Balanced Labeled Trees : Density, Complexity and Mechanicity

Nicolas Gast - Bruno Gaujal

LIG

September 17, 2007

Sturmian Words: 3 equivalent definitions

Consider an infinite words:

00101001001010010100100...

- minimal complexity : n + 1 factors of length n. example: 4 factors of length 3: 001, 010, 100 and 101.
- balanced : number of 1 only differ by 1 in factors of same length.
 - length 3: 1 or 2.
 - length 4: 1 or 2.
 - . . .
- mechanical:
 - for all *i*: $w_i = \lfloor \alpha * (i+1) + \theta \rfloor \lfloor \alpha * i + \theta \rfloor$ or for all *i*: $w_i = \lceil \alpha * (i+1) + \theta \rceil - \lceil \alpha * i + \theta \rceil$

Introduction

Laboratoire Informatique de Grenoble

Problem

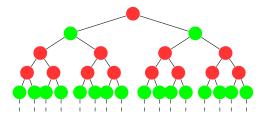
Can we extend theses notions to trees?

- sturmian
- balanced
- mechanical

Previous Work

Definition (Berstel, Boasson, Carton and Fagnot, 2007) A Sturmian tree is a tree with n + 1 subtrees of size n.

Simple example:



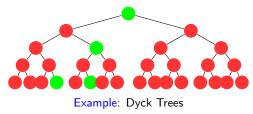
Example: The uniform tree corresponding to 0100101...

Rational Balanced and Mechanic

Laboratoire Informatique de Grenoble

Properties

- Link with language theory
- Interesting examples:



But

Rational

- the balanced property is lost (important in optimization) problems)
- no simple equivalent characterization

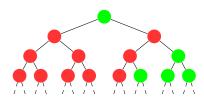
Introduction

Balanced and Mechanic

Our Words are Infinite Labeled Trees

Our trees are:

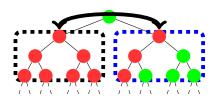
- rooted
- ▶ labeled by 0 or 1
- ► infinite
- Non-planar
 (≠ Original definition of Sturmian Trees)



Our Words are Infinite Labeled Trees

Our trees are:

- rooted
- ▶ labeled by 0 or 1
- ▶ infinite
- Non-planar
 (≠ Original definition of Sturmian Trees)



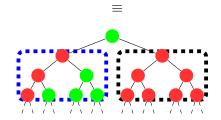
Laboratoire Informatique de Grenoble

Our Words are Infinite Labeled Trees

Our trees are:

- rooted
- labeled by 0 or 1

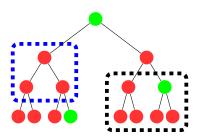
- ▶ infinite
- Non-planar
 (≠ Original definition of Sturmian Trees)



What are Subtrees and Density?

We define:

- Subtree of height n
- Subtree of width k and height n
- Density of a subtree = average number of 1.
- If d_n is the density of the subtree of height n:
 - density = $\lim_n d_n$
 - average density = $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} d_k$



Introduction

Rational Balanced and Mechanic

Laboratoire Informatique de Grenoble

First simple case

What is a non-planar Rational Tree?

Introduction

Rational

Balanced and Mechanic

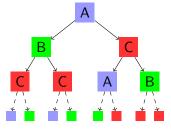
Rational Trees: Definition

We call P(n) = number of subtrees of size n.

Rational Trees: 3 equivalent definitions:

$$\blacktriangleright \exists n/P(n) = P(n+1)$$

$$\blacktriangleright \exists n/P(n) \leq n.$$

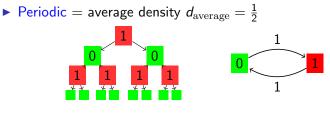


Rational Tree: average Density

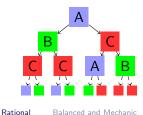
Theorem

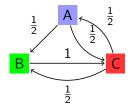
- A rational Tree has an average density α which is rational.
 - α is not necessary a density but:
- If the Markov chain associated is aperiodic then there exists a density.

Example of density



• Aperiodic : density $d = \frac{2}{9}\ell_A + \frac{1}{3}\ell_B + \frac{4}{9}\ell_C$





Introduction

Balanced and Mechanic

Laboratoire Informatique de Grenoble

Second case

Balanced and Mechanical Trees

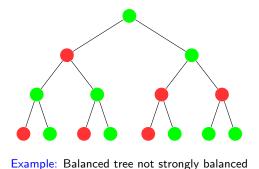
Introduction

Rational

Balanced and Mechanic

- Balanced tree: number of 1 in subtrees of height n only differ by 1.
- Strongly balanced tree: same property with subtrees of height n and width k.

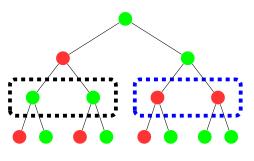
- Balanced tree: number of 1 in subtrees of height n only differ by 1.
- Strongly balanced tree: same property with subtrees of height n and width k.



Introduction

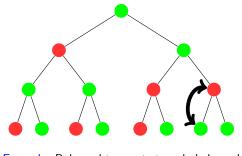
Rational

- Balanced tree: number of 1 in subtrees of height n only differ by 1.
- Strongly balanced tree: same property with subtrees of height n and width k.



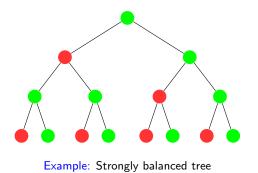
Example: Balanced tree not strongly balanced

- Balanced tree: number of 1 in subtrees of height n only differ by 1.
- Strongly balanced tree: same property with subtrees of height n and width k.



Example: Balanced tree not strongly balanced

- Balanced tree: number of 1 in subtrees of height n only differ by 1.
- Strongly balanced tree: same property with subtrees of height n and width k.



Rational Bala

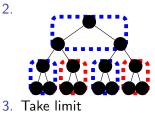
Density of a Balanced Tree

Theorem

A balanced tree has a density.

Sketch of the proof.

1. A tree of size *n* has a density α_n or $\alpha_n + \frac{1}{2^n - 1}$



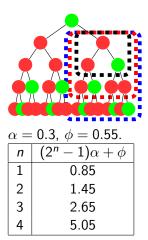
If blue has a density α_2 and red $\alpha_2 + \frac{1}{3}$ then $\alpha_2 \le \alpha_4 \le \alpha_2 + \frac{1}{3}$

Introduction

Mechanical Trees

- Subtree of size n has $2^n 1$ nodes.
- \blacktriangleright We want density α

Mechanical Trees



- Subtree of size n has $2^n 1$ nodes.
- We want density α

Mechanical tree of density α :

For all node *i*, there is a phase \$\phi_i \in [0; 1]\$ such that the number of 1 in a subtree of height *n* and root *i* is [(2ⁿ − 1)α + φ_i] (resp. for all i: [(2ⁿ − 1)α + φ_i])

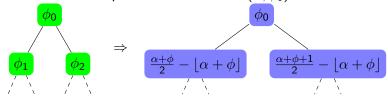
Introduction

Rational Ba

Uniqueness of a mechanical Tree

Theorem

• There exists a unique mechanical tree if (α, ϕ_0) is fixed.



• The phase of the root ϕ_0 is unique for almost all α .

Rational Balanced and Mechanic

Laboratoire Informatique de Grenoble

Equivalences?

What are the equivalences between definitions?

Introduction

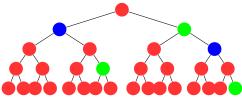
Rational

Balanced and Mechanic

Equivalences between Definitions

Theorem (Mechanical \sim strongly balanced)

- A mechanical tree is strongly balanced
- A strongly balanced tree with irrational density is mechanical
- A strongly balanced tree with rational density is ultimately mechanical.



Example: Ultimately mechanical tree

Introduction

Rational Balanced a

Balanced and Mechanic

Sketch of Proof

Mechanical implicates strongly balanced.

The number of 1 in a subtree of size *n* and width *k* is bounded by $\lfloor (2^n - 2^k)\alpha \rfloor$ and $\lfloor (2^n - 2^k)\alpha \rfloor + 1$

Strongly Balanced implicates mechanical.

 $\forall \tau \in [0; 1)$, if h_n is the number of 1 in the subtree of size n, at least one of these properties is true:

1. for all *n*:
$$h_n \leq \lfloor (2^n - 1)\alpha + \tau \rfloor$$
,

2. for all *n*:
$$h_n \ge \lfloor (2^n - 1)\alpha + \tau \rfloor$$
.

We choose ϕ the maximal τ such that 1 is true.

Theorem

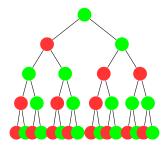
An irrational mechanical tree is a sturmian tree: it has n + 1 subtrees of height n.

Proof.

- A subtree of size n depends only on its phase
- ▶ In fact, it depends on $((2^1 1)\alpha + \phi, ..., (2^n 1)\alpha + \phi)$ which takes n + 1 values when $\phi \in [0; 1)$.

Limit of the Equivalences

- ► Balanced ⇒ strongly balanced (no matter the density is rational or not).
- Sturmian \Rightarrow balanced.
- ► Irrational Balanced tree ⇒ sturmian.

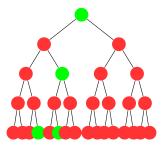


Example: Balanced tree not str. bal.

Rational Bala

Limit of the Equivalences

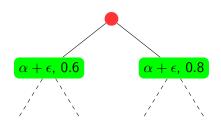
- ▶ Balanced ⇒ strongly balanced (no matter the density is rational or not).
- Sturmian \Rightarrow balanced.
- ► Irrational Balanced tree ⇒ sturmian.



Example: Dyck Tree

Limit of the Equivalences

- ▶ Balanced ⇒ strongly balanced (no matter the density is rational or not).
- Sturmian \Rightarrow balanced.
- ► Irrational Balanced tree ⇒ sturmian.



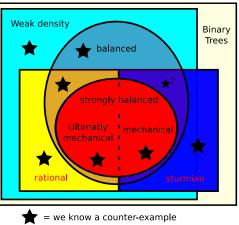
Example: Balanced tree non sturmian

Rational Balan

Balanced and Mechanic

Conclusion

- Non-planar definition better?
- Constructive definition
- Strong inclusions
- Good characterization
 - but:
 - what are exactly balanced trees?
 - how many trees of size n?



? = we think there is a counter-example

Introduction

Rational Balanced and Mechanic