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The objective of my work is to provide tools to:

Describe distributed systems;

Optimize their behavior.

Good system design needs performance evaluation.

Tools:

Stochastic modeling, Markov Chains.

Dynamical systems.

Optimization, optimal control.
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Example 1: Networking and Congestion Control

wifi?

4G?

1
“MPTCP is not pareto-optimal: performance issues and a possible solution”. (CoNext 2012 (best paper), ToN 2013) by

Khalili, Gast, Popovic, and Le Boudec.
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Example 2: Load balancing

N servers

Which allocation policy?

Random;

Round-robin;

JSQ;

JSQ(d);

JIQ;

. . .

2
A mean field model of work stealing in large-scale systems (Sigmetrics 2010) by Gast and Gaujal, A refined mean field

approximation (Sigmetrics 2018 (best paper)) by Gast and Van Houdt
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This leads us to study markovian models of interacting
agents.

Problem: state space explosion.
S states per object, N objects ⇒ SN states.
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In my work, I develop and use models that scale.

Today, I will mostly focus on mean field approximation.

N = 10? N = 100 N = 1000?

0 2 4
Time

0.0

0.1

0.2

0.3 N = 100

0 2 4
Time

0.0

0.1

0.2

0.3 ODE (N = )

N servers
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Overview of my contributions

Zoom 1

Zoom 2

Basics

Applications to
Distributed Systems

CS

Load
Balancing

Cache Re-
placement
Algorithms

Networking

Bike Sharing

Smart Grid
Optimization

Mean Field
Approximation

Accuracy
and refined
mean field

Non uniform

Spatial
aspects

Discontinuous
/ uncertain

Games &
optimal
control

•MP-TCP
•Power control
•PLC-G3

•RAND(m)
•LRU(m), q-LRU

•Planning
•Forecasting
•Optimization

•Markets
•Learning and

optimization

•Work stealing
• Job allocation
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Idea of mean field approximation

Each individual interacts with the mass while
having a negligible effect on the mass.

X(t)

Mean field theory (Statistical mechanics, 1800s-1900s)

Theoretical biology

Computer modeling (ex: Baccelli 92, Vvedenskaya 96)

Mean field games (Lasry-Lions 2007)
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Example: The supermarket model (SQ(2))

Randomly choose two, select one.

N identical queues.

Arrival rate Nλ;

Service rate µ.

State = queue sizes.

Q(t) = (1, 1, 2, 3).

If all queues are identical, we can simplify: X = (X1,X2, . . . )

Xi (t) = fraction of queues with queue length ≥ i .

Above: X (t) = (1, .5, .25, 0, 0, 0, . . . ).
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SQ(2): Transitions and Mean Field Approximation.

The fractions of queue with i jobs or more changes when:

A job arrives: Xi 7→ Xi +
1

N
(at rate Nλ(X 2

i−1 − X 2
i ))

A job departs: Xi 7→ Xi −
1

N
(at rate Nµ(Xi − Xi+1)).

The mean field approximation is to consider the ODE associated with the
drift (average variation):

ẋi = λ(x2
i−1 − x2

i )︸ ︷︷ ︸
Arrival

−µ(xi − xi+1)︸ ︷︷ ︸
Departure

This is a density dependent population process.

x 7→ x +
1

N
` Rate Nr(`, x)

Drift f (x) =
∑
`

`r(`, x).
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Mean field is asymptotically exact

N = 10 N = 100 N = 1000 N =∞
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0.0
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0.2
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Time

0.0

0.1

0.2

0.3 ODE (N = )

The stochastic approximation approach:

X
(
t +

1

N

)
= X (t) +

1

N

(
f (X (t)) + noise

)
.
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A few contributions

Mean field approximation is exact as N →∞. We extended this
methodology to . . .

. . . study discontinuous or imprecise systems;
I Differential inclusions [PEVA 2012, DSN 2016]
I Numerical algorithms. [QEST 2019]

. . . simplify optimal control problems.
I Discrete time [DEDS 2011]
I Continuous time [TAC 2012]
I Mean field game [JDG 2019]

Key question

How large should N be?
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Mean field approximation is a law of large number
Theorem (Kurtz 1970s. . . Ying 2016) For homogeneous and regular models

E [‖X (t)− x(t)‖] = O(1/
√
N)

where x is the solution of the ODE ẋ = f (x) and f is the drift.
(Valid for t > 0 and t = +∞ if exponentially stable attractor.)

0 1 2 3 4 5
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ODE (N = )
N=10
N=100
N=1000
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In practice, mean field works well even for “small” systems
Why?

N 10 100 1000 +∞
Average queue length for SQ(2) 3.81 3.39 3.36 3.35

Error 0.45 0.039 0.004 0

E [‖X − x‖] = Θ(1/
√
N)

� ‖E [X ]− x‖ = Θ(1/N)

0 1 2 3 4 5
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ODE (N = )
N=10
N=100
N=1000

Often, what matters for
performance is the bias E [X ]− x .
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Expected values estimated by mean field are 1/N-accurate

Theorem (Kolokoltsov 2012, G. 2017, G. and Van Houdt 2018). For a
density dependent population process X , i f the drift f is twice
differentiable, then for any t > 0:

1 There exists a (deterministic) vector V (t) such that:

E [X (t)] = x(t) +
V (t)

N︸ ︷︷ ︸
refined mean field

+O(1/N2)

2 V (t) can be easily computed numerically

If it has a unique exponentially stable attractor, this is true for t =∞.
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Refined mean field is designed to study finite system

N = 10 N = 100 N = 1000 N =∞

0 2 4
Time

0.0

0.1

0.2

0.3 N = 100

0 2 4
Time

0.0

0.1

0.2

0.3 ODE (N = )

Mean field: Perf (N) ≈ Perf (∞)

Refined Mean field: Perf (N) ≈ V

N
+ Perf (∞)
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Our results on refined mean field methods

Mean field is 1/N-accurate [Sigmetrics 2017]

I Stein’s method (inspired by Braverman et al 2015 / Ying 2016)

Refinement for steady-state [Sigmetrics 20183]

I It is very accurate even for N = 10.
I We can quantify 1/N variants such as choosing with/without

replacement.

Extension to finite-time and 1/N2 approximation [Performance 2018]

I Moment-closure approach, tensor decomposition
I Numerical tool4

Synchronous systems [PEVA 2019]

3best paper award
4
https://github.com/ngast/rmf_tool
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The approximation is very accurate, even for N = 10.
Average queue length for supermarket SQ(2) model.

N 10 20 30 50 100 ∞
ρ = 0.9

Simulation (“exact”) 2.804 2.567 2.491 2.434 2.393 –
Refined mean field 2.751 2.552 2.486 2.432 2.393 2.353

Error 0.053 0.015 0.005 0.002 <0.001

Mean field approximation

The accuracy of the classical mean field degrades as ρ approaches 1:

average queue length ≈ log2
1

1− ρ
+

1

N

ρ2

2(1− ρ)
+

1

N2

1

20(1− ρ)2

Nicolas Gast (Inria) Refinements of Mean Field Approximation January 30, 2020. Grenoble 19 / 29



The approximation is very accurate, even for N = 10.
Average queue length for supermarket SQ(2) model.

N 10 20 30 50 100 ∞
ρ = 0.9

Simulation (“exact”) 2.804 2.567 2.491 2.434 2.393 –
Refined mean field 2.751 2.552 2.486 2.432 2.393 2.353

Error 0.053 0.015 0.005 0.002 <0.001

Mean field approximation

The accuracy of the classical mean field degrades as ρ approaches 1:

average queue length ≈ log2
1

1− ρ
+

1

N

ρ2

2(1− ρ)
+

1

N2

1

20(1− ρ)2

Nicolas Gast (Inria) Refinements of Mean Field Approximation January 30, 2020. Grenoble 19 / 29



Where does the 1/N comes from?
The moment closure approach

Consider a system for which X becomes X + 1/N at rate NX 2. We have:

d

dt
E [X ] = E

[
X 2
]

≈ E [X ]2 (mean field approx.)

d

dt
E
[
X 2
]

= 2E
[
X 3
]

+
1

N
E
[
X 2
]

≈ 2(3E
[
X 2
]
E [X ]− 2E [X ]2) +

1

N
E
[
X 2
]

d

dt
E
[
X 3
]

= E
[

3X 4

N
+

4X 3

N2
+

X 2

N3

]
...

This equation is not closed

They can be closed by assuming E
[
(X − E [X ])d

]
≈ 0

This gives a O(1/Nb(d+1)/2c)-accurate approximation.
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Analysis of Cache (Re)placement Policies

Popularity-oblivious policies (LRU, RANDOM)
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The RAND( ~m) policy

RANDOM: exchange the requested item with a random item

exchange cache

virtualexchange

Design question: how many lists?

Conjecture from the 80s: if popularities do not vary, adding more lists is always
better.
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The RAND( ~m) policy

RAND( ~m): exchange the requested item with an item from next list

cachevirtualexchange

Design question: how many lists?

Conjecture from the 80s: if popularities do not vary, adding more lists is always
better.
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Our contributions

RAND(m) model [Sigmetrics 2015]

I Disprove a 30 year old conjecture (more lists is not always better).
I Prove accuracy of a heterogeneous mean field model.

Extension LRU(m) and q-LRU variants [ITC 2016, PEVA 2017]

I Asymptotically exact analysis.

Refined approximation for RAND(m) variants [Submitted, 2019]

I We can define a refined approximation for an heterogeneous model.
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Heterogeneous mean field approximation
Let Hi (t) be the popularity in list i .

If xk,i (t) is the probability that item k is in list i at time t, we
approximately have:

This approximation is of the form ẋ = xQ(x).
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The mean field ODE is asymptotically exact
“Theorem”: For any T , there exists C such that for any popularities p and
any list sizes m1 . . .mh

E

[
sup

i ,t<T/(maxk pk+maxi 1/mi )
‖Hi (t)− δi (t)‖

]
≤ C

√
max
k

pk + max
i

1/mi .
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Simu, 1 list m = (200)
Simu 4 lists m = (50, 50, 50, 50)
mean field aprox (1 list)
mean field approx (4 lists)

1000 items (Zipf). Popularities change every 2000 requests
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We can refine the approximation

We define a scaled process with N copies of each item.

We use Perf (N) ≈ Perf (∞) +
V

N
with N = 1.
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Applications to
Distributed Systems

CS

Load
Balancing

Cache Re-
placement
Algorithms

Networking

Bike Sharing

Smart Grid
Optimization

Bandit

Selection
and fairness

Mean Field
Approximation

Accuracy
and refined
mean field

Non uniform

Spatial
aspects

Discontinuous
/ uncertain

Games &
optimal
control

Learning

Multi-scale

Conclusion: Mean field is a powerful
tool to study stochastic systems

Works not only for large,
homogeneous systems.

Future research directions:

Online optimization
algorithms
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Thank you
Advisors Former PhD students / post-docs

Phd students Phd students
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The refined approximation can also account for behaviors
that are indistinguishable by classical mean field methods
Example: choosing with or without replacement

Let xi be the fraction of queues of size i or
more. Pick two queues, what is the probabil-
ity that smallest has size i?

If picked with replacement: x2
i − x2

i+1.

If picked without replacement: xi
Nxi − 1

N − 1
− xi+1

Nxi+1 − 1

N − 1

For ρ = 0.9:

Average queue length (with rep) ≈ 2.353 +
4

N

Average queue length (without rep) ≈ 2.353 +
4

N
− 1

N

Nicolas Gast (Inria) Refinements of Mean Field Approximation January 30, 2020. Grenoble 1 / 3



The refined approximation can also account for behaviors
that are indistinguishable by classical mean field methods
Example: choosing with or without replacement

Let xi be the fraction of queues of size i or
more. Pick two queues, what is the probabil-
ity that smallest has size i?

If picked with replacement: x2
i − x2

i+1.

If picked without replacement: xi
Nxi − 1

N − 1
− xi+1

Nxi+1 − 1

N − 1

For ρ = 0.9:

Average queue length (with rep) ≈ 2.353 +
4

N

Average queue length (without rep) ≈ 2.353 +
4

N
− 1

N

Nicolas Gast (Inria) Refinements of Mean Field Approximation January 30, 2020. Grenoble 1 / 3



The refined approximation can also account for behaviors
that are indistinguishable by classical mean field methods
Example: choosing with or without replacement

Let xi be the fraction of queues of size i or
more. Pick two queues, what is the probabil-
ity that smallest has size i?

If picked with replacement: x2
i − x2

i+1.

If picked without replacement: xi
Nxi − 1

N − 1
− xi+1

Nxi+1 − 1

N − 1

For ρ = 0.9:

Average queue length (with rep) ≈ 2.353 +
4

N

Average queue length (without rep) ≈ 2.353 +
4

N
− 1

N
Nicolas Gast (Inria) Refinements of Mean Field Approximation January 30, 2020. Grenoble 1 / 3



How does the expected queue length evolve with time?
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Mean Field Approximation
Simulation (N = 1000)

Remark about computation time :

10min/1h (simulation N = 1000/N = 10), C++ code. Requires many simulations,
confidence intervals,...

80ms (mean field), 700ms (1/N-expansion), 9s (1/N2-expansion), Python numpy
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Does it always work?
Can I always exchange the limits N → ∞, k → ∞, t → ∞?

E [X (t)] = x(t) +
1

N
V (t) +

1

N2
A(t) + · · ·+ O(

1

Nk+1
)

NO:
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