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Mean field control

action a

Controller

L 2

Population of N “agents”

P(-|xn, an)

The computational difficulty increases with NV but “N = o0” is easy.
@ How to use the N = oo solution for finite N7

o How efficient is this? (i.e., how fast does it become optimal?)
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This talk will focus on Markovian bandits

N statistically identical arms (=agents)
@ Discrete time, finite state space.
@ P(:|sp,an) and r(sp, an).

Maximize expected reward
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This talk will focus on Markovian bandits

N statistically identical arms (=agents)
@ Discrete time, finite state space.
@ P(:|sp,an) and r(sp, an).

Maximize expected reward

T N
1
Jim =37 (sn(t), an(0))
t=1 n=1
N
Resource constraint: vt : Z an(t) < M.
n=1

o If ay(t) € {0,1}: Markovian bandit (this talk)
o If a,(t) € {0,1}9: Weakly coupled MDP.

Nicolas Gast — 3 / 22



Example: Maintenance problems / resource allocation

Arm/agent can be:
@ Tasks (e.g., scheduling)
@ Machines (e.g., maintenance problems)
e Electric vehicles (e.g., charging)
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Outline

© The (relaxed) mean-field control problem

© Three types of policies
@ Index policies
e FTVA
@ Model predictive control

© Performance guarantees

@ Conclusion
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The mean-field control problem (Whittle's relaxation)

N N
Replace “For all t, Z an(t) < M" by in steady-state: ZE[an] < M"

n=1 n=1

= This is a constrained MDP and can be solved by an LP (Altman 99).
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The mean-field control problem (Whittle's relaxation)

N

N
Replace “For all t, Z an(t) < M" by in steady-state: ZE[an] <M

n=1

)

ZYS,l =M

s

n=1

Markov transitions
action taken

relaxed budget contraint

where x; = P [s, = s] and ys , = P [s, = 5,3, = a.
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How does a solution look like?
bandit_lp.BanditRandom(4, seed=1).relaxed_lp_average reward(alpha=M/N)

Example with N =10, M =4

Action 0 Action 1

2.32

0.28 1.68
y* =1 210
1.71
191

Note: 2.32 4 1.68 = M = 4.
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How does a solution look like?
bandit_lp.BanditRandom(4, seed=1).relaxed_lp_average reward(alpha=M/N)

Example with N =10, M =4

Action 0 Action 1

2.32 1
0.28 1.68 = | 0857

vy =1 210 ™= 0
1.71 0

1.91 0

Note: 2.32 4 1.68 = M = 4.
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Can | apply this to the original (non-relaxed) problem?

7" is optimal for the constrained MDP ) "E [A,] = M.
o (7*)V is not applicable to the origin;I problem.
On an example:
If S(t) =10,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4]
I (7)Y = sample Ay (t) ~ 7*(Sa(t)) (indep.)

A (t)=1[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 0]

N
Problem: here 8 = Zﬂn(t) # M =6.
n=1
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Historical perspective

and possible solutions

@ Whittle index (88) (Nino-Mora, 90s-2000s) / LP-index (Verloop 15)

» Works extremely well in practice
» Often asymptotically optimal (UGAP, Weber and Weiss 91).
» When they are: exponentially fast. (G, Gaujal, Yan 2023).

@ FTVA - Follow the virtual advice (Hong et al, 2023, 2024)

» Whittle index can fail (when UGAP fails)
» Asymptotically optimal in theory, not in practice.

© Model predictive control (G., Narasimha 2024, G, Gaujal, Yan 2023)

» Best of both worlds
» But computationally expensive.
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Outline

© Three types of policies
@ Index policies
e FTVA

@ Model predictive control
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1. Index policy: LP-index (and Whittle index)
Action 0 Action 1

530 1.216
0.28 1.68 L Pindex 0
v = | 210 — | =| —0.418
1.71 ~0.878
1‘91 _0.237

Index policy: priority to largest index: 0 > 1 >4 > 2 > 3.
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1. Index policy: LP-index (and Whittle index)
Action 0 Action 1

532 1.216
0.28 1.68 L Pindex 0
1.71 ~0.878
1.91 _0.237

Index policy: priority to largest index: 0 > 1 >4 > 2 > 3.

5(t) =10,0,0,0,0,1,1,1,2,2,2,3,3,3,4]
Agx(t) =[1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]

References: Whittle 88, Verloop 16, Yan et al. 22.
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Where does the LP-index comes from?

The N = oo is a constraint MDP:

@ P(:|sp,an) and r(sp, ap) s.t. in steady-state, P [a,] = a.
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Where does the LP-index comes from?

The N = oo is a constraint MDP:

@ P(:|sp,an) and r(sp, ap) s.t. in steady-state, P [a,] = a.
Idea: use a Lagrangian relaxation:

o P(:|sn,an) and r(sp,an) — X an.

Penalty for activation

Index of state s: Is = Q\(s,1) — Qi(s,0).
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2. FTVA (Follow the virtual advice, Hong et al. 2023)
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2. FTVA (Follow the virtual advice, Hong et al. 2023)

(S1(t)...Sn(1)) = Virtual 5(t) = S(t) + O(V/'N)
> ks

(AL(t) ... An(2)) = Virtual A(t)

> An(t) < M. > " A(t) < M+ O(VN).
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3. Model predictive control (aka “LP-update”)
At time t:

@ We solve a finite-time deterministic relaxation y[t]...y[T + t].

e We apply y[0].

0.24 1 —— Past trajectory
—== upper bound

Time
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3. Model predictive control (aka “LP-update”)

At time t:

@ We solve a finite-time deterministic relaxation y[t]...y[T + t].

e We apply y[0].

—— Past trajectory

—== upper bound
—#- Control
*
1
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3. Model predictive control (aka “LP-update”)

At time t:

@ We solve a finite-time deterministic relaxation y[t]...y[T + t].

e We apply y[0].

—— Past trajectory
—== upper bound
—# - Control

“Turnpike Iproperty”

Time
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Note: the finite-time deterministic relaxation is an LP.

VT( _TES( ersa}/sa

t=0 s,a
s.t. Z}@,a(t +1)= Zysva(t)P(s’\s, a) Markov transitions
Z}’s,l(t) =« relaxed budget contraint
1N
Za:ys,a(o) - N nz::l 1¢s,(6)=s) initial state
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Outline

© Performance guarantees
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Assumptions

We consider the following deterministic dynamical system:
o(x) =E[X(t+1) | X(t) =xA A ~ index],
and we call y* the solution of Vg, with x; = Zys*d,a'
a

We define the following conditions:

UGAP tlim xt+1 = ¢(x¢) converges to x* uniformly for all x.
—00

Local stability ¢ is locally stable around x*.

Degenerate ys1 =0 or yso = 0 for all s.
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Theoretical guarantees

Theorem (Weber-Weiss, G,G,Y23)

Under UGAP and non-degenerate: Vipgex > Viel — )

Theorem (Hong et al. 23)
If P is ergodic, then: Virya > Vyer — O(1/V'N).

Theorem (G,N 24)
Q If P is ergodic: Viypc > Vyer — O(1/V/'N).

© Under non-degenerate and local stability: Viypc > Vi — o D)
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[[lustration

The random example.
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UGAP + non-degenerate.
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[[lustration

Example from Yan 2023.
The random example.
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UGAP is not always satisfied
Example from Yan 2023 (3D example)

n rn
+  LP-priority + FTVA

® Fixed point ® Fixed point

(a) Index

n
+  LP-update
@ Fixed point
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Outline

@ Conclusion
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Conclusion
For Markovian bandits, mean-field control can be solved by an LP.

@ Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.
@ When they are, they become optimal exponentially fast.
@ This talk: comparison of various approaches.
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Conclusion
For Markovian bandits, mean-field control can be solved by an LP.

@ Can be generalized to weakly coupled MDPs.

Simple policies (priority rule) are not always optimal.
@ When they are, they become optimal exponentially fast.
@ This talk: comparison of various approaches.

@ Open questions: learning, continuous state-spaces.

http://polaris.imag.fr/nicolas.gast/

@ L P-based policies for restless bandits: necessary and sufficient conditions for (exponentially fast) asymptotic optimality.
G. Gaujal Yan. MMOR 2023. https://arxiv.org/abs/2106.10067

@ Restless Bandits with Average Reward: Breaking the Uniform Global Attractor Assumption. Hong, Xie, Chen, and
Wang. NeurlPS 2023.

@ Model Predictive Control is Almost Optimal for Restless Bandit. G, Narasimha. 2024. Under review.
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