the impact of redistribution or incentives?

Is the performance monotone?

Main message

Theoretical results: When the system is large:

- ▶ if the stations have finite capacities, the performance is continuous in the fleet size.
- if the stations have infinite capacities, there are problems of concentration.

Practical considerations:

- ▶ Performance is poor, even for a symmetric city (but simple incentives like a two-choice rule can help a lot).
- Frustrating users can help :
 - It is better to have stations of finite capacities.
 - Frustrating some users can improve the overall usage.
 - We show that the optimal fleet size is not

homogeneous

Outline

Detailed study of the homogeneous case

Adding some heterogeneity

Improvement by frustrating some demand

Conclusion and future work

homogeneous

The homogeneous model

All stations are identical.

Motivation:

- Impact of random choices
- Close-form results
- "Best-case analysis"

"Theorem"

Asymptotically, stations are independent and behaves as a M/M/1/K.

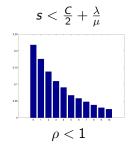
Distribution of x_i , the fraction of station with i bikes

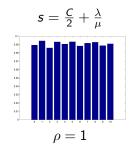
Theorem

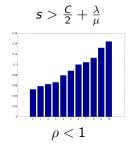
There exists ρ , such that in steady state, as N goes to infinity :

$$x_i \propto \rho^i$$
.

 $\rho \leq 1$ iff $s \leq \frac{C}{2} + \frac{\lambda}{\mu}$ where s be the average number of bikes per stations.

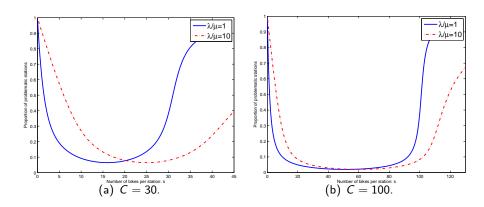






Consequences : optimal performance for $s \approx C/2$

y-axis : Prop. of problematic stations. x-axis : number of bikes/station s.



Fraction of problematic stations (=empty+full) minimal for $s=\lambda/\mu+C/2$

▶ Prop. of problematic stations is at least 2/(C+1) (6.5% for C=30)

11/28

homogeneous Heterogeneous Control Conclusion and future work

Improvement by dynamic pricing: "two choices" rule

- Users can observe the occupation of stations.
- ▶ Users choose the least loaded among 2 stations close to destination to return the bike (ex : force by pricing)

Improvement by dynamic pricing: "two choices" rule

- Users can observe the occupation of stations.
- ▶ Users choose the least loaded among 2 stations close to destination to return the bike (ex : force by pricing)

Paradigm known as "the power of two choices":

- Comes from balls and bills [Azar et al. 94]
- Drastic improvement of service time in server farm [Vvedenskaya 96, Mitzenmacher 96]

Question : what is the effect on bike-sharing systems? Characteristics :

- 1. Finite capacity of stations.
- 2. Strong geometry: choice among neighbors.

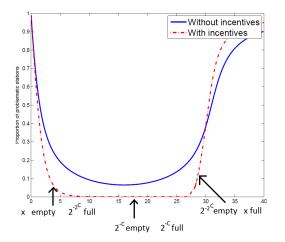
homogeneous Heterogeneous Control Conclusion and future work

12/28

Two choices – finite capacity but no geometry

With no geometry, we can solve in close-form.

Proof uses mean field argument.



Choosing two stations at random, decreases problems from 2/C to $2^{-C/2}$

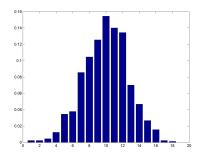
13/28

homogeneous Heterogeneous Control Conclusion and future work

Two choices – taking geometry into account is hard

Mean field do not apply (geometry) :(.

- ► Existing results for balls and bins (see [Kenthapadi et al. 06])
- ▶ Only numerical results exists for server farms (ex : [Mitzenmacher 96])



We rely on simulation

Occupancy of stations x-axis = occupation of station.

y-axis : proportion of stations.

Recall: with no incentives, the distribution would be uniform.

14/28

- ► Simulation indicate that 2D model is close to no-geometry
- ▶ Pair-approximation can be used but no close-form [Gast 2015]

Outline

Detailed study of the homogeneous case

Adding some heterogeneity

Improvement by frustrating some demand

Conclusion and future work

We assume that as N goes to infinity, the parameters (λ_i, p_i) of the station have a limiting distribution.

homogeneous Heterogeneous Control Conclusion and future work 16/28

We assume that as N goes to infinity, the parameters (λ_i, p_i) of the station have a limiting distribution.

"Theorem"

When the stations have finite capacities, a station behaves as a M/M/1/K.

Finite capacities regime

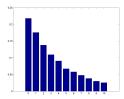
Theorem (Propagation of chaos-like result)

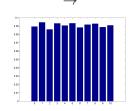
There exists a function $\rho(p)$ such that for all k, if stations $1, \ldots k$ have parameter $p_1, \ldots p_k$, then, as N goes to infinity :

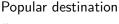
$$P(\#\{\text{bikes in stations j}\} = i_j \text{ for } j = 1..k) \propto \prod_{j=1}^k \rho(p_j)^{i_j}$$

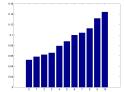
Depending on popularity, stations have different behaviors :

Popular start



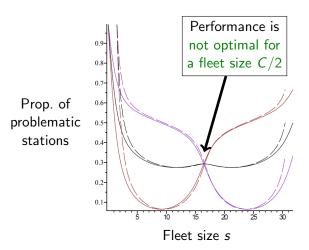






Finite-capacity: numerical example

Two types of stations : popular and non-popular for arrivals : $\lambda_1/\lambda_2=2$.



18/28

homogeneous Heterogeneous Control Conclusion and future work 19/28

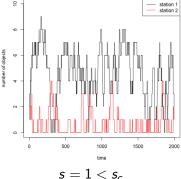
Infinite capacities can worsen the situation

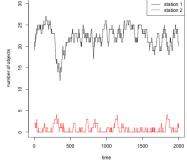
Theorem (Malyshev-Yakovlev 96)

When the stations have infinite capacity, then there exists s_c :

- if $s < s_c$, a station behaves as a M/M/1/K.
- if $s > s_c$, bikes will accumulate in a few stations.

Example with
$$\mu=1$$
, $p=(2,1,1,1,1,1,1,1,1)/10$:
$$\frac{-\frac{\mathsf{station}\,1}{\mathsf{station}\,2}}{} \approx \frac{1}{2}$$





 $s = 3 > s_c$

Outline

Detailed study of the homogeneous case

Adding some heterogeneity

Improvement by frustrating some demand

Conclusion and future work

homogeneous Heterogeneous Control Conclusion and future work 20/28

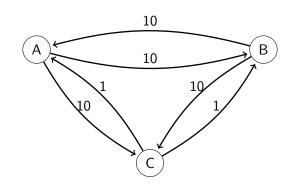
Having finite capacities prevent saturation of the demand. What if we could frustrate some demand?

Model : we have a trip demand $\Lambda_{ii}(t)$ and an accepted demand $\lambda_{ii}(t)$.

- Generous policy : $\lambda_{ij}(t) := \Lambda_{ij(t)}$
- ▶ Possible control $\lambda_{ii}(t) \leq \Lambda_{ii}(t)$

homogeneous Heterogeneous Control Conclusion and future work 21/28

Frustrating demand can improve the balance of bikes

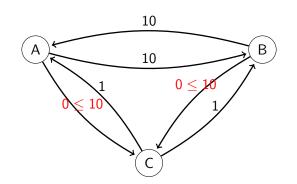


Users want to go to *C*. Almost nobody wants to go to A or B.

	Rate of trips (infinite capacities, infinite vehicles)	
Generous policy	pprox 6 trips $/$ time unit	Π
		Ī
		Ī

homogeneous Heterogeneous Control Conclusion and future work 22/28

Frustrating demand can improve the balance of bikes

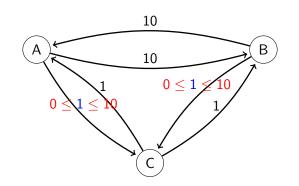


Users want to go to *C*. Almost nobody wants to go to A or B.

	Rate of trips (infinite capacities, infinite vehicles)
Generous policy	pprox 6 trips $/$ time unit
Frustrating policy	20 trips / time unit

homogeneous Heterogeneous Control Conclusion and future work 22/28

Frustrating demand can improve the balance of bikes



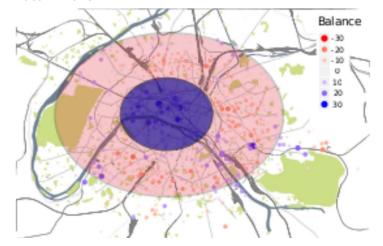
Users want to go to *C*. Almost nobody wants to go to A or B.

	Rate of trips (infinite capacities, infinite vehicles)	
Generous policy	pprox 6 trips $/$ time unit	
Frustrating policy	20 trips / time unit	
Optimal circulation	24 trips / time unit	

homogeneous Heterogeneous Control Conclusion and future work 22/28

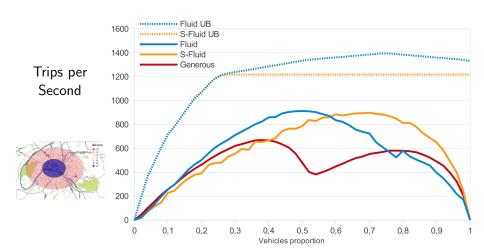
We can explore dynamic scenarios [Waserhole/Jost 2012]

Tides in Paris



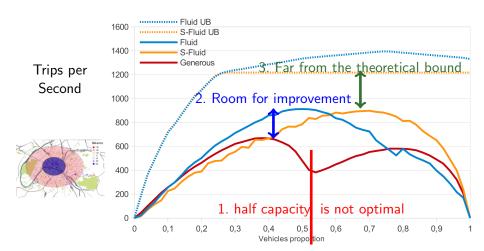
homogeneous Heterogeneous Control Conclusion and future work 23/28

Simulation results : Static time-varying frustration of user can improve the situation



homogeneous Heterogeneous Control Conclusion and future work 24/28

Simulation results : Static time-varying frustration of user can improve the situation



homogeneous Heterogeneous Control Conclusion and future work 24/28

Outline

Detailed study of the homogeneous case

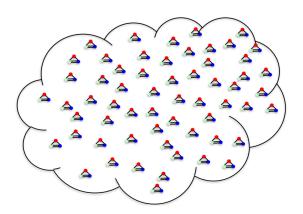
Adding some heterogeneity

Improvement by frustrating some demand

Conclusion and future work

homogeneous Heterogeneous Control Conclusion and future work 25/28

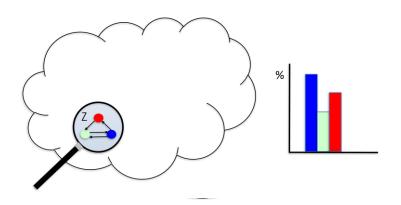
Methodological comments : the asymptotic method comes from statistical mechanics (mean-field approximation)



- Basic models are reversible.
 - Saddle-points methods can also be used.

homogeneous Heterogeneous Control Conclusion and future work 26/28

Methodological comments : the asymptotic method comes from statistical mechanics (mean-field approximation)



- Basic models are reversible.
 - Saddle-points methods can also be used.

Summary

Asymptotic results for a large class of bike-sharing network.

- ▶ Performance poor, even for symmetric : 1/C problematic stations.
- ▶ Simple incentives can help a lot : 2^{-C} .
- Frustrating some users improves overall usage.

Possible extensions of this model

- ▶ Optimal regulation rate : λ/C .
- Reservation : increases congestion.

homogeneous

Discussion

- ▶ Metrics are not easy to define.
- ▶ Visualization of traces and Influence of geometry?

homogeneous Heterogeneous Control Conclusion and future work 28/28

Discussion

- Metrics are not easy to define.
- Visualization of traces and Influence of geometry?

If an ideal symmetric system works poorly, do not expect perfect service in a real system;)

homogeneous Heterogeneous Control Conclusion and future work 28/28

References

- ▶ C Fricker, N Gast. *Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity*. EURO Journal on Transportation and Logistics. 2014.
- C Fricker, N Gast, H Mohamed. Mean field analysis for inhomogeneous bike sharing systems DMTCS Proceedings, 2012.
- ▶ V.A. Malyshev and A. V. Yakovlev. *Condensation in large closed Jackson networks*. Ann. Appl. Proba. 1996.
- ▶ A. Waserhole, V. Jost *Vehicle Sharing System Pricing Regulation : A Fluid Approximation.* 2012
- N. Gast. The Power of Two Choices on Graphs: the Pair-Approximation is Accurate. ACM Sigmetrics Perf. Eval Rev. 2015.
- ► Gast, N. and Massonnet, G. and Reijsbergen, D. and Tribastone, M. Probabilistic forecasts of bike-sharing systems for journey planning. ACM CIKM 2015