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ABSTRACT
In this paper, we consider a generic model of computational
grids, seen as several clusters of homogeneous processors.
In such systems, a key issue when designing efficient job
allocation policies is to balance the workload over the different
resources.

We present a Markovian model for performance evalua-
tion of such a policy, namely work stealing (idle processors
steal work from others) in large-scale heterogeneous systems.
Using mean field theory, we show that when the size of
the system grows, it converges to a system of deterministic
ordinary differential equations that allows one to compute
the expectation of performance functions (such as average
response times) as well as the distributions of these functions.

We first study the case where all resources are homo-
geneous, showing in particular that work stealing is very
efficient, even when the latency of steals is large. We also
consider the case where distance plays a role: the system is
made of several clusters, and stealing within one cluster is
faster than stealing between clusters. We compare different
work stealing policies, based on stealing probabilities and we
show that the main factor for deciding where to steal from
is the load rather than the stealing latency.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; G.3
[Probability and Statistics]: Queuing theory

General Terms
Performance, Theory

Keywords
Mean Field, Grid Computing, Load Balancing.

1. INTRODUCTION AND RELATED WORK
A key issue when exploiting large-scale computer systems

is to efficiently distribute the workload among the different
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resources. There are two main approaches to do so: Push
strategies, in which a processor that is overloaded will send
work to the others and pull strategies, in which an under-
loaded resource will ask for work from other resources.

Push strategies are mainly used in centralized systems
where brokers allocate the jobs to the different processors.
Although this technique is efficient for small systems, the
resource allocation problem becomes difficult to solve when
the system grows. Pull strategies are more appropriate for
large-scale systems since they are distributed and oblivious
of the speeds of the processors.

Work stealing is a strategy belonging to the pull category.
The main principle is that when a resource becomes idle, it
chooses another resource and steals part of its work. The
choice of the resource to steal from depends on the imple-
mentation of work stealing. This technique is very efficient
in practice and is implemented in various libraries, such as
Cilk, Satin or Kaapi [9, 12, 22, 10]. This scheduling policy is
very easy to implement and does not require any information
on the system to work efficiently. Also, it is asymptotically
optimal in terms of worst-case complexity [5]. Finally, it can
be made processor oblivious since it automatically adapts to
the number and to the size of jobs as well as to the speed of
the processors [7].

A practical consideration for work stealing implementa-
tions is the stability of the algorithm. Such issues have been
tackled in [6], where a system of homogeneous processors
and a total arrival rate smaller than the total service rate is
proved to be a positive recurrent Markov chain in a discrete
time setting, the general case being still open.

Several models have been proposed to study the perfor-
mance of work stealing. In [18], a continuous time Markov
model of work stealing over a small number of processors is
analyzed using a decoupling assumption. In [2], a numerical
method based on a M/G/1 model of a work stealing system
is presented. These two approaches do not scale with the
number of processors and become untractable with more
than 10 processors.

Here, we consider the case where the number of processors
N is large. This is important in practice if work stealing is to
be used in computational grids. We use mean field techniques
to derive a system of ordinary differential equations that is
the limit of a Markovian system when N goes to infinity.
Such techniques have been used for the first time in [14]
where the author derives differential equations for a system
of homogeneous processors who steal a single job when idle.
Here, we consider the case where, at every steal, half of the
jobs in the queue of the victim are stolen. This strategy



is closer to what is actually implemented in available work
stealing libraries and is also much more efficient, as shown in
the experimental section. It also makes the resulting model
(both the Markov chain and the differential limit) more com-
plicated because it contains non-local dependencies. Another
important difference with [14] is the fact that we consider
the case where the geometry of the system is taken into
account as well as the heterogeneity of the processors. Com-
munication times between processors in the same cluster are
homogeneous, however stealing from a remote cluster takes
more time and depends on the distance between the clusters.
Finally, we also provide a new numerical technique that al-
lows one to sample the distribution of the response times of
one job, rather than just compute the average response time.
This is more useful in practice because it provides guaranties
to the users.

The paper is structured as follows. In Section 2, we de-
scribe a working stealing model in computational grids and
the corresponding Markov process that falls in the category
of density dependent population processes.

Section 3 discusses the convergence properties of the work
stealing process when the number of processors goes to in-
finity. We provide the limit under the form of a set of
deterministic ordinary differential equations (ODEs).

Section 4 focuses on the case where the system is made of a
single cluster of homogeneous processors. We show that the
ODEs have a single equilibrium point and we provide bounds
on the speed of convergence to the mean field limit in extreme
cases. A fast numerical method to compute the equilibrium
point is given as well as a fast simulation algorithm to sample
the distribution of the response times of jobs.

Finally, Section 5 extends the analysis to the case where
processors are partitioned into several clusters. We study
several scenarios (clusters with equal or unbalanced loads,
master-slave cases) and we provide insight on the best steal-
ing strategies. For example, is it worth stealing from remote
clusters to balance the load at the expense of large stealing
costs? So far, such issues have only been investigated experi-
mentally in [17, 21] where real tests (with a small number
of processors) have been conducted. Our paper shows that
there is no universal answer to this question. Nevertheless,
the rule of thumb is that the load factor is more critical to
performance than the cost of stealing.

2. WORK STEALING IN GRIDS

2.1 Computational grids
The motivation of this work comes from computational

grids. Such grids abound and have often replaced single
supercomputers to provide high performance computing at
a lower cost. The main architectural feature of computa-
tional grids is the fact that they are made of several clusters.
Each cluster is composed of a large number of homogeneous
processors, with homogeneous communications inside the
cluster. However clusters are all different and the speed of
communication between clusters depends on the couple of
clusters considered. A typical example is Grid 5000 [1], an
experimental grid deployed in Brazil, France and Luxemburg.
The French part is made of 9 clusters spread all over the coun-
try, the most recent one being Digitalis (digitalis.inria.fr), a
cluster of 700 Intel Nehalem processors over an InfiniBand
internal network at 40 Gb/s. The clusters are inter-connected

by a dedicated network at 10Gb/s. The parameters used in
the paper all come from measurements made on Grid 5000.

Users of computational grids submit jobs to a selected clus-
ter, or to a central broker. Jobs are allocated to processors
by a batch scheduler (oar.imag.fr for grid 5000) whose role is
to minimize the response times (also called sojourn times) of
jobs i.e., the time spent by the jobs in the system. The goal
of this paper is to analyse the performance of such systems
when a work-stealing strategy is used by the scheduler.

2.2 Work stealing model
Let us consider a model of a computational grid made of N

processors. Here, a processor represents a generic computing
unit such as a single CPU core, an entire CPU (i.e., all cores
in the CPU), an entire GPU, or a multi-CPU/GPU server.
The processors are grouped into C clusters. Each cluster is
composed of a large number of homogeneous processors with
homogeneous communications inside the cluster. However,
clusters are heterogeneous in size and processing speeds, and
communications between clusters depend on their distance
as well as the network type.

We consider that each processor in each cluster c receives
jobs from outside. The jobs arrive according to a Poisson
process of rate λc. Each job has a size that is exponentially
distributed with mean 1. Actually, more general distributions
can be taken into account, as long as they can be represented
by finite Markov processes (such as Cox distributions). We
further assume that tasks are independent and cannot be
divided to be executed by two different processors. The
processors in cluster c have a speed µc: the time taken by
one of these processors to serve a job of size S is S/µc.

If a processor has more than one job to serve, it stores
them in a buffer of maximal capacity K. If a job arrives
when the buffer is full, it is discarded. We denote by jn(t) the
number of jobs present in the nth processor. By definition,
jn(t) = 0 means that the processor has no job to serve and
that its buffer is empty. Otherwise jn(t) is the number of
jobs in its buffer plus one (corresponding to the job it is
currently serving). From a queuing theory point of view, this
means that all processors can be seen as M/M/1/K queues.

If the processor i has no job to serve, it tries to steal some
jobs from a different processor, called the victim. For that,
it selects another processor, say k, at random (according to
probabilities, defined later) and asks for jobs. This operation
may take some time (exponentially distributed). If after
this time the processor i is still idle and if k has jk ≥ 2
jobs, the jobs of processor k are shared between processors i
and k: bjk/2c for i and the rest stay in k. If i is in cluster
ci and k in cluster ck, we consider that the time to wait
for the answer is exponentially distributed of mean 1/γcick .
The selection of the victim is not completely uniform: the
processor first selects a cluster according to the probability
law pcc′ and then picks uniformly a processor in this cluster.
For simplicity, we neglect the time to transfer a job and only
take into account the time to get an answer. This means in
particular that the time to steal jobs does not depend on the
number of stolen jobs but only on the localization of the two
processors (i.e., the clusters they belong to).

2.3 A Density dependent population process
A sequence of Markov processes XN on 1

N
Nd (d ≥ 1) is

called a density dependent population process if there exists
a finite number of transitions, say L ⊂ Nd, such that for



each ` ∈ L, the rate of transition from XN to XN + `/N is
Nβ`(X

N ), where β`(.) does not depend on N .
This model is often used to represent a population when

the number of individuals goes to infinity. Each individual
lives in a finite state space {1 . . . d} and the ith component
of the vector XN represents the proportion of individuals in
state i.

This model has been well studied in the literature. In par-
ticular, the work of Kurtz [8, 13] shows that as N grows, the
behavior of the system goes to a deterministic limit. More-
over, this limit satisfies a set of ordinary differential equations
that can be derived from the transition rates. These results
are adapted to our case in Section 3.1. Here, we will show
that our system can be described by a density dependent
population process.

The state of a processor is given as follows. Let C be

set of clusters C def
= {1, . . . , C} and K be the set of buffer

sizes: K def
= {0, . . . ,K}. If the processor p belongs to cluster

cp and has jp ∈ K jobs in its queue, its state is (cp, jp).
Note that the cluster cp of the processor p is fixed by the
geometry of the system. If the processor p has no job in its
queue, this means that it is trying to steal some jobs from
another processor, say q. If p is in cluster cp and q in cluster
cq, then the state of p is (cp, 0, cq). Finally, XN

cpjp denotes

the proportion of processors in state (cp, jp) and XN
cp0cq the

proportion of processors in state (cp, 0, cq).

Proposition 1. (XN
cj , X

N
c0c′)c,c′∈C,j∈K is a continuous time

Markov process on RCK+C2
. Moreover, the sequence of

Markov processes XN is a density dependent population pro-
cess.

Proof. Let us fix N and assume that at time t, the system
is in state XN (t) = (Xcj(t) . . . Xc0c′(t))c,c′∈C,j∈K. There are
four types of events that can happen: arrivals, departures,
successful steals and unsuccessful steals. Let t′ be the time
of the next event and let us compute the rate at which each
event occurs.

If an arrival occurs on a processor of cluster c that has
1 ≤ j ≤ K − 1 jobs, the corresponding modification of
the state will be that (Xcj ,Xc,j+1) will become (Xcj(t) −
1/N,Xc,j+1(t)+1/N). The jobs arrive according to a Poisson
process of rate λc. This means that this transition occurs
at rate NXcj(t)λc. Similarly, an arrival on a processor of
cluster c that has 0 jobs and is stealing from c′ occurs at
rate NXc0c′(t)λc.

The case of departures is similar for processors that have
j ≥ 2 jobs. If a processor has 0 jobs, no departure is possible.
When there is a departure from a processor of cluster c
that has 1 job, this processor chooses a cluster c′ to steal
from (with probability pcc′) and then a processor among
them, uniformly. Therefore, (Xc1,Xc0c′) becomes (Xc1 −
1/N,Xc0c′ + 1/N) at rate NXc1µcpcc′ .

Once a processor of cluster c is empty and has chosen
a victim cluster, namely c′, it asks for work to steal and
gets its response with rate γcc′ . If Xc′ is the proportion
of processors in cluster c′, this is equivalent to saying that
the processor gets a response from each processor of cluster
c′ with a rate γcc′/(NXc′). If the victim in cluster c′ has
j jobs, we distinguish two cases. If j ≥ 2, the steal is
successful and the processor gets bj/2c jobs. If j = 0 or
1, the steal is unsuccessful and the processor has to choose
a new processor to steal from. Thus we can write the two
following transitions:

• The successful steal of the jobs of a processor in cluster
c′ with j jobs from a processor in cluster c occurs with
rate Nγcc′Xc0c′Xc′j/Xc′ and changes
(Xc0c′ , Xcbj/2c, Xc′j , Xc′dj/2e) in (Xc0c′−1/N,Xcbj/2c+
1/N,Xc′j − 1/N,Xc′dj/2e + 1/N).

• The unsuccessful steal of a processor in cluster c trying
to steal from cluster c′ occurs when it steals 0 jobs.
After that it chooses to steal from cluster c′′. This event
occurs with rate Nγcc′pcc′′Xc0c′(Xc′0 +Xc′1)/Xc′ and
changes (Xc0c′ , Xc0c′′) in (Xc0c′ − 1/N,Xc0c′′ + 1/N).

2.4 Examples
To illustrate the power of expression of our model, we

present some examples that will be studied.

• Homogeneous cluster – in this case, all processors
are homogeneous and each processor receives jobs at the
same rate. This model is studied in detail in Section 4.
We show that the steady state can be computed by a
simple algorithm and we compute the main performance
indicators.

• Two homogeneous clusters – we consider in Sec-
tion 5.1 the case of two homogeneous clusters: they
have the same parameters λ, µ. However, the rate of
steal is 10 times larger inside a cluster than between
clusters: γii = 10γij if i 6= j.

• Two heterogeneous clusters – there is again two
clusters and stealing is faster inside the cluster: γii =
10γij . The clusters are homogeneous in speed but
one is more loaded than the other: λ2/µ2 > λ1/µ1.
Section 5.2 studies the optimal stealing probability pij .

• Master-Worker – in this case, we consider a network
of homogeneous clusters but the arrivals only occur
in a fraction of the processors (called the masters).
This is modeled by using two clusters per real cluster
(one for the masters, one for the slaves) with the same
parameters and with γij = γii inside these two clusters.
In Section 5.3, we study the performance of the system
as a function of the fraction of masters in the system.

3. MEAN FIELD APPROXIMATION
In this section, we show that when the system grows large,

its behavior can be approximated by a deterministic limit
described by the system of ODEs (1-9). The following are
the theoretical results that we use.

3.1 Convergence of density dependent popu-
lation processes

In Section 2.3, we shown that our model can be described
by a density dependent population process. Here we recall
some of the convergence results for these processes. We refer
readers to [8, 13] for a more complete description.

Let us call F the function F (x) =
P
`∈L `β`(x) (if the

sum is well defined) and let us consider the following ordi-
nary differential equation x(0) = x0 and ẋx0(t) = F (xx0(t)).
Theorem 2 below shows that the stochastic process XN (t)
converges to the deterministic system x(t).

Theorem 2 ([8], chapter 11). Assume that for all com-
pact E ⊂ Rd,

P
` |`| supx∈K β`(x) < ∞ and F is Lipschitz



on E. If limN→∞X
N (0) = x0 in probability, then for all

t > 0:

lim
N→∞

sup
s≤t
|XN (s)− x(s)| = 0 in probability,

uniformly in the initial condition.

Moreover, Kurtz has proved second order results for the
previous convergence, showing that the gap between XN (t)

and x(t) is of order
√
N . Let V N (t)

def
=
√
N(XN (t)− x(t)),

and V (t)
def
= V (0) + U(t) +

R t
0
∂F (X(s))V (s)ds, where U(t)

is a time inhomogeneous Brownian motion and ∂F denotes
the Jacobian matrix of F.

Theorem 3 ([8], chapter 11). Assume that for all com-
pact set E:

P
` |`

2|
P
x∈E β`(x) < ∞, that β` is Lipschitz,

that F is continuously differentiable and V N (0)
weak−−−→ V (0).

Then for all t,
√
n(XN −X)

weak−−−→ V .

This result indicates that for all fixed t, the gap between
XN (t) and x(t) behaves like 1√

N
G, where G is a Gaussian

random variable.

3.1.1 Steady state convergence
Other interesting results of convergence concern the behav-

ior of the steady state of the system. Assume for example
that the stochastic process with N processors has an invari-
ant measure, say πN . A natural question is whether πN

converges (or not) to a fixed point of F and whether second
order results exist in that case. In general, convergence for
the steady state only holds under several restrictions.

Theorem 4. The support of any limit point (for the weak
convergence) of the stationary distributions πN is included
in the compact closure of the accumulation points of the
solutions of the equation ẋ = F (x), for all possible initial
conditions.

The proof is inspired by the proof of Corollary 3.2 of [4].

Proof. Let h be a continuous bounded function and δ > 0.
For a measure π, we denote

R
x
h(x)πN (dx) the expectation

of h(X) if the distribution of X is πN . E[XN (t)] denotes
the expectation over the trajectories of XN (t). Moreover,
the system of differential equations ẏ = F (y) starting in
y(0) = x has a unique solution. Its value at time t is denoted
Φt(x).

Let πN be an invariant measure of XN and π a limit point
of πN . Since πN is an invariant measure of XN :Z

x

Eh(XN (t))πN (dx) =

Z
x

h(XN (t))πN (dx)

Since E is compact, h is uniformly continuous and there
exists ε > 0 such that ‖x− y‖ < ε implies ‖h(x)− h(y)‖ < δ
and

E
˛̨
h(XN (t))− h(Φt(X

N (0)))
˛̨

≤ δ + ε ‖h‖P(
‚‚XN (t)− Φt(X

N (0))
‚‚ > ε)

where ‖h‖ def
= supx ‖h(x)‖.

Theorem 2 shows that limN→∞ P(
‚‚XN (t)− Φt(X

N (0))
‚‚ >

ε) = 0 which shows that:

lim
N→∞

˛̨̨̨Z
x

Eh(XN (t))πN (dx)−
Z
x

h(Φt(X
N (0)))πN (dx)

˛̨̨̨
≤ δ.

Using the fact that πN goes weakly to π and since h and
δ are arbitrary, this shows that π is an invariant measure
of Φt. Let us call H the support of π and B the set of
accumulation point of Φt. H is a closed invariant set and π
is an invariant measure for Φ. By the Poincaré recurrence
theorem, π(H) = 1.

An immediate corollary is the case where the solutions
of the differential equation all converge to a single global
attractor.

Corollary 5. If F has a unique stationary point x∗ to
which all trajectories converge, then the stationary measures
πN concentrate around x∗ as N goes to infinity:

limN→∞π
N weak−−−→ δx∗ , where δx∗ is the Dirac measure in x∗.

Proof. Since the state space is compact, the sequence
πN is tight. By Theorem 4, it converges to δx∗ .

In the following we will show that the system of equations
(1 - 9) has a unique fixed point. However, to apply Corollary
5, one needs to show that this point is a global attractor,
which is a very difficult task for the set of equations (1 - 9)
that do not admit a natural Lyapounov function.

In the case where a linear Lyapounov function exists, sec-
ond order results for the steady state behavior exist. Norman
[16] shows that under technical assumptions and if there ex-
ists a scalar product 〈·〉 such that 〈x − x∗, F (x)〉 < 0 and

〈x, F ′(x∗)x〉 < 0, then
√
N(πN−x∗) converges to a Gaussian

variable. Unfortunately, we have not been able to construct
such a scalar product for our case. However partial results
on second order results are shown in Section 4.2.

3.2 Deterministic limit for work stealing
In Section 2.3 (XN

c0c′(t),X
N
cj (t))c,c′∈C,1≤j≤K is proved to

be a density dependent population process. For each prob-
ability vector x on the state space {(c, j), (c, 0, c′)/c, c′ ∈
C, j ≥ 0}, let us recall the definition of the drift function
F (x) =

P
` `β`(x). Should Theorem 2 be used here, it

would say that if XN (0) converges weakly to a deterministic
measure x(0), then (XN (s))0≤s≤t converges weakly to the
solution of the differential equation ẋ(t) = F (x) over [0, t].
In our case, the system of ordinary differential equations
ẋ(t) = F (x) has the following form.

ẋc0c′ = −(λc + γcc′)xc0c′ + µcxc1pcc′ + (1)X
c′′

γcc′′xc0c′′
xc′′0 + xc′′1

xc′′
pcc′ (2)

ẋc1 = −(µc + λc)xc1 + µcxc2 +
X
c′

λcxc0c′ (3)

+
X
c′

γc′cxc′0cxc2/xc (4)

+
X
c′

γcc′xc0c′(xc′2 + xc′3)/xc′ (5)

ẋcj = −(µc + λc1j<K)xc,j + µcxc,j+1 + λcxc,j−1 (6)

+
X
c′

γc′cxc′0c(xc,2j + xc,2j−1)/xc (7)

+
X
c′

γcc′xc0c′(xc′,2j + xc′,2j+1)/xc′ (8)

−
X
c′

γc′cxc′0cxcj/xc, (9)



. . . c, jc, j + 1 c, j − 1 c, dj/2e . . . c, 1 c, 0, c′

c, 0, c1

c, 0, cC

γcc′(xc′0 + xc′1)/xc′pc1

γcc′(xc′0 + xc′1)/xc′pccC

γcc′xc′2/xc′ + λc

γcc1(xc1,2j + xc1,2j+1)/xc1

µcpc1

µcpcc′

µcpccC

λc λc

µc µc P
c′ γc′cxc′,0,c

Figure 1: Graph of the transition kernel of the state of one processor for the fast simulation algorithm. Due
to the numerous transitions, only a fraction of the transitions are represented on this graph.

where 1j<K equals 1 for j < K and 0 for j ≥ K. Other
boundary conditions are xcj = 0 for j > K.

These equations can be directly computed from the transi-
tions described in Section 2.3. They can be interpreted as
follows.

The first term in line 1 is the rate at which processors exit
from state (c, 0, c′): This happens if an arrival occurs (λc ) or
if a steal from c′ occurs (γc0c′). The second term corresponds
to the rate at which processors end up in state (c, 0, c′). The
line (2) of this equation represents the fraction of processors
that were in cluster c trying to steal jobs from cluster c′′

and that did not succeed and but decided to steal from the
cluster c′. The following lines have a similar interpretation.
For the last equation, line (7) represents the processors in
cluster c that had 2j or 2j + 1 jobs and have been stolen
by someone else and line (8), the processors from cluster c
that are stealing from others. The last line (9) represents
the processors in cluster c that had j jobs and have been
stolen by someone else.

The two technical conditions for applying Theorem 2 are
clearly satisfied: The function F in the differential equation
is a rational function of degree 2 and is Lipschitz on all
compacts. The transition set L is finite and the transition
rate β` are bounded so that the second condition is also
satisfied. Theorem 2 can be rewritten in this framework as:

Corollary 6. Using, the foregoing notations, if XN (0)
converges to x(0) in probability, then sup0≤t≤T |XN−x(t)| →
0 in probability.

3.3 Fast simulation algorithm
The previous theorem shows that the average number of

processors in each state can be approximated by a system of
differential equations. Here we show that as N grows large,
the behavior on one particular processor can be approximated
by a simpler process.

Let us consider a system with a finite number of processors
N <∞. Let JN (t) be the state of one particular processor
at time t. It should be clear that the process (JN (t), XN (t))
is a continuous time Markov chain. For each population
value x, we define the kernel (Kjj′(x))j,j′∈C∪K as follows.
If the population process XN (t) is x and j, j′ ∈ K, then
Kjj′(x) is the rate of transition of JN (t) from (c, j) to (c, j′).
The definition for j ∈ K and j′ ∈ C is similar, representing
the rate of transition from (c, j) to (c, 0, j′). The transition
kernel K(x) can be directly derived from the transitions
written in Section 2.3 and are illustrated by Figure 1.

For finite N , the behavior of the processor JN (t) is not
independent of the behavior of XN (t) as each transition of
JN (t) will result in a change of XN (t). The process JN (t) is

not Markovian and is very complicated. In the limit however,
JN (t) goes to a non-homogeneous Markovian process.

Theorem 7. Let us assume that limN→∞ J
N (0) = y(0)

and XN (0)→ x(0). Then (JN (t),XN (t)) converges weakly
to a continuous time jump and drift process (Y (t), x(t)) where
x(t) satisfies the ODE (1-9) and Y (t) is a non-homogeneous
jump process of kernel K(x(t)).

Proof. (sketch) This result is similar to Theorem 3.2.1 of
[20] and can be proved using similar ideas. Conditionally to
XN , one can show that JN is a non-homogeneous Markovian
process with kernel K(XN (t)). Since XN (t) converges in
probability to x(t), limN→∞K(XN (t)) = K(x(t)). Finally,
the convergence of JN to J comes from Theorem 17.25 of
[11].

From a practical point of view, this theorem is important
because it allows one to use the mean field approximation to
compute distributions instead of average values. Moreover,
the case of steady-state is of particular interest. Assume that
the system of ODE has a unique stable point x∗ to which
all trajectories converge and that XN (0) is chosen according
to the steady state distribution. In that case, XN (t) is
distributed according to the steady state distribution and
limN→∞X

N (t) = x∗ (Corollary 5). Theorem 7 shows that
the behavior of one processor chosen at random converges to
a continuous time Markov chain of transition kernel K(x∗).
In Section 4.5, we will see how to use this result to compute
the distribution of sojourn times.

4. ONE CLUSTER MODEL
In this part, we focus on the case where all processors

belong to one homogeneous cluster. The system is described
by 3 parameters: the arrival rate λ, the service rate µ and
the rate of stealing γ.

Algorithms 1 and 2 provide very efficient ways to perform a
steady state analysis. The total time to generate all curves of
this section is less than ten minutes on a desktop computer.

4.1 Steady state limit
In this section, we show that the differential equations (1-

9) without the boundary conditions (j ≤ K) have a unique
equilibrium point. We will also show that this relaxation is
justified when λ < µ, because the number of queues with
more than j jobs decreases as αj with α < 1. In the rest of
this section, we assume that λ < µ to ensure stability.



An equilibrium point must satisfy the equation ẋj(t) = 0
for all j ∈ N. With a single cluster, this can be expressed as:

1 =

∞X
j=0

xj , (10)

0 = −λx0 + µx1 − γx0

∞X
j=2

xj , (11)

0 = −(λ+ µ+ γx0)xj + λxj−1 + µxj+1

+ γx0(x2j−1 + 2x2j + x2j+1),
(12)

where Equation (12) holds for all j ≥ 1.
The variation of the number of jobs in steady state isP∞
j=0 jẋj(t) = 0. By a direct computation, this leads to

λ− µ
P∞
j=1 xj = 0 and using (10), x0 = 1− λ/µ. Moreover,

using Equation (11), x1 = λ(1− λ) γ+µ
(1−λ)γ+µ2 .

Therefore solving the whole system of equations is the
same as solving a linear system with free variables (xj)j≥1.
This system can be rewritten as a matrix Equation MX = Y
where M is of the form:

M =

26664
m11 m12 . . .
λ m22 m23 . . .
0 λ m33 . . .

0
. . .

. . .
. . .

37775 , (13)

i.e., is triangular plus one line of λ under its diagonal. Let
X0 be the vector defined by x1 = 1 and xj = 1

µ

Pj−1
i=1 mjixi.

All the solutions of MTX = 0 can be written αX0 for some
α ∈ R. Therefore the dimension of the kernel of the matrix
M is 1. This shows that there is a unique solution of the
system of Equations (10-12).

So far, however, there is no guarantee that this fixed point
is non-negative. To prove this, we designed an iteration
algorithm over non-negative sequences that converges to the
fixed point.

Algorithm 1 Steady-state computation

Require: λ, µ, γ.
x0 ← 1− λ/µ
x1 ← λ(1− λ) γ+µ

(1−λ)γ+µ2

∀j ≥ 2 : xj ← 0.
repeat
∀j ≥ 2

xj← 1
λ+µ+γx0

“
λxj−1+µxj+1+γx0(x2j−1+2x2j+x2j+1)

”

Proposition 8. The successive sequences (xtj)j∈N com-
puted in Algorithm 1 satisfy the following:

(i) They converge to a sequence (x∞j )j∈N.

(ii) There exists j∗ such that x∞j is increasing with j up to
x∞j∗ and is decreasing after.

(iii) ∀ε > 0, limi→∞ x
∞
j /(α+ ε)j = limj→∞(α− ε)j/x∞j =

0,
where α=(λ+µ+γx0−

p
(λ+µ+γx0)2−4µλ)/(2µ) < 1.

(iv) x∞j is the only solution of (10)- (12).

This implies that x∞j decreases with an exponential rate:

xj ≈j→∞ cαj .

Proof. (sketch)
(i) Let (xtj)j∈N be defined by xt0 = 1− λ, ∀t ∈ N, x0

j = 0 and

xt+1
j = 1

λ+µ+γx0

`
λxtj−1 + µxtj+1 + γxt0(xt2j−1+2xt2j+x

t
2j+1)

´
.

By induction on t, one can show that xtj is positive and
increasing in t for all j. Moreover, at each t, there is only a
finite number of xtj that are non 0 (the first t) and the quan-

tities yt
def
=
P
j≥0 x

t
j and zt

def
=
P
j≥1 jx

t
j are well defined

and finite. The recurrence equation leads to:

zt+1 (λ+µ+γx0) = (1− yt)(µ− λ) + (λ+µ+γx0) zt (14)

Since xt is increasing in t, zt is also increasing in t and
1− zt ≥ 0. This shows that xtj ≤ 1. Since xtj is increasing in
t, it converges to some x∞j that satisfies (11)-(12).

(ii) Let j∗ be the minimal j such that x∞j∗ ≥ x∞j∗+1 (it
exists since

P∞
i=0 xj ≤ 1 and limj→∞ xj = 0). We define a

sequence ytj by y0
j = xj for j ≤ j∗ and y0

j = 0 for j > j∗ and

yt+1
j is updated as in Algorithm 1 for j > j∗. By a direct

induction, one can show that ytj is increasing in t and is less
than xj and decreasing for j ≥ j∗. Therefore it converges to
x∞j and x∞j satisfies (i).

(iii) µX2 − (λ+ µ+ γx0)X + λ = 0 has two solutions α
and ᾱ with 0 < α < 1 < ᾱ. Moreover, it is positive on (α; 1).
This shows that for δ ∈ (α; 1) and j ≥ jδ (jδ big enough),

δi (λ+µ+γx0) ≤ λδi−1+µδi+1+γx0

“
δ2i−1+2δ2i+δ2i+1

”
.

Let us define ytj by ytj = xj for j ≤ jδ and y0
j = xjδ

j−jδ

for j > jδ and yt+1
j is updated as in Algorithm 1 for j >

jδ. ytj is decreasing and converges to x∞j , showing that

limx∞j /(δ + ε)j = 0 for all δ > α and ε > 0. The other limit

lim(δ − ε)j/xj = 0 can be proved similarly.
(iv) since limj→∞ x

∞
j /(α+ ε)j = 0,

P∞
j=1 x

∞
j <∞. This

shows that when t goes to infinity, both parts of Eq. (14) go
to a finite limit. This shows that

P∞
j=0 x

∞
j = limt y

t = 1.
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Figure 2: General shape of the steady state distribu-
tion. Here for λ = .99, µ = 1 and γ = 3. The x-axis is
the number of jobs and the y-axis shows the fraction
of processors with j jobs (in log-scale).

The shape of the fixed point computed by Algorithm 1
is displayed in Figure 2. A posteriori, this can be seen as a
justification to consider the ODEs without boundaries since
the solution is concentrated almost entirely on small values
of j. For all the numerical simulations, we used K = 500
and the values of xcK have always been less than 10−10.



It is beyond the scope of this paper to show that this
unique fixed point is also a unique attractor of the ODEs
(although this is what our numerical experiments suggest).
Therefore, our only assertion is that, whenever the steady
state distribution of the finite stochastic system converges
to a single point, it should converge to this fixed point.

4.2 Gap between mean field and steady-state
In this section, we study two extreme values of γ for which

we are able to compute exactly the steady state distribution
and compare these results with the mean field approximation.

When γ = 0, no stealing ever occurs and the N processors
behave like independent M/M/1/K queues. The steady
state distribution Π0 has a product form. In steady state,
the probability of having j jobs in one M/M/1/K queue
is πj = (λ

µ
)jπ0 and satisfies the Equations (10-12). The

steady state of the whole cluster is made of N independent
variables picked according to this distribution. The law of
large number shows that Π0 converges to x almost surely and
the central limit theorem shows that the speed of convergence
is in O(1/

√
N). Also, the marginal of the distribution of the

steady state for one processor is the mean field steady state.
When γ =∞, the system can also be replaced by a simpler

one. In that case, there is either no idle processor or no
processor with 2 or more jobs since in that case an idle
processor would instantly steal the second job. Thus the
state of the system can be modeled by the total number
of jobs in the system that we call jN (t). Moreover, jN (t)
behaves like one M/M/N/KN queue (i.e., a queue with N
independent processors with arrival rate Nλ and service rate
µ for each processor). The probability that jN (t) is j is:

Π∞(j) = Π∞(0)N
jλj

j!µj
(j < N),

Π∞(j) = Π∞(0) Njλj

N !Nj−Nµj
(KN ≥ j ≥ N),

where Π∞(0) is a normalization constant.
As N grows, it can be shown that P (jN (t)≥N) = o(βN )

and Π∞(0) = exp(−Nλ) + o(βn) with (β = λ exp(1− λ) ∈
(0; 1)). Let us compute the characteristic function Φ() of the

steady state distribution of (jN (t)−Nλ)/
√
N :

Φ(ξ) =

∞X
j=0

Π∞(j) exp(iξ
j −Nλ√

N
) = exp(−λξ2 +O(

1

N
)).

Therefore
√
N(jN (t)/N − λ/µ) converges to a Gaussian law.

In that case, the gap between the steady state of the system
of finite N and the mean field is of order 1/

√
N .

For both extremal cases γ = 0 and γ =∞, the gap between
the mean field approximation and the real steady state is of
order O(1/

√
N). We conjecture that this should also be the

case for all γ in between.

4.3 Average sojourn time
The first set of experiments given in Figure 3 measure the

effect of the cost of stealing, 1/γ, on the average sojourn time
of the jobs (the average time spent by a job in the system).

Let Sλ(γ) be the average sojourn time of a job in the limit
system (in steady-state). By Little’s formula, the number
of jobs Lλ(γ) verifies Lλ(γ) = λSλ(γ), therefore it suffices
to compute the average number of jobs in steady state. As
mentioned in the previous part, the analytical computation
of the steady-state is impossible to do when N is large. This
shows that we cannot compute analytically the whole curve

Sλ(γ), nevertheless we can compute two interesting points
for γ = 0 and γ =∞.

When γ = 0, the system is just a system of N independent
M/M/1/K queues and the average sojourn time is a classical
result of queuing theory (e.g., [3]). When K is large, this is
approximately

Sλ(0) =
1

µ− λ . (15)

The second quantity that we can compute is the limit of
Sλ(γ) when γ goes to infinity. In that case the steady state
is composed of processors with either 0 or 1 job. A new job
entering in the system either arrives directly on an empty pro-
cessor or arrives in an occupied processor and is immediately
stolen by an empty processor (there are empty processors
with probability one), and the average sojourn time is

Sλ(∞) =
1

µ
, (16)

and the average number of jobs in the system is Lλ(∞) = λ
µ

.
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Figure 3: Average sojourn time as a function of the
rate of stealing γ for various values of λ (.3, .7 and
.9).

Figure 3 displays the average sojourn time Sλ(γ) as a
function of γ for various values of λ. As expected, the
average sojourn time is decreasing from 1/(1−λ) to 1/µ = 1.
In particular, we can see that when γ is small, the average
number of jobs in the system decreases drastically.

The gap between Sλ(0) and Sλ(∞) is λ/(1−λ). Therefore
the gain obtained by work stealing is more important when
the system is more congested (i.e., λ is close to 1) as we can
see in Figure 3. To provide a better estimate of the gain from
using work stealing, Figure 4 shows the difference between
the response time with a finite γ and γ =∞ Sλ(γ)−1 divided
by the maximum gain Sλ(0)−Sλ(∞). One can observe that
when the rate of stealing is of the same order of the service
rate γ = 1 (resp. γ = 4 or γ = 8), the gain is 50% (resp.
80% or 90%) of what one could gain with a work stealing
at no cost. This makes work stealing very efficient in real
life systems since the time to steal a job is typically small
compared to the service time of a job.

4.4 Average number of steals
We want to study the average number of steals that a job

undergoes, as a function of γ. Similar to the previous case,
let Sλ(γ) be the average number of steals per job. Again, it
is impossible to solve the problem analytically but we can



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

(S
λ(

γ)
-1

)/
(S

λ(
0)

-1
)

γ

λ=0.3
λ=0.7
λ=0.9

Figure 4: Gain of work stealing as a function of γ.

compute the two extremal values for γ = 0 and γ = ∞.
When γ = 0, no job is stolen and Sλ(0) = 0. When γ =∞,
all jobs arriving in the processors with 1 job are stolen while
the jobs entering in the processors with 0 processors are not
stolen. Thus Sλ(∞) = λ/µ.

For 0 < γ <∞, we can compute Sλ(γ) numerically. The
rate of steals from processors with j jobs is γx0xj (where xj
corresponds to the number of processors with j jobs in steady
state); each steal corresponding to bj/2cxj jobs stolen. On
average there are γx0

P∞
j=2bj/2cxj jobs stolen per unit of

time. Since the rate of arrivals is λ, we have

Sλ(γ) =
γ

λ
x0

∞X
j=2

b j
2
cxj .

Figure 5 shows that the number of steals increases when the
cost of stealing decreases and converges to λ, as expected.
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Figure 5: Average number of successful steal per job
Sλ(γ) viewed as a function of γ for different values
of λ (.3, .7 and .9).

4.5 Distribution of the number of steals and
sojourn time

In many practical cases, the average response time is not
a good measure of performance and it is more important to
improve the probability of being under a certain threshold.
Using our fast simulation algorithm introduced in Section 3.3,
we are able to sample the distribution of the number of steals
and of the sojourn time in the steady state. Our simulations
show that work stealing is indeed efficient at reducing the
probability of having a large sojourn time.

To compute the distribution of sojourn times, we have
to specify the order in which the jobs are served as well as
which jobs are stolen when there is a steal. We consider
that the jobs are served in the FCFS order (First Come
First Served). When there is a steal, the stealing processor
steals the oldest jobs (except for the one that is being served)
and the order of the jobs in the processor is preserved i.e.,
if the jobs in the first processor are {1, 2 . . . j} then after
the steal the remaining jobs in the victim processor will be
{1, 2 + bj/2c . . . j} and the jobs in the stealing processor will
be {2 . . . bj/2c+ 1}.

Let us now consider a job arriving in the system. Let
size of queue and place in queue be respectively the size
of the queue and the place in the queue of this job, and
let us consider the next event. If this event is an arrival
(respectively a departure), then size of queue is increased
by 1 (resp. both size of queue and place in queue are de-
creased by 1). If the event is a steal, then if place in queue ∈
[2 . . . bsize of queue/2c] then the variable size of queue be-
comes bsize of queue/2c and place in queue decreases by 1.
Otherwise, size of queue becomes dsize of queue/2e and the
variable place in queue is decreased by bsize of queue/2c.
The three events occur respectively with rates λ, µ, γx0.

Using these considerations, the sojourn time of a job en-
tering the system as well as the number of steals can be
simulated by Algorithm 2.

Algorithm 2 Sojourn time simulation

Require: λ, µ, γ
Pick size of queue according to the steady state distribu-
tion.
x0 ← 1− λ/µ.
size of queue← size of queue + 1
place in queue← size of queue.
soj time← 0.
while place in queue > 0 do

soj time← soj time + Exp(λ+ µ+ γx0)
Pick an event e ∈ {arrival,departure, steal} with proba-
bilities proportional to {λ, µ, γx0} respectively.
Modify place in queue and size of queue according to
the event e.

end while
Return soj time.

We ran several simulations for various values of λ and
γ. The percentage of jobs that undergo two steals or more
is displayed in Figure 6 as a function of γ. Notice that in
all cases, the distribution of the number of steals is mostly
concentrated in 0 or 1 (less than 2% of the jobs are subjected
to more than two steals). Moreover, the shape of the curve
is the same for all λ: it starts from 0 when γ = 0; quickly
reaches its maximum and then decreases slowly as γ goes to
infinity. The main consequence of this is that there are few
useless steals (if a job is stolen twice, then the first steal was
actually useless).

Another interesting measure is the sojourn time distribu-
tion. When γ = 0 (i.e., in the M/M/1/K case), the sojourn
time distribution has an exponential distribution of param-
eter µ(1 − λ/µ) when K goes to infinity. When γ goes to
infinity, the sojourn time distribution follows an exponential
law of parameter µ. Using our fast simulation algorithm, we
can also sample the distribution of the sojourn time.
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Figure 6: Fraction of jobs that are stolen twice or
more as a function of γ.
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The sojourn time of a job in the system is denoted Tλ(γ).
When γ = 0 or γ = ∞, the distribution of Tλ(γ) is an
exponential distribution. Therefore for these values of γ,
the 99th percentile is log(100)Sλ(γ). Figure 7 reports the
empirical 99th percentile of the distribution of Tλ(γ) as
well as the 99th percentile of an exponential variable of the
same mean log(100)Sλ(γ). For intermediate values of γ, the
percentile is strictly less than for exponential distributions.

4.6 Fraction of stolen jobs
In all of our analysis, we choose to consider that if there

were j ≥ 2 jobs in a queue, the processor that is stealing
would steal bj/2c jobs. This is the most natural strategy in
the sense that it optimizes the balance between the processors.
Works such as [14] study the case where every steal concerns
only one job. This has a negative impact on performance,
as shown in the following experiments. In this section, we
further show the advantage of stealing half of the jobs instead
of stealing a smaller fraction of the work.

When an empty processor steals from a processor with j ≥
2 jobs, then it steals max(1, bδjc), i.e., a fraction 0 ≤ δ < 1
of the total work or a single job if this fraction is less than
one. The case δ = 0 corresponds exactly to the steal of one
job while the condition δ < 1 insures that we always leave at
least one job in the processor (since j − bδjc) ≥ 1).
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Figure 8: Average sojourn time as a function of the
fraction of jobs stolen at each time for λ = .9 and
γ = 3.

Algorithm 1 can be modified to compute the steady-state
in that case. Figure 8 shows the average sojourn time as a
function of δ for λ = .9, µ = 1 and γ = 3.

Figure 8 highlights two interesting properties. The first
one is that the optimal fraction to steal is one half and the
difference in speed is approximately 25%. The second inter-
esting property is that this curve is not symmetric in 1/2 and
it is not continuous in δ. Indeed, in such systems the proces-
sors generally have a small number of jobs and the function
bδjc is not continuous in j. In particular, the figure shows
discontinuities at p/q for small values of q (1/2, 1/3, 2/3 . . . ).

4.7 Batch arrivals
In this section, we consider that jobs arrive in batches of

b jobs according to a Poisson point process of rate λ/b (the
rate is divided by b to keep an arrival rate λ). We will see
that work stealing is a very efficient way to diminish the
effect of these batch arrivals.

In a system with no load balancing mechanism, when the
size b of the batches increases, it can be shown that the
average sojourn time grows linearly in b [15].
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Figure 9: Average sojourn time as a function of the
batch size for λ = .7. The higher curve represents a
system without work stealing while the bottom one
shows the results for γ = 3.

Algorithm 1 can be easily modified to take into account
the batch arrivals. Using this, we can compute the average
sojourn time for various values of the size of batches (from



1 to 30) for λ = .7 and γ = 3. In Figure 9 we compare the
average sojourn time in the system with work stealing to
the system without work stealing. Once again, work stealing
has a tremendous impact on the performance. In fact when
computing the average sojourn time for large values of b, it
seems to grow as the logarithm of b. This is in agreement
with known results on the performance of work stealing in
transient cases (i.e., over a finite number of tasks) [19].

5. HETEROGENEOUS CLUSTERS
As mentioned in the introduction, we are interested in

evaluating the performance of work stealing in a system made
of several clusters. Each cluster is made of homogeneous
processors with the same processing rate. Also the time to
steal between two clusters depends on their “distance” and is
much larger than the time to steal within one cluster. The
main problem addressed here is to come up with a stealing
strategy (namely, values for the stealing probabilities pij)
that minimizes the response times for jobs.

If the system is heterogeneous, the natural work stealing
algorithm which is to steal uniformly at random among all
the resources may suffer from communication cost since it is
much faster to steal inside a cluster. Several modifications of
this algorithm have been proposed to take into account the
geometry of the system. Many of the proposed algorithms
rely on a master-worker paradigm: some resources, called
masters, are dedicated to balance the load between clusters
while the others try to balance the work insider a cluster.
Other strategies are based on tuning the preferences between
internal and external steals. All these strategies are exper-
imentally compared in [21, 17] and the latter proved more
efficient. In our framework, this corresponds to tuning the
probabilities pcc′ for choosing a victim.

In the following, we focus on the average sojourn time as
the performance indicator to compare different strategies.
We used a numerical algorithm to compute the fixed point of
the system of ODEs (1-9). The time to generate one curve is
less than ten minutes, allowing us to explore many scenarios.

5.1 Two homogeneous clusters
A first case of interest is the case with two homogeneous

clusters: µ0 = µ1, λ0 = λ1 and γ00 = γ11. Each cluster can
be viewed as a network of closely interconnected processors.
The two clusters are connected by a slow network. Gener-
ally, communication between two hierarchies (intra-processor,
intra-cluster, inter-cluster) is about 10 to 100 times slower
(as in grid 5000 [1]). For our simulations, γij=γii/10 for i6=j.

Let pij be the probability for a processor in cluster i to
choose to steal from cluster j. As the system is symmetric,
we choose p00 = p11 and p01 = p10 = 1 − p00. We want to
study the effect of this probability p00 on the performance.

The loads of the two clusters are the same and commu-
nications are much slower if the two processors are in two
different clusters. Therefore the optimal p00 is 1: it is always
better to steal inside one’s own cluster. Figure 10 displays
the average sojourn time of a job entering the system as a
function of p00, called the probability of self-stealing. The
parameters of the system displayed in the figure are λ = .7,
µ = 1 and γii = 10, γij = 3 and the clusters have the same
size; the results are very similar for other values.

This figure exhibits the two main features of such systems.
First, as expected in this case, it is much more efficient
to pick p00 = 1 rather than a uniform stealing probability,

 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

Proportion of self-stealing

λ=.3
λ=.7
λ=.9

Figure 10: Average sojourn time in a system with
two homogeneous clusters as a function of the prob-
ability for a processor to steal inside its cluster.

p00 = 1/2. Moreover, the dependence of the sojourn time
on p00 is almost linear, showing that this probability has a
real effect. Computing the same curve for other values of
λ, shows that when the load is low (for example λ = .3),
then the curve is slightly concave while when the load is very
high (λ > .9), the curve is slightly convex but in all cases
the dependence is almost linear.

5.2 Two heterogeneous clusters
A direct extension of the previous model is to consider

the case where the two clusters are heterogeneous. We set
λ0 < λ1, µ0 = µ1 and γij = γii/10. As the load of cluster 1
is higher and since it is faster to steal inside the cluster, we
consider that the processors of cluster 1 only steal inside their
cluster: p11=1. We want to study the effect of the probability
for the processors in cluster 0 to steal from cluster 1.

Figure 11 displays the average sojourn time as a function of
p00 for different values of λ1. In all cases, the load of cluster
0 is low: λ0 = .5 and the load of the other cluster varies. In
all cases, we can see that there exists an optimal p00 that is
neither 0 nor 1 that minimizes the average sojourn time. In
the top left figure, cluster 1 is just slightly more loaded than
the cluster 0 (λ1 = .8) and in that case the optimal p00 is
close to .85. As the load of the cluster 1 grows, the optimal
probability gets closer to 0.

This shows that the optimal probability strongly depends
on the load of the different clusters which is an unknown
variable in many cases. However, we also see that the average
sojourn time does not vary that much around the optimal p00

which shows that a rough estimation of the load is enough
to make a good choice for p00.

5.3 Hierarchical work stealing: master worker
paradigm

Many work stealing algorithms rely on a master/worker
paradigm. Here we show that this approach is indeed valid,
but tuning its parameters is not easy.

We consider a network of homogeneous clusters, with a
rate of steal 10 times greater inside a cluster than between
two clusters. In each cluster, we set a fraction f0 of the
resources to be “masters” while the rest of the resources are
“workers”. We consider that the masters receive all the work
which means that there is an arrival rate of λ/f0 for every
master (so that the total arrival rate of the system remains
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Figure 11: Average sojourn time as a function of p00

for the two heterogeneous model. The first cluster
is lightly loaded (λ0 = .5). The load of the second
cluster is λ1 (varying from .8 to 1.1).

constant equal to λ). A master will only steal work from
other masters while a worker can steal both from a master
and from other workers.

5.3.1 Master-worker in one cluster
Let us first consider a network composed of only one cluster

and let us study the effect of the fraction of masters on the
performance of the system. We compare three different
strategies: probabilistic stealing with various parameters,
uniform stealing and steal from masters. This situation
can be described in our model by setting the number of
clusters to 2, cluster 0 representing the masters and cluster
1 representing the workers. We set γij = γii, λ0 = λ/f0,
λ1 = 0 and p00 = 1. For the probabilistic stealing strategy,
we study different probabilities for a worker to steal a master
p10 = .2, .4, .6, .8. The uniform stealing (resp. steal only
from masters) corresponds to p10 = x0 (resp. p10 = 1). We
also compare the case where the jobs arrive one by one and
the case of batch arrivals with a batch size of 20.

The average sojourn time for all strategies as a function of
the fraction of masters is shown in Figure 12. As expected, in
all cases, the uniform stealing is the worst strategy when the
number of masters is low and when the proportion of masters
grows, things get better. When the proportion of masters is
close to 1, all strategies coincide. When the batches are of size
1, the optimal strategy is always to steal from the masters.
When the batches are of size 20, the optimal strategy is
to steal about 50% from the masters (more precisely, the
optimal is about 60% for low proportions of masters (< .3)
and 40% above).

The most interesting property shown in this figure is that
in all cases, having all the arrivals concentrated on a few
resources improves the performance of the system if we tune
the probability of stealing correctly.

5.3.2 Master-worker in two clusters
The behavior observed in the two cluster model is similar

to the behavior with a single cluster. We consider a network
of two clusters with the same proportion f0 of masters in
each cluster. All the arrivals are concentrated on the masters.
The masters are only stealing from other masters and we
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(b) Average sojourn time when the batch size is 20.

Figure 12: Comparison of the average sojourn time
in the Master-Worker setting with one cluster.

study different strategies of stealing for the workers. As
in the one cluster case, the uniform policy is not efficient.
Therefore, we only focus on the policies stealing from master
and probabilistic stealing with a probability of .2, .4 and .6.

The results are shown in Figure 13, comparing a case
with arrivals by batches of size 20 and a case without batch
arrivals. Once again we see that in the case where the batches
are of size 1, the most efficient strategy is always to steal
from the masters while if the size of the batches is larger (20
in this example), the most efficient strategy is to steal from
workers with a non zero probability. Moreover in both cases,
a good choice of the probabilities makes the performance of
the system better when the proportion of masters is low.

When the proportion of masters is low, the good perfor-
mance can be explained in part by the fact that we neglect
the congestion that might occur when a single resource has
to deal with too arrivals or steal requests. In practical appli-
cations, one would have to take this into account.

6. CONCLUSION AND FUTURE WORK
In this paper we presented a mean field approximation of

the work stealing algorithm on a large number of processors
and show convergence for finite time as well as for steady
state. This allows one to run a rather exhaustive evaluation
for several performance measures such as average response
times, average number of steals per job. The distribution
of response times can also be sampled using fast simulation,
providing more meaningful performance indexes (variance,
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Figure 13: Average sojourn time in the Master-
Worker setting with two clusters for λ = .7.

percentiles, tail behavior). This also allows one to evaluate
work stealing under several scenarios: all processors are in
one homogeneous cluster, or partitioned into several clusters
where the time to steal from one cluster to another depends
on the distance between the clusters. The scenario where
work is allocated to a few master processors and stolen by
workers is also evaluated and numerical evidences show that
it performs really well with appropriate stealing parameters.

We are currently considering two extensions of this work.
The first one is to model the case with a finite number of
jobs using a mean approach, and then tune the parameters
to minimize the total completion time. The second one is to
conduct a thorough comparison with push and pull policies
currently used in computational grids.
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