
Reinforcement learning and bandits
Exploration-Exploitation Tradeoffs

Nicolas Gast

Inria

Séminaire LIG – Ens de Rennes, janvier 2022

Nicolas Gast – 1 / 26

The exploration-exploitation dilemma

Nicolas Gast – 2 / 26

Example: AB-testing

Nicolas Gast – 3 / 26

Example: move exploration in games

Nicolas Gast – 4 / 26

How to decide when and what to explore?

We need models

To think of the tradeoff.
To design new algorithms.

Nicolas Gast – 5 / 26

Outline

1 Stochastic bandits and regret
Definition of regret
The UCB algorithm

2 Monte-Carlo Tree Search
Min-max and alpha-beta pruning
MCTS and exploration

3 Conclusion

Nicolas Gast – 6 / 26

Outline

1 Stochastic bandits and regret
Definition of regret
The UCB algorithm

2 Monte-Carlo Tree Search
Min-max and alpha-beta pruning
MCTS and exploration

3 Conclusion

Nicolas Gast – 7 / 26

The Bernoulli multi-armed bandit

At each time step, you make a choice At ∈ {1 . . . n}.

µ1 µ2 µ3 . . . µn

Get Rt,2

The average reward of a is E [Rt,a] = µa but you do not know the µas.

Assumption: The rewards are independent and Bernoulli.

This is called stochastic Bernoulli bandit.

Nicolas Gast – 8 / 26

The Bernoulli multi-armed bandit

At each time step, you make a choice At ∈ {1 . . . n}.

µ1 µ2 µ3 . . . µn

Get Rt,2

The average reward of a is E [Rt,a] = µa but you do not know the µas.

Assumption: The rewards are independent and Bernoulli.

This is called stochastic Bernoulli bandit.

Nicolas Gast – 8 / 26

Motivation

Maximize clicks, e.g., the choice of a title of a news article :
Title Click proba.

"Murder victim found in adult entertainment venue" µ1
"Headless Body found in Topless Bar" µ2

I Choose which title to display. Observe (click or no click).

This is close to A-B testing.

Clinical trial
µ1 µ2 µ3 µ4

I Choose treatment At for patient t. Observe healed / not healed.

Nicolas Gast – 9 / 26

Motivation

Maximize clicks, e.g., the choice of a title of a news article :
Title Click proba.

"Murder victim found in adult entertainment venue" µ1
"Headless Body found in Topless Bar" µ2

I Choose which title to display. Observe (click or no click).

This is close to A-B testing.

Clinical trial
µ1 µ2 µ3 µ4

I Choose treatment At for patient t. Observe healed / not healed.

Nicolas Gast – 9 / 26

Our metric is the regret

If you know the values of µas, you should pick argmaxa µa.

We define the regret of a sequence of action A = (A1,A2 . . .) as

Regret(A,T) = (T max
a
µa)︸ ︷︷ ︸

reward of an oracle

−E

[
T∑
t=1

Rt,At

]
︸ ︷︷ ︸

your reward

.

Goal : design strategies that have a small regret (regardless of µ).

Nicolas Gast – 10 / 26

Our metric is the regret

If you know the values of µas, you should pick argmaxa µa.

We define the regret of a sequence of action A = (A1,A2 . . .) as

Regret(A,T) = (T max
a
µa)︸ ︷︷ ︸

reward of an oracle

−E

[
T∑
t=1

Rt,At

]
︸ ︷︷ ︸

your reward

.

Goal : design strategies that have a small regret (regardless of µ).

Nicolas Gast – 10 / 26

Some ideas of policies

Random – Draw each arm with probability 1/n.
I Exploration

Greedy: Always choose the empirical best arm:

At+1 = argmax
a∈{1...n}

µ̂a(t)

I Exploitation

ε-greedy : apply “greedy” with probability 1− ε and “random”
otherwise (each with probability ε/n)

I Exploration and exploitation.

Nicolas Gast – 11 / 26

Some ideas of policies

Random – Draw each arm with probability 1/n.
I Exploration

Greedy: Always choose the empirical best arm:

At+1 = argmax
a∈{1...n}

µ̂a(t)

I Exploitation

ε-greedy : apply “greedy” with probability 1− ε and “random”
otherwise (each with probability ε/n)

I Exploration and exploitation.

Nicolas Gast – 11 / 26

Some ideas of policies

Random – Draw each arm with probability 1/n.
I Exploration

Greedy: Always choose the empirical best arm:

At+1 = argmax
a∈{1...n}

µ̂a(t)

I Exploitation

ε-greedy : apply “greedy” with probability 1− ε and “random”
otherwise (each with probability ε/n)

I Exploration and exploitation.

Nicolas Gast – 11 / 26

Some ideas of policies

Random – Draw each arm with probability 1/n.
I Exploration

Greedy: Always choose the empirical best arm:

At+1 = argmax
a∈{1...n}

µ̂a(t)

I Exploitation

ε-greedy : apply “greedy” with probability 1− ε and “random”
otherwise (each with probability ε/n)

I Exploration and exploitation.

Nicolas Gast – 11 / 26

ε-greedy : Smaller or larger ε are not necessarily better

Regret(ε-greedy,T) = T (
n∑

a=1

(µ∗ − µa))
ε

n
+ o(T) if ε > 0.

0 200 400 600 800 1000

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

= 0
= 0.01
= 0.1
= 0.5

Average reward as a function of time.
5 Bernoulli arms with success probabilities µ = [0.5, 0.3, 0.6, 0.4, 0.2].

Nicolas Gast – 12 / 26

Asymptotically optimal regret

ε-greedy policies have O(T) regret (this is called linear regret).

Can we do better?

Theorem (Lai and Robbins, 1985. (Asymptotically Efficient Adaptive Allocation Rules))
There exists a constant c (that depends on µ) such that any uniformly
efficient1 strategy satisfies :

Regret(A,T) ≥ c logT

1Meaning Regret(I,T) = o(Tα) for all µ and α.
Nicolas Gast – 13 / 26

Asymptotically optimal regret

ε-greedy policies have O(T) regret (this is called linear regret).

Can we do better?

Theorem (Lai and Robbins, 1985. (Asymptotically Efficient Adaptive Allocation Rules))
There exists a constant c (that depends on µ) such that any uniformly
efficient1 strategy satisfies :

Regret(A,T) ≥ c logT

1Meaning Regret(I,T) = o(Tα) for all µ and α.
Nicolas Gast – 13 / 26

UCB builds on Confidence Intervals

Consider a coin that gives “Head” with probability µ. Suppose that you
draw a coin N times and observe K times “head”. The natural estimator of
µ is:

µ̂ =
K

N

Hoeffding inequality gives us

P

µ̂−
√

α

2N
≤ µ︸︷︷︸

real µ

≤ µ̂+

√
α

2N
)︸ ︷︷ ︸

upper confidence bound

 ≥ 1− 2e−α.

The idea of UCB is to use the above bound with a growing α.

Nicolas Gast – 14 / 26

UCB builds on Confidence Intervals

Consider a coin that gives “Head” with probability µ. Suppose that you
draw a coin N times and observe K times “head”. The natural estimator of
µ is:

µ̂ =
K

N

Hoeffding inequality gives us

P

µ̂−
√

α

2N
≤ µ︸︷︷︸

real µ

≤ µ̂+

√
α

2N
)︸ ︷︷ ︸

upper confidence bound

 ≥ 1− 2e−α.

The idea of UCB is to use the above bound with a growing α.

Nicolas Gast – 14 / 26

The UCB algorithm
UCB computes a confidence bound UCBa(t) such that µa(t) ≤ UCBa(t)
with high probability. Example : UCB1 [Auer et al. 02] uses

UCBa(t) = µ̂a(t) +

√
α log t

2Na(t)
.

Choose At+1 ∈ argmaxa∈{1...n} UCBa(t) (optimism principle).

0.5 0.3 0.6 0.4 0.2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

 2 / 5 6 / 9 6 / 9 1 / 4 0 / 3

Nicolas Gast – 15 / 26

UCB has logarithmic regret

Theorem. Regret(UCB) ≤ c log(T).

UCB is an OFU algorithm: Optimism in the Face of Uncertainty.

Idea of optimism. Let µ̃a = µ̂t,a + bonust,a. Note that µ̃At = maxa µ̃a.

Regret =
∑
t

max
a
µa − µAt

=
∑
t

max
a
µa −max

a
µ̃a︸ ︷︷ ︸

Optimism

≤ 0 if bonus large.

+ µ̃At − µAt︸ ︷︷ ︸
Concentration.

small if bonus small.

Nicolas Gast – 16 / 26

UCB has logarithmic regret

Theorem. Regret(UCB) ≤ c log(T).

UCB is an OFU algorithm: Optimism in the Face of Uncertainty.

Idea of optimism. Let µ̃a = µ̂t,a + bonust,a. Note that µ̃At = maxa µ̃a.

Regret =
∑
t

max
a
µa − µAt

=
∑
t

max
a
µa −max

a
µ̃a︸ ︷︷ ︸

Optimism

≤ 0 if bonus large.

+ µ̃At − µAt︸ ︷︷ ︸
Concentration.

small if bonus small.

Nicolas Gast – 16 / 26

UCB has logarithmic regret

Theorem. Regret(UCB) ≤ c log(T).

UCB is an OFU algorithm: Optimism in the Face of Uncertainty.

Idea of optimism. Let µ̃a = µ̂t,a + bonust,a. Note that µ̃At = maxa µ̃a.

Regret =
∑
t

max
a
µa − µAt

=
∑
t

max
a
µa −max

a
µ̃a︸ ︷︷ ︸

Optimism

≤ 0 if bonus large.

+ µ̃At − µAt︸ ︷︷ ︸
Concentration.

small if bonus small.

Nicolas Gast – 16 / 26

More on bandits

Bayesian approach (Thompson sampling 1933,
analyzed in Kauffman et al 2012)

What about MDPs?
I UCRL2, UCBVI,...

Adversarial aspects, games

Nicolas Gast – 17 / 26

Outline

1 Stochastic bandits and regret
Definition of regret
The UCB algorithm

2 Monte-Carlo Tree Search
Min-max and alpha-beta pruning
MCTS and exploration

3 Conclusion

Nicolas Gast – 18 / 26

Tree search

For turn-based two players zero sum games

From a given position, takes the
best decision.

Generate a tree of
possibilities.
Explore this tree.

What if the tree is too big?

Nicolas Gast – 19 / 26

You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

min (opponent)

If the tree is too big, you stop at depth D and use a heuristic.
You can backtrack with the min-max algorithm.
For optimization, you can use alpha-beta pruning.

Nicolas Gast – 20 / 26

You can construct the tree of possibilities

1 4 5 7 2 3 9 5

max (you)

min (opponent)

max (you)

heuristic

If the tree is too big, you stop at depth D and use a heuristic.
You can backtrack with the min-max algorithm.

For optimization, you can use alpha-beta pruning.

Nicolas Gast – 20 / 26

You can construct the tree of possibilities

4

1 4

7

5 7

3

2 3

9

9 5

max (you)

min (opponent)

max (you)

heuristic

If the tree is too big, you stop at depth D and use a heuristic.
You can backtrack with the min-max algorithm.

For optimization, you can use alpha-beta pruning.

Nicolas Gast – 20 / 26

You can construct the tree of possibilities
4

4

4

1 4

7

5 7

3

3

2 3

9

9 5

max (you)

min (opponent)

max (you)

heuristic

If the tree is too big, you stop at depth D and use a heuristic.
You can backtrack with the min-max algorithm.

For optimization, you can use alpha-beta pruning.

Nicolas Gast – 20 / 26

You can construct the tree of possibilities
4

4

4

1 4

≥5

5

≤3

3

2 3

max (you)

min (opponent)

max (you)

heuristic

If the tree is too big, you stop at depth D and use a heuristic.
You can backtrack with the min-max algorithm.
For optimization, you can use alpha-beta pruning.

Nicolas Gast – 20 / 26

Min-max and alpha-beta perform well (ex: Chess). . .
. . . but can be limited (ex: go)

Tree can still be very big (AD)

You need a good heuristic.
I Result is only available at the end

You might want to avoid the exploration
of not promising parts.

I For that you need a good heuristic.

Nicolas Gast – 21 / 26

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Simulate many games and compute how many were won.
Explore carefully which actions were best.

test

Nicolas Gast – 22 / 26

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

For each child, let S(c) be the number of success and N(c) be the number
of time you played c , and t =

∑
c ′ N(c ′).

Explore argmaxc
S(c)
N(c) + 2

√
log t
N(c) .

Open question: no guarantee with
√
log t/N(c). Is

√
t/N(c) better?

test

Nicolas Gast – 22 / 26

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Create one or multiple children of the leaf.

Nicolas Gast – 22 / 26

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Obtain a value of the node (e.g. rollout)

Nicolas Gast – 22 / 26

MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Rollout policy
(ex: random)

Backpropagate to the root

Nicolas Gast – 22 / 26

MCTS algorithm

MCTS
1: while Some time is left do
2: Select a leaf node #UCB-like
3: Expand a leaf
4: Use rollout (or equivalent) to estimate the leaf #random sampling
5: Backpropagate to the root
6: end while
7: Return argmaxc∈children(root) N(c) #or S(c)/N(c).

Nicolas Gast – 23 / 26

Outline

1 Stochastic bandits and regret
Definition of regret
The UCB algorithm

2 Monte-Carlo Tree Search
Min-max and alpha-beta pruning
MCTS and exploration

3 Conclusion

Nicolas Gast – 24 / 26

Exploration v.s. exploitation is central in RL

Bandits and regret help formalizing this idea.

One important notion is the use of optimism to
force exploration.

I Bayesian sampling can also be used

Theoretical tools guide practical
implementations.

In our team (POLARIS) Design of experiments (choice of
hyper-parameters); Markovian bandits: learning and optimization;
Stochastic games; Routing algorithms.

Nicolas Gast – 25 / 26

To avoid missing good opportunities, retry bad experiences
(but not too much)

http://polaris.imag.fr/nicolas.gast/ – nicolas.gast@inria.fr

Questions?
Nicolas Gast – 26 / 26

http://polaris.imag.fr/nicolas.gast/
nicolas.gast@inria.fr

	Stochastic bandits and regret
	Definition of regret
	The UCB algorithm

	Monte-Carlo Tree Search
	Min-max and alpha-beta pruning
	MCTS and exploration

	Conclusion

