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The exploration-exploitation dilemma
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Example: AB-testing
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Example: move exploration in games

+0: Google DeepMind
Challenge Match

00:34:31)*
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How to decide when and what to explore?

We need models

@ To think of the tradeoff.

@ To design new algorithms.
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@ Stochastic bandits and regret
@ Definition of regret
@ The UCB algorithm

© Monte-Carlo Tree Search
@ Min-max and alpha-beta pruning
e MCTS and exploration

© Conclusion
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The Bernoulli multi-armed bandit

At each time step, you make a choice A; € {1...n}.

111 @ ps - fin

Get Rf,2

\

The average reward of ais E [R; ;] = 11, but you do not know the fi,s.

Nicolas Gast — 8 / 26



The Bernoulli multi-armed bandit

At each time step, you make a choice A; € {1...n}.

111 @ ps - fin

Get Rt,2

\

The average reward of ais E [R; ;] = 11, but you do not know the fi,s.

Assumption: The rewards are independent and Bernoulli. J

This is called stochastic Bernoulli bandit.
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Motivation

@ Maximize clicks, e.g., the choice of a title of a news article :

Title Click proba.
"Murder victim found in adult entertainment venue" i1
"Headless Body found in Topless Bar" 142

» Choose which title to display. Observe (click or no click).

This is close to A-B testing.
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Motivation

e Maximize clicks, e.g., the choice of a title of a news article :

Title Click proba.
"Murder victim found in adult entertainment venue" i1
"Headless Body found in Topless Bar" 142

» Choose which title to display. Observe (click or no click).
This is close to A-B testing.

@ Clinical trial
H1

» Choose treatment A; for patient t. Observe healed / not healed.
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Our metric is the regret

If you know the values of 1,s, you should pick arg max, j,.
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Our metric is the regret

If you know the values of 1,s, you should pick arg max, j,.

We define the regret of a sequence of action A = (A1, A>...) as

.
E Re A,
=1

your reward

Regret(A, T) = (T maxp,) —E
—_——

reward of an oracle

@ Goal : design strategies that have a small regret (regardless of ).
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Some ideas of policies

e Random — Draw each arm with probability 1/n.
» Exploration
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» Exploration

@ Greedy: Always choose the empirical best arm:

Acss = argmax fia(t)
ac{l..n}

» Exploitation
o c-greedy : apply “greedy” with probability 1 — ¢ and “random”

otherwise (each with probability £/n)
» Exploration and exploitation.

Nicolas Gast — 11 / 26



Some ideas of policies

e Random — Draw each arm with probability 1/n.
» Exploration

@ Greedy: Always choose the empirical best arm:

Acss = argmax fia(t)
ac{l..n}

» Exploitation
o c-greedy : apply “greedy” with probability 1 — ¢ and “random”

otherwise (each with probability £/n)
» Exploration and exploitation.

Nicolas Gast — 11 / 26



e-greedy : Smaller or larger € are not necessarily better

n

Regret(e-greedy, T) = T(Z(,u* - ua))% +o(T)ife>0.

a=1
0.575 A
0.550 A
0.525 A
0.500 A
0.475 A
0.450 A
— £=0
0.425 A — €=0.01
— £=0.1
0.400 A =05
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Asymptotically optimal regret

e-greedy policies have O(T) regret (this is called linear regret).

Can we do better? )

"Meaning Regret(Z, T) = o(T®) for all 1z and a.
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Asymptotically optimal regret

e-greedy policies have O(T) regret (this is called linear regret).

Can we do better? )

TheOI’em (Lal and RObenS, 1985 (Asymptotically Efficient Adaptive Allocation Rules))

There exists a constant c (that depends on (1) such that any uniformly
efficient! strategy satisfies :

Regret(A, T) > clog T

"Meaning Regret(Z, T) = o(T*) for all x and a.
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UCB builds on Confidence Intervals

Consider a coin that gives “Head” with probability .. Suppose that you
draw a coin N times and observe K times “head”. The natural estimator of
L is:

=
Il
=[x
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UCB builds on Confidence Intervals

Consider a coin that gives “Head” with probability .. Suppose that you
draw a coin N times and observe K times “head”. The natural estimator of
L is:

=
Il
=[x

Hoeffding inequality gives us

[0 [0
Pla— /X< 4 < ptq 2 > 1 e,
P=y\an S = tyon) = 1—ze

real p —
upper confidence bound

The idea of UCB is to use the above bound with a growing a.
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The UCB algorithm

UCB computes a confidence bound UCB,(t) such that p,(t) < UCB,(t)
with high probability. Example : UCB1 [Auer et al. 02] uses

UCB,(t) = jia(t) + /;\'I‘:it).

o Choose A¢i1 € argmax,c(1.. ,y UCB,(t) (optimism principle).

2.00
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UCB has logarithmic regret

Theorem. Regret(UCB) < clog(T). J

UCB is an OFU algorithm: Optimism in the Face of Uncertainty.
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UCB has logarithmic regret

Theorem. Regret(UCB) < clog(T). J

UCB is an OFU algorithm: Optimism in the Face of Uncertainty.
Idea of optimism. Let fi, = fit,» + bonus; 5. Note that jia, = max, fia.

Regret = Z Max fia — [1A;
t

=> max i — maxfia +  fia. — pia,
t

Concentration.

Optimism

< 0 if bonus large. small if bonus small.
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More on bandits

@ Bayesian approach (Thompson sampling 1933, Bandit
analyzed in Kauffman et al 2012) Algorithms
CoABA SZEPESVAR

@ What about MDPs?

» UCRL2, UCBVI,... /

@ Adversarial aspects, games
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Outline

© Monte-Carlo Tree Search
@ Min-max and alpha-beta pruning
e MCTS and exploration
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Tree search

For turn-based two players zero sum games

From a given position, takes the
best decision.

o Generate a tree of
possibilities.

@ Explore this tree. - §65: Google DeepMind

Challenge Match

What if the tree is too big?
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You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

' min (opponent)
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You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

OO DO OO ®
7\ AN 7\ A\ AN 7\ A\ AN

If the tree is too big, you stop at depth D and use a heuristic.
@ You can backtrack with the min-max algorithm.
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You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

OO0OODOOO® O
7\ AN 7\ A\ AN 7\ A\ AN

If the tree is too big, you stop at depth D and use a heuristic.
@ You can backtrack with the min-max algorithm.

@ For optimization, you can use alpha-beta pruning.
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Min-max and alpha-beta perform well (ex: Chess). ..
... but can be limited (ex: go)

@ Tree can still be very big (AP)

@ You need a good heuristic.
» Result is only available at the end

@ You might want to avoid the exploration
of not promising parts.

» For that you need a good heuristic.
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

OOEFE O
@
¢

ol

@ Simulate many games and compute how many were won.
@ Explore carefully which actions were best.
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Sele ction

For each child, let S(c) be the number of success and N(c) be the number
of time you played ¢, and t =" _, N(c').

@ Explore arg max, N((‘é)) 192 Io(gct)

Open question: no guarantee with \/log t/N(c). Is v/t/N(c) better?
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MCTS (Monte Carlo Tree Search) uses simulation to

conduct the tree search

Selection Expansion

o
™  ©E

\

@ Create one or multiple children of the leaf.
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MCTS (Monte Carlo Tree Search) uses simulation to

conduct the tree search

Selection Expansion Simulation

& P2
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Rollout policy
(ex: random)

@ Obtain a value of the node (e.g. rollout)
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MCTS (Monte Carlo Tree Search) uses simulation to
conduct the tree search

Selection Expansion Simulation

OFeD 00D ORFO®
@ ®® <-
@

Rollout policy
(ex: random)

@ Backpropagate to the root
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MCTS algorithm

MCTS
1: while Some time is left do
2:  Select a leaf node #UCB-like
3:  Expand a leaf
4:  Use rollout (or equivalent) to estimate the leaf  #random sampling
5 Backpropagate to the root
6: end while
7: Return arg MaXcechildren(root) N(C) #or S(C)/N(C)

v
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Outline

© Conclusion
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Exploration v.s. exploitation is central in RL

e Bandits and regret help formalizing this idea.
Bandit

_ o o Algorithms
@ One important notion is the use of optimism to 1o Larnmose

. CSABA SZEPESVARI
force exploration.
» Bayesian sampling can also be used

@ Theoretical tools guide practical /\/\_f

implementations.

In our team (POLARIS) Design of experiments (choice of
hyper-parameters); Markovian bandits: learning and optimization;
Stochastic games; Routing algorithms.
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To avoid missing good opportunities, retry bad experiences
(but not too much)

http://polaris.imag.fr/nicolas.gast/ — nicolas.gast@inria.fr

Questions?
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