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Abstract: We study the convergence of Markov Decision Processes made of a large number of
objects to optimization problems on ordinary differential equations (ODE). We show that the
optimal reward of such a Markov Decision Process, satisfying a Bellman equation, converges to
the solution of a continuous Hamilton-Jacobi-Bellman (HJB) equation based on the mean field
approximation of the Markov Decision Process. We give bounds on the difference of the rewards,
and a constructive algorithm for deriving an approximating solution to the Markov Decision Process
from a solution of the HJB equations. We illustrate the method on three examples pertaining
respectively to investment strategies, population dynamics control and scheduling in queues are
developed. They are used to illustrate and justify the construction of the controlled ODE and to
show the gain obtained by solving a continuous HJB equation rather than a large discrete Bellman
equation.
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Modèles Champ Moyen et Processus de Décision
Markovien: de l’optimisation discrète à l’optimisation

continue.

Résumé : Ce document étudie la convergence de processus de décision markoviens composés d’un
grand nombre d’objets vers des problèmes d’optimisation sur des équations différentielles. Nous
montrons que le gain optimal du processus de décision converge vers la solution d’une équation
continue de type “Hamilton-Jacobi-Bellman”. La preuve utilise à la fois des outils classiques des
modèles champs moyens et différents nouveaux couplages entre les modèles discrets et continus qui
permettent de donner des bornes explicites. La méthode est ensuite illustrée par trois exemples
concernant des stratégies d’investissement, du contrôle de dynamiques de population et un problème
d’allocation de ressources.

Mots-clés : Champ Moyen, Hamilton-Jacobi-Bellman, Contrôle Optimal, Processus de Décision
Markovien
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1 Introduction

The purpose of this paper is to study optimization problems on Markovian systems composed of a
large number of interacting objects.

Consider a system of N objects evolving in a common environment. At each time step, objects
change their state randomly according to some probability kernel ΓN . This kernel depends on the
number of objects in each state and also on the decisions of a centralized controller. The goal of
this paper is to study the behavior of the controlled system when N becomes large.

Several papers investigate the asymptotic behavior of such systems, but without controllers.
For example, in [3, 15], the authors showed that under mild conditions the system converges to a
deterministic limit when N grows. The limiting system can be of two types, depending on the
intensity I(N) (the intensity is the probability than an object changes its state between two time
steps). If I(N) = ON→∞(1), the system converges to a dynamical system in discrete time [15]. If
I(N) goes to 0 as N grows, the limiting system is a continuous time dynamical system and can be
described by ordinary differential equations (ODE).

In [8], the authors consider the controlled case when the intensity is O(1). In that case,
the optimization problem of the system of size N converges to a deterministic optimization
problem in discrete time. Solving the deterministic system allows one to compute policies that are
asymptotically optimal as the number of objects grows.

In this paper, we focus on the o(1) case, which is substantially different from the discrete time
case. We consider a Markov decision process where at each time step, a central controller chooses
an action from a predefined set that will modify the dynamics of the system. For this, its gets a
reward depending on the current state of the system and on the action. The goal of the controller
is to maximize the expected reward over a finite time horizon. We show that when N goes to
infinity, this problem converges to an optimization problem on an ordinary differential equation.

More precisely, we show that when the Markov decision process is such that its empirical density
measure is Markovian, then its optimal reward converges to the optimal reward of its mean field
approximation, given by the solution of an HJB equation. Furthermore, the optimal policy of
the limit continuous system is also asymptotically optimal for the original discrete system. Our
method relies on bounding techniques used in stochastic approximation and learning [4, 1]. We
also introduce an original coupling method, where, to each sample path of the Markov decision
process, we associate a random trajectory, obtained as a solution of the ODE, i.e. the mean field
limit, controlled by random actions.

This convergence result has an algorithmic counterpart. Basically, when confronted with a
large Markov Decision problem, one can first solve the HJB equation for the associated mean field
limit and then build a decision policy for the initial system that is asymptotically optimal.

Few papers in the literature are concerned with the problem of mixing the limiting behavior
of a large number of objects with optimization. In [6], the value function of the Markov decision
process is approximated by a linearly parametrized class of functions, and a fluid approximation
of the MDP is used. It is shown that a solution of the HJB equation is a value function for a
modification of the original MDP problem. In [20, 7], the curse of dimensionality of dynamic
programming is circumvented by approximating the value function by linear regression. In [16], a
continuous optimization problem is seen as a fluid limit of a discrete Markov chain. The chain
is ad-hoc and is constructed in the purpose of solving the optimizing the fluid limit of a queuing
system. Our approach, which uses a mean field approximation, is more structural. In particular it
allows one to consider the case where the intensity of actions is only bounded in expectation. Also,
our method is different as we explicitly account for the rate of convergence of the original model to
its mean field limit, and we obtain explicit bounds.

These results have two main implications. The first one is to justify the construction of
controlled ODEs as good approximations of large discrete controlled systems. This construction
is often done without rigorous proofs. A discussion based on the vaccination example is given in
Section 4.2.

The second implication concerns the effective computation of an optimal control policy. In the
discrete case, this is usually done by using dynamic programming for the finite horizon case or by
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4 N.Gast & B. Gaujal & J.-Y. Le Boudec

computing a fixed point of the Bellman equation in the discounted case. Both approaches suffer
from the curse of dimensionality that makes them impractical when the state space is too large. In
our context, the size of the state space is exponential in N , making the problem even more acute.
In practice, modern supercomputers only allow one to tackle optimal control problems where N is
no larger than a few tens.

The mean field approach offers an alternative to brute force computations. By letting N go
to infinity, the discrete problem is replaced by a limit Hamilton-Jacobi-Bellman equation that is
deterministic and where the dimensionality of the original system has been hidden in the density
measure. Solving the HJB equation numerically is sometimes rather easy, as in the examples in
Sections 4.1 and 4.2. It provides a deterministic optimal policy whose reward with a finite (but
large) number of objects is remarkably close to the optimal reward.

In this paper we focus on the finite horizon case, though the technique applies mutatis mutandis
to infinite horizon with discount.

The rest of the paper is structured as follows. Section 2 contains definitions, some notation,
and hypotheses. Section 3 gives the theoretical results and the resulting algorithms. Section 4
illustrates the application of our method on a few examples. Section 5 contains proofs.

2 Notations and Definitions

2.1 System with N Objects

We consider a system composed by N objects. Each object has a state in the finite set S = {1 . . . S}.
Time is discrete and the state of the object n at step k ∈ N is denoted XN

n (k). The state of
the system at time k is XN (k) def=

(
XN

1 (k) . . . XN
N (k)

)
. For all i ∈ S, we denote by MN (k) the

empirical measure of the objects
(
XN

1 (k) . . . XN
N (k)

)
at time k:

MN (k) def=
1
N

N∑
n=1

δXNn (k),

where δx denotes the Dirac measure in x. MN (k) is a probability measure on S and MN
i (k) denotes

the proportions of objects in state i at time k (also called the density): MN (k)[i] =
∑N
n=1 1XNn (k)=i.

The system
(
XN (k)

)
k∈N is a Markov process once the sequence of the actions taken by the

controller is fixed. This means that there exists a kernel ΓN (i1 . . . iN , j1 . . . jN , a) such that if the
controller takes the action AN (k) at time t and the system is in state XN (k), then:

P
(
XN (k + 1) = j1 . . . jN |XN (k) = i1 . . . iN , A

N (k) = a
)

= ΓN (i1 . . . iN , j1 . . . jN , a) (1)

The main assumption on the kernel ΓN is that it is invariant by any permutation of the objects.
This implies in particular that the objects are only distinguishable through their state. Moreover,
this means that the process MN (k) is also Markovian once the sequence of actions is given. In
the following, we will focus on the process of density of the system,

(
MN (k)

)
k∈N, whose kernel is

denoted by ΓN .

2.2 Action, Reward and Policy

At every time k, a centralized controller chooses an action AN (k) ∈ A where A is called the action
set. (A, d) is a compact metric space for some distance d. The purpose of Markov Decision is to
compute optimal policies. A policy π = (π0, π1, . . . , πk, . . . ) is a sequence of decision rules that
specifies which actions should be used at time k. In general Markov decision processes, πk may
depend on all the history of the Process MN (0) . . .MN (k). However, it can be shown that when
the state space is finite, deterministic Markovian policies are dominant [17], therefore, we will only
focus on them. For each k, πk is a function P(S)→ A. MN

π (k) denotes the density of the system
at time k when the controller applies policy π.

INRIA



Mean field for Markov Decision Processes 5

If the system has density MN (k) at time k and if the controller chooses the action AN (k), she
gets an instantaneous reward rN (MN (k), AN (k)). The expected average reward over a finite-time
horizon [0;HN ] starting from m0 when applying the policy π is defined by

V Nπ (m) def= E

 bHNc∑
k=0

rN
(
MN
π (k), π(MN

π (k))
)∣∣∣∣∣∣MN

π (0) = m

 (2)

The goal of the controller is to find a optimal policy that maximizes the expected reward. We
denote by V N∗ (m) the optimal reward when starting from m:

V N∗ (m) = sup
π
V Nπ (m).

2.3 Scaling Assumptions

If at some time k, the system has density MN (k) = m and the controller chooses action AN (k) = a,
the system goes into state MN (k + 1) with probabilities given by the kernel ΓN (MN (k), AN (k)).
The expectation of the difference between MN (k+ 1) and MN (k) is called the drift and is denoted
by FN (m, a):

FN (m, a) def= E
[
MN (k + 1)−MN (k)|MN (k) = m,AN (k) = a

]
.

In order to study the limit with N , we assume that FN goes to 0 at speed I(N) when N goes to
infinity and that FN/I(N) converges to a Lipschitz continuous function f . More precisely, we
assume that there exists a sequence I(N) ∈ (0; 1), N = 1, 2, 3..., called the intensity of the model
with limN→∞ I(N) = 0 and a sequence I0(N), N = 1, 2, 3..., also with limN→∞ I0(N) = 0 such
that for all m ∈ P(S) and a ∈ A:

∣∣∣ 1
I(N)F

N (m, a)− f(m, a)
∣∣∣ ≤ I0(N). In a sense, I(N) represents

the order of magnitude of the number of objects that change their state within one unit of time.
The changes of MN (k) during a time step is of order I(N). This suggests a rescaling of time by

I(N) to obtain an asymptotic result. We define the continuous time process
(
M̂N (t)

)
t∈R+

as the

affine interpolation of MN (k), rescaled by the intensity function, i.e. M̂N is affine on the intervals
[kI(N), (k + 1)I(N)], k ∈ N and

M̂N (kI(N)) = MN (k).

Similarly, M̂N
π denotes the affine interpolation of the density under policy π. Thus, I(N) can also

be interpreted as the duration of the time slot for the system with N objects.
We assume that the time horizon and the reward per time slot scale accordingly, i.e. we impose

HN =
⌊

T

I(N)

⌋
rN (m, a) = I(N)r(m, a)

for every m ∈ P(S) and a ∈ A (where bxc denotes the largest integer ≤ x).

2.4 Limiting System (Mean Field Limit)

We will see in Section 3 that as N grows, the stochastic system M̂N
π converges to a deterministic

limit mπ, the mean field limit. For more clarity, all the stochastic variables (i.e., when N is finite)
are in uppercase while their limiting deterministic values are in lowercase.

An action function α : [0;T ]→ A is a piecewise Lipschitz continuous function that associates
to each time t an action α(t). Note that action functions and policies are different in the sense
that actions functions do not take into account the state to define the next action. For an action
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6 N.Gast & B. Gaujal & J.-Y. Le Boudec

function α and an initial condition m0, we consider the following ordinary differential equation for
m(t), t ∈ R+:

m(t)−m(0) =
∫ t

0

f(m(s), α(s))ds. (3)

Under the foregoing assumptions on f and α, this ODE satisfies the Cauchy Lipschitz condition
and therefore has a unique solution once the initial condition m(0) = m0 is fixed. We call φt,
t ∈ R+, the corresponding semi-flow, i.e.

m(t) = φt(m0, α)

is the unique solution of Eq.(3).
As for the system with N objects, we define vα(m0) as the reward of the limiting system over a

finite horizon [0;T ] when applying the action function α and starting from m(0) = m0:

vα(m0) def=
∫ T

0

r (φs(m0, α), α(s)) ds. (4)

This equation looks similar to the stochastic case (2) although there are two main differences. The
first one is that the system is deterministic. The second is that it is defined for action functions
and not for policies. We also define the optimal reward of the deterministic limit v∗(m0):

v∗(m0) = sup
α
vα(m0),

where the supremum is taken over all possible actions functions from [0;T ]→ A.

2.5 Summary of Assumptions

In Section 3 we establish theorems for the convergence of the discrete stochastic optimization problem
to a continuous deterministic one. These theorems are based on several technical assumptions,
which are given next. Since S is finite, the set P(S) is the simplex in RS and for m,m′ ∈ P(S) we
define ‖m‖ as the `2-norm of m and 〈m,m′〉 =

∑S
i=1mim

′
i as the usual inner product.

(A1) (Transition Kernel) Objects can be observed only through their state, i.e., the transition
kernel ΓN , defined by Eq.(1), is invariant by permutations of 1 . . . N .

There exist some non random functions I1(N) and I2(N) such that limN→∞ I1(N) = limN→∞ I2(N) =
0 and such that for all m and any policy π, the number of objects that perform a transition between
time slot k and k + 1 per time slot ∆N

π (k) satisfies

E
(

∆N
π (k)

∣∣MN
π (k) = m

)
≤ NI(N)I1(N)

E
(

∆N
π (k)2

∣∣MN
π (k) = m

)
≤ N2I(N)I2(N)

where I(N) is the intensity function of the model, defined in the following assumption A2.

(A2) (Convergence of the Drift) There exist some non random functions I(N) and I0(N)
and a function f(m, a) such that limN→∞ I(N) = limN→∞ I0(N) = 0 and∥∥∥∥ 1

I(N)
FN (m, a)− f(m, a)

∥∥∥∥ ≤ I0(N)

f is defined on P(S)×A and there exists L2 such that |f(m, a)| ≤ L2.

INRIA



Mean field for Markov Decision Processes 7

(A3) (Lipschitz Continuity) There exist constants L1, K and Kr such that for all m,m′ ∈
P(S), a, a′ ∈ A: ∥∥FN (m, a)− FN (m′, a)

∥∥ ≤ L1 ‖m−m′‖ I(N)
‖f(m, a)− f(m′, a′)‖ ≤ K(‖m−m′‖+ d(a, a′))
|r(m, a)− r(m′, a)| ≤ Kr ‖m−m′‖

We also assume that the reward is bounded: supm,a∈A |r(m, a)| def= ‖r‖∞ <∞.
To make things more concrete, here is a simple but useful case where all assumptions are true.

� The number of objects that perform a transition in one time slot is of order 1/N in expectation,
and is upper bounded by a constant c0,

� and FN (m, a) can be written under the form 1
Nϕ (m, a, 1/N) where ϕ is a continuous

function on ∆S ×A× [0, ε) for some neighborhood ∆S of P(S) and some ε > 0, continuously
differentiable with respect to m.

In this case one can choose I(N) = 1/N , I0(N) = c1/N (where c1 is an upper bound to the norm
of the differential ∂ϕ

∂m ), I1(N) = c2/N for some constant c2 and I2(N) = c0/N .

3 Mean Field Convergence

In this section we establish the main result, Theorem 4, which states the convergence of the
optimization problem for the system with N objects to the optimization problem of the mean
field limit. To this end we introduce two auxiliary systems. The former is the process φt(m0, A

N
π )

defined below, which is a random continuous time system, coupled to the original system with N
objects. The latter is MN

α , also defined below, which is a discrete time system with N objects
under a deterministic action function.

3.1 First Auxiliary System

Consider the system with N objects under policy π. The process MN
π is defined on some probability

space Ω. To each ω ∈ Ω corresponds a trajectory MN
π (ω). For each ω ∈ Ω, we define an action

function ANπ (ω). This random function is piecewise constant on each interval [kI(N), (k + 1)I(N))
(k ∈ N) and is such that ANπ (ω)(kI(N)) def= πk(MN (k)) is the action taken by the controller of the
system with N objects at time slot k, under policy π.

Recall that for any m0 ∈ P(S) and action function α, φt(m0, α) is the solution of the ODE (3).
For every ω, φt(m0, A

N
π (ω)) is the solution of the limiting system with action function ANπ (ω), i.e.

φt(m0, A
N
π (ω))−m0 =

∫ t

0

f(φs(m0, A
N
π (ω)), ANπ (ω)(s))ds.

When ω is fixed, φt(m0, A
N
π (ω)) is a continuous time deterministic process corresponding to

one trajectory MN
π (ω). When considering all possible realizations of MN

π , φt(m0, A
N
π ) is a random,

continuous time function “coupled” to MN
π . Its randomness comes only from the action term ANπ ,

in the ODE. In the following, we omit to write the dependence in ω. ANπ and MN
π will always

designate the processes corresponding to the same ω.
The following result is the main technical result; it shows the convergence of the controlled system

in probability, with explicit bounds. Notice that it does not require any regularity assumption on
the policy π (recall that M̂N

π is the linear interpolation of the discrete time system with N objects).

Theorem 1. Under Assumption (A1,A2,A3), for any ε > 0, N ≥ 1 and any policy π:

P
{

sup
0≤t≤T

∥∥∥M̂N
π (t)− φt(m0, A

N
π )
∥∥∥ > [∥∥MN (0)−m0

∥∥+ I0(N)T + ε
]
eL1T

}
≤ J(N,T )

ε2
(5)
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8 N.Gast & B. Gaujal & J.-Y. Le Boudec

with

J(N,T ) = 8T
{
L2

1

[
I2(N) + I1(N)2 (T + I(N))

]
+ S2

[
I2(N) + I(N) (I0(N) + L2)2

]}
Note that I0(N) and J(N,T ) for a fixed T go to 0 as N →∞. The proof is given in Appendix

5.1.
Let π is a policy and ANπ the sequence of actions corresponding to a trajectory MN

π as we just
defined. Eq.(4) defines the reward for the deterministic limit when applying a sequence of action.
This defines a random variable vANπ (m0) which corresponds to the reward of System ∞ when
applying ANπ . The random part comes from ANπ . E

[
vANπ (m0)

]
designates the expectation of this

reward over all possible ANπ . A first consequence of Theorem 1 is the convergence of V Nπ
(
MN (0)

)
to E

[
vANπ (m0)

]
with an error that can be uniformly bounded.

Theorem 2 (Uniform convergence of the reward). Let ANπ be the random action function associated
with MN

π , as defined earlier. Under Assumptions (A1,A2,A3),∣∣V Nπ (
MN (0)

)
− E

[
vANπ (m0)

]∣∣ ≤ B (N, ∥∥MN (0)−m0

∥∥)
with

B(N, δ) def= I(N) ‖r‖∞ +Kr (δ + I0(N)T )
eL1T − 1

L1

+
3

2
1
3

[
Kr

L1

(
eL1T − 1 +

I(N)
2

)] 2
3

‖r‖
1
3
∞ J(N,T )

1
3 (6)

Note that limN→∞,δ→0B(N, δ) = 0; in particular, if limN→∞MN
π (0) = m0 almost surely [resp. in

probability] then
∣∣V Nπ (

MN (0)
)
− E

[
vANπ (m0)

]∣∣→ 0 almost surely [resp. in probability].

The proof is given in appendix 5.2.

3.2 Second Auxiliary System

We now introduce the second auxiliary system. Let α be an action function that specifies the action
to be taken at time t. Although α has been defined for the limiting system, it can also be used in
the system with N objects. In that case, the action function α can be seen as a policy that does
not depend on the state of the system. At step k, the controller applies action α(kI(N)). By abuse
of notation, we denote by MN

α , the state of the system when applying the action function α (it
will be clear from the notation whether the subscript is an action function or a policy). Similarly
we define

V Nα (m0) def= E

HN∑
k=0

r
(
MN
α (k), α(kI(N))

)∣∣∣∣∣∣MN
α (0) = m0


A second consequence of Theorem 1 is the convergence of MN

α and of the reward:

Theorem 3. Assume (A1,A2,A3); α is a piecewise Lipschitz continuous action function on [0;T ],
of constant Kα, and with at most p discontinuity points. Let M̂N

α (t) be the linear interpolation of
the discrete time process MN

α . Then

P
{

sup
0≤t≤T

∥∥∥M̂N
α (t)− φt(m0, α)

∥∥∥ > [∥∥MN (0)−m0

∥∥+ I ′0(N,α)T + ε
]
eL1T

}
≤ J(N,T )

ε2
(7)

with

I ′0(N,α) = I0(N) + I(N)Ke(K−L1)T

(
Kα

2
+ 2 (1 + min(1/I(N), p)) ‖α‖∞

)
Further, ∣∣V Nα (

MN (0)
)
− vα(m0)

∣∣ ≤ B′ (N, ∥∥MN (0)−m0

∥∥) (8)

INRIA



Mean field for Markov Decision Processes 9

with B′(N, δ) as in Eq.(6) but with I0(N) replaced by I ′0(N,α).
Note that limN→∞,δ→0B

′(N, δ) = 0; in particular, if limN→∞MN
π (0) = m0 almost surely [resp.

in probability] then limN→∞ V Nα
(
MN (0)

)
= vα(m0) almost surely [resp. in probability].

The proof is given in appendix 5.3.

3.3 Convergence of Optimization Problems

Theorem 4 (Optimal System Convergence). Assume (A1,A2,A3). If limN→∞MN (0) = m0

almost surely [resp. in probability] then:

lim
N→∞

V N∗
(
MN (0)

)
= v∗ (m0)

almost surely [resp. in probability].

Proof of Theorem 4. This theorem is a direct consequence of Theorem 3 and Theorem 2. We do
the proof for almost sure convergence, the proof for convergence in probability is similar. To prove
the theorem we prove

lim sup
N→∞

V N∗ (MN (0)) ≤ v∗(m0) ≤ lim inf
N→∞

V N∗ (MN (0)) (9)

� Let ε > 0 and α(.) be an action function such that vα(m0) ≥ v∗(m0) − ε (such an action
is ε−optimal). Theorem 3 shows that limN→∞ V Nα (MN (0)) = vα(m0) ≥ v∗(m0) − ε a.s.
This shows that lim infN→∞ V N∗ (MN (0)) ≥ limN→∞ V Nα (MN (0)) ≥ v∗(m0)− ε; this holds
for every ε > 0 thus lim infN→∞ V N∗ (MN (0)) ≥ v∗(m0) a.s., which establishes the second
inequality in Eq.(9), on a set of probability 1.

� Let B(N, δ) be as in Theorem 2, ε > 0 and πN such that V N∗ (MN (0)) ≤ V NπN (MN (0)) + ε.

By Theorem 2, V NπN (MN (0)) ≤ E
(
vAN

πN
(m0)

)
+ B(N, δN ) ≤ v∗(m0) + B(N, δN ) where

δN
def=
∥∥MN (0)−m0

∥∥. Thus V N∗ (MN (0)) ≤ v∗(m0) + B(N, δN ) + ε. If further δN → 0
a.s. it follows that lim supN→∞ V N∗ (MN (0)) ≤ v∗(m0) + ε a.s. for every ε > 0, thus
lim supN→∞ V N∗ (MN (0)) ≤ v∗(m0) a.s.

In particular, this theorem, along with Theorem 3 shows that an optimal policy for the limiting
system is asymptotically optimal for the system with N objects as N goes to infinity. Since the
reward function r(m, a) is bounded and the time-horizon [0;T ] is finite, the set of reward when
starting from the point m, {vα(m) : α action function}, is bounded. This set is not necessarily
compact since the set of action function is not closed (a limit of Lipschitz continuous functions
is not necessarily Lipschitz continuous). However, as it is bounded, for all ε > 0, there exists an
action function αε such that v∗(m) = supα vα(m) ≤ vαε + ε. Theorem 4 shows that αε is optimal
up to a term 2ε for N big enough.

In particular, this shows that as N grows, policies that do not take into account the state of the
system (i.e., action functions) are asymptotically as good as adaptive policies. In practice however,
adaptive policies might perform better, especially from small values of N . However, it is in general
impossible to prove convergence for the adaptive policy.

In fact, in many cases, the optimal policies π used for the control of stochastic systems are not
continuous and exhibits thresholds. In those cases MN

π does not necessarily converge and obtaining
asymptotics can be difficult. In some particular case, like for the best response dynamics studied
in [9], limit theorems can be obtain but at the cost of a greater complexity. This is beyond the
scope of the present paper.

RR n° 7239



10 N.Gast & B. Gaujal & J.-Y. Le Boudec

3.4 Hamilton-Jacobi-Bellman equation and dynamic programming

Let us consider the finite time optimization problem for the stochastic system and its limit on a con-
structive point of view. Since the state space is finite, one can compute the optimal reward by using a
dynamic programming algorithm. If UN (m, t) denotes the optimal reward for the stochastic system
starting from m at time t/I(N), then UN (m, t) = supπ E

[∑T/I(N)
k=t/I(N) r

N (MN
π (k)) : MN (t) = m

]
.

UN (x, t). The optimal reward can be computed by a discrete dynamic programming algorithm
[17] by setting UN (m,T ) = rN (m) and

UN (m, t) = sup
a∈A

E
(
rN (m, a) + UN (MN (t+ I(N)), t+ I(N))

∣∣ M̄N (t) = m,AN (t) = a
)
. (10)

Then, the optimal cost over horizon [0;T/I(N)] is V N∗ (m) = U(m, 0).
Similarly, if we denote by u(m, t) the optimal cost over horizon [t;T ] for the limiting system,

u(m, t) satisfies the classical Hamilton-Jacobi-Bellman equation:

u̇(m, t) + max
a
{∇u(m, t).f(m, a) + r(m, a)} = 0. (11)

This provides a way to compute the optimal reward as well as the optimal policy by solving the
partial differential equation above.

3.5 Algorithmic Construction

Theorem 4 above can be used to design an effective construction of an asymptotically optimal
policy for the system with N objects over the horizon [0, H] by using the procedure described in
Algorithm 1.

Algorithm 1: Static algorithm constructing a policy π for the system with N objects, over
the finite horizon [O;H].

begin
From the original system with N objects, construct the density measure MN and its
kernel ΓN and let MN (0) be the initial density;
Compute the limit of the drift of ΓN , namely the function f ;
Solve the HJB equation (11) on the interval [0, HI(N)]. This provides an optimal control
function α(MN

0 , t);
Construct a discrete control π(MN (k), k) for the discrete system, that gives the action to
be taken under state MN (k) at step k:

π(MN (k), k) def= α(φkI(N)(MN (0), α)).

return π;
end

Theorem 4 says that under policy π, the total reward V Nπ is asymptotically optimal:

lim
N→∞

V Nπ (MN (0)) = lim inf
N→∞

V N∗ (MN (0)).

The policy π constructed by Algorithm 1 is static in the sense that it does not depend on
the state MN (k) but only on the initial state MN (0), and the deterministic estimation of MN (k)
provided by the differential equation. One can construct a more adaptive policy by updating
the starting point of the differential equation at each step. This new procedure, constructing an
adaptive policy π′ from 0 to the final horizon H is given in Algorithm 2.

In practice, the total reward of the adaptive policy π′ is larger than the reward of the static
policy π because it uses on-line corrections at each step, before taking a new action. However
Theorem 4 does not provide a proof of its asymptotic optimality.
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Algorithm 2: Adaptive algorithm constructing a policy π′ for the system with N objects,
over the finite horizon H.

begin
M := MN (0); k := 0;
repeat

αk(M, ·) := solution of (11) over [kI(N), HI(N)] starting in M ;
π′(M,k) := αk(φkI(N)(M,αk));
M is changed by applying kernel ΓNπ′ ;
k:= k+1;

until k=H ;
return π′;

end

4 Application examples

The goal of our approach is twofold. First, the goal is to provide a justification for the study of
deterministic optimization problem as a good approximation of a stochastic problem. The second
goal is to provide new methods for the resolution of some problems. The first one is illustrated
by the first two examples while the last example provides a problem that should be developed in
future work.

4.1 Harvesting

We begin by a first simple example that can be seen as a simplified discrete Merton’s problem.
This first example shows a case where the optimization problem in the infinite system can be
solved in closed form. This can be seen as an ideal case for the mean field approach: while the
original system is difficult to solve even numerically when N is large, taking the limit when N goes
to infinity make it simple to solve, even analytically.

We consider a system made of N objects that can be either in state G (Good) or B (Bad).
The controller can take two actions. The first one leads objects to go from B to G. The second
one leads objects to go from G to B. The controller earn 1/N dollars per object that goes from G
to B. This problem is often referred as a harvesting problem since the controller has the choice
between harvest (action 1) and let it produce (action 0).

Within our framework, we represent this problem with a system of N interacting objects. If
the action is 1, at each time step each object in state B goes to state G with probability 1/N
while if the action taken is 0, each object in state G goes to state B. The intensity of the model is
I(N) = 1/N . If x(t) is the fraction of objects in state G and α(t) ∈ {0; 1} the action taken by the
controller, the mean field limit of the system is:

∂x

∂t
= 1− x(t)− α(t), (12)

and the quantity to maximize is
∫ T

0
x(t)α(t)dt.

Let us call u(x, t) the reward when the remaining time is t and there is a proportion x of users
in state G. The classical Hamilton-Jaccobi-Bellman equation is

∂

∂t
u(t, x) = max

(
x

(
1− ∂

∂x
u(t, x)

)
, (1− x)

∂

∂x
u(t, x)

)
.

The optimal solution of this HJB equation can be given in closed form. The optimal action is
to chose action 1 if x > 1/2 or x > 1− exp(−t), and 0 otherwise.
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12 N.Gast & B. Gaujal & J.-Y. Le Boudec

4.2 Optimal vaccination of a population

The second example has two purposes. The first objective is to provide a justification of a classical
problem in population dynamics. The second one is to show that the mean field approach provides
numerical insights in this case as well. Even if there is no close form for the solution, the optimal
action function can be shown to be of threshold type for the limit problem. This can be used to
make numerical computations much easier.

We consider the propagation of a disease in a population. The classical epidemiological model
is the SIR model of [12]. An individual is either susceptible (S), infected (I) or recover (R). A
susceptible individual become infected by contact of an infected individual or of an external source
(such as plants or animals). Infected individual can recover with a constant rate. A recovered
individual has already have the disease and is immune for a time. It can be susceptible again after
some time. There exist many variations of this model. The reader is referred to [10] for a more
complete description.

This problem can be viewed as an optimization problem. To each infected individual is
associated a cost, representing for example the fact that it cannot work. A cost is also associated to
the vaccination program that can represent the cost of the vaccination campaign or the side-effects
on the population. The focus here is to study vaccination strategies of a population. A controller
can choose to spend some amount of money to vaccinate people: it increases the probability of a
susceptible person to go in the recovered state without having been infected.

The model is as follows. By abuse of notation, we denote S, I,R the proportion of individuals
each state. Each time step, a susceptible person becomes infected with a probability βI/N
(probability of meeting some who is infected). An infected person becomes recovered with probability
γ/N and a recovered person becomes susceptible with probability µ/N . The vaccination intensity
is modeled by a value u ∈ [0; 1]. A susceptible person becomes recovered with probability u/N .
The immediate cost at each step is proportional to the number of infected people plus a cost for
the vaccination. The cost of vaccination is typically chosen to be proportional to the square of the
vaccination rate. Therefore the vaccination cost is chosen to be I + τu2.

This system satisfies assumptions (A1, A2, A3) and we can compute its mean field limit. The
infinite system is described by the following system of differential equations:

∂S
∂t = γR− uS − βIS
∂I
∂t = βIS − µI
∂R
∂t = µI + uS − γR.

(13)

The objective is to find u(t) such that
∫ T

0
I + τu2 is minimized.

This deterministic optimization problem as well as several variations has been studied in the
literature. In [21], the authors show the existence and uniqueness of an optimal control and provide
a numerical method to compute the optimal solution. The same technique has also been applied to
HIV treatment, see [11, 13] for example. This model has also been studied when the state space is
restricted to a two states S and I [19]. In this case, the vaccination is replaced by a treatment that
makes people go from I to S. It can be shown that there exists a threshold I∗ such that if we are
far enough from the end of the time horizon, the strategy is to fully vaccinate (choose u = 1) when
I > I∗ and no vaccination if I < I∗.

Theorem 2 makes the formal link between the description of the model on an individual level
and the resolution of an optimization problem on differential equations, that is often left loose.
It shows that most of these models, based on differential equations and are in fact mean field
approximation of stochastic behaviors. Using our framework, we can show that the optimal control
computed by solving the ODEs are indeed asymptotically optimal for the discrete model at the
individual level.

4.3 Brokering problem

We consider a model of a model of a volunteer computing system like BOINC http://boinc.
berkeley.edu/. Volunteer computing means that people make available their personal computer
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Mean field for Markov Decision Processes 13

for a computing system. When they do not use their computer, their computer is available for the
computing system. However, as soon as they start using their computer, it becomes unavailable for
the computing system. These systems become more and more popular and provide large computing
power at a very low cost [14].

broker

JN users

AN1

B1 Cluster 1 :
QN1 proc.

Figure 1: The brokering problem in a desktop grid system, such as Boinc

The Markovian model with N objects is defined as follows. The N objects represents the
number of users that can submit jobs to the system as well as the number of resources that can
perform the jobs. The resources are grouped in a small number of clusters and all resources in the
same cluster share the same characteristics in term of speed and availability. Users send jobs to a
central broker whose job is to balance the load among the clusters.

There are UN users. Each user has a state u ∈ {active, inactive}. At each time step, an active
user sends a job to the system with a probability pNj and becomes inactive with probability pNi .
An inactive user sends no jobs to the system and becomes active with probability pNa .

The are M clusters. The cluster i contains QNi resources. Each resource has a buffer of bounded
size Ji. A resource can either be available or busy. If it is available and if it has one or more job
in its queue, it completes one job with probability µNi at this time slot. An available resource
becomes busy with probability pNb . In that case, it discards all the packets of its buffer. A busy
resource becomes available with probability pNv .

At each time step, the broker takes an action a ∈ P({1 . . .M}) and sends the packets it received
to the clusters according to the distribution a. A packet sent to cluster i joins the queue of one
resource, j according to a local rule (for example the shortest queue among h of them chosen
uniformly). If the queue of resource j is full, the packet is lost. The goal of the broker is to
minimize the total size of the queues over a finite horizon (and hence the response time of accepted
packets) plus the number of losses.

This model is represented by Figure 1.
We consider the model with an intensity I(N) def= 1/N . The number M of clusters is fixed and

does not depend on N , as well as the sizes Ji of the buffers. However, both the number of users
JN and the number of resources in the clusters QN go to infinity with N . All the probabilities
scale with 1/N . For example the probability for a resource in cluster i to complete a task during
one time step is µNi

def= µi/N for some constant µi.
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14 N.Gast & B. Gaujal & J.-Y. Le Boudec

The limiting system is described by the variable ua(t), that represents the fraction of active
users, and the variables qk,i(t) and bk(t) that represents the fraction of resources in cluster k having
i jobs and the fraction of resources in cluster k that are busy. For an action function α, we denote
by αi(t) the fraction of packets send to cluster i. Denoting u the fraction of users (both active or
inactive) and qk the fraction of processors in cluster k, we get the following equations:

∂ua(t)
∂t

= −piua(t) + pa(u− ua(t)) (14)

∂qk,0(t)
∂t

= pabk(t)− αk(t)pjua(t)
qk

qk,0(t) + µkqk,i+1 − pbqk,0(t) (15)

∂qk,i(t)
∂t

=
αk(t)pjua(t)

qk
(qk,i−1(t)− qk,i(t)) + µk(qk,i+1 − qk,i)− pbqk,i(t) (16)

∂qk,Jk(t)
∂t

=
αk(t)pjua(t)

qk
qk,Jk−1(t) +−µkqk,Jk − pbqk,Jk(t) (17)

∂bk(t)
∂t

= −pvbk(t) + pb

Jk∑
i=0

qk,i(t). (18)

where (15) and (17) hold for all cluster k and (16) holds for all cluster k and all i ≤ Jk. The cost
associated to the action function α is:∫ T

0

M∑
k=1

Jk∑
i=1

iqk,i(t) + C

(
M∑
k=1

αk(t)pjua(t)
qk

(qk,Jk(t) + bk(t)) +
M∑
k=1

pb

Jk∑
i=1

iqk,i(t)

)
dt (19)

The first part of (19) represents the cost induced by the number of jobs in the system. The second
part of (19) represents the cost induced by the losses. C is a parameter to give more or less weight
on the cost induced by the lost.

The HJB problem becomes minimizing (19) subjects that the variables ua, qk,i, bk satisfy
Equations (14) to (18). The limit system is made of a system of (B + 2).M ODEs. Solving the
HJB equation in this case can be challenging but remains more tractable than solving the original
Bellman equation over BNM states. The curse of dimensionality is so acute here that the finite
system cannot be solved numerically with more than 10 processors in total [5] and one usually
settles for heuristics approaches.
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5 Proofs

5.1 Theorem 1

The proof is inspired by the method in [2]. The main idea of the proof is to write

∥∥MN
π (k)− φkI(N)(m0, A

N
π )
∥∥ ≤

∥∥∥∥∥∥MN
π (k)−MN (0)−

k−1∑
j=0

fN (j)

∥∥∥∥∥∥
+

∥∥∥∥∥∥MN (0) +
k−1∑
j=0

fN (j)− φkI(N)(m0, A
N
π )

∥∥∥∥∥∥
where fN (k) def= FN

(
MN
π (k), πk(MN

π (k))
]

is the drift at time k if the empirical measure is MN
π (k).

The first part is bounded with high probability using a Martingale argument (Lemma 6) and the
second part is bounded using an integral formula.
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16 N.Gast & B. Gaujal & J.-Y. Le Boudec

Recall that M̄N
π (t) def= MN

π

(⌊
t

I(N)

⌋)
, i.e. M̄N

π (kI(N)) = MN
π (k) for k ∈ N and M̄N

π is

piecewise constant and right-continuous. Let ∆N
π (k) be the number of objects that change state

between time slots k and k + 1. Thus,∥∥MN
π (k + 1)−MN

π (k)
∥∥ ≤ N−1

√
2∆N

π (k) (20)

and thus ∥∥∥M̂N
π (t)− M̄N

π (t)
∥∥∥ ≤ N−1

√
2∆N

π (k) (21)

as well, with k =
⌊

t
I(N)

⌋
. Define

ZNπ (k) = MN
π (k)−MN (0)−

k−1∑
j=0

FN
(
MN
π (j), πj(MN

π (j))
)

(22)

and let ẐNπ (t) be the continuous, piecewise linear interpolation such that ẐNπ (kI(N)) = ZNπ (k)
for k ∈ N. Recall that ANπ (t) def= πbt/I(N)c(MN (bt/I(N)c)) – ANπ (t) is the action taken by the
controller at time t/I(N). It follows from these definitions that:

M̂N
π (t) = MN

π (0) +
∫ t

0

1
I(N)

FN
(
M̄N
π (s), ANπ (s)

)
ds+ ẐNπ (t)

= MN
π (0) +

∫ t

0

1
I(N)

FN
(
M̂N
π (s), ANπ (s)

)
ds+ ẐNπ (t)

+
∫ t

0

1
I(N)

[
FN

(
M̄N
π (s), ANπ (s)

)
− FN

(
M̂N
π (s), ANπ (s)

)]
ds

Using the definition of the semi-flow φt(m0, A
N
π ) = m0 +

∫ t
0
f(φs(m0, A

N
π ), ANπ (s))ds, we get:

M̂N
π (t)− φt(m0, A

N
π ) = MN

π (0)−m0 + ẐNπ (t)

+
∫ t

0

1
I(N)

[
FN

(
M̂N
π (s), ANπ (s)

)
− FN

(
φs(m0, A

N
π ), ANπ (s)

)]
ds

+
∫ t

0

[
1

I(N)
FN

(
φs(m0, A

N
π ), ANπ (s)

)
− f

(
φs(m0, A

N
π ), ANπ (s)

)]
ds

+
∫ t

0

1
I(N)

[
FN

(
M̄N
π (s), ANπ (s)

)
− FN

(
M̂N
π (s), ANπ (s)

)]
ds

Applying Assumption (A2) to the third line, (A3) to the second and fourth lines, and Equation (21)
to the fourth line leads to:∥∥∥M̂N

π (t)− φt(m0, A
N
π )
∥∥∥ ≤

∥∥MN
π (0)−m0

∥∥+
∥∥∥ẐNπ (t)

∥∥∥+ L1

∫ t

0

∥∥∥M̂N
π (s)− φs(m0, A

N
π )
∥∥∥ ds

+I0(N)t+
√

2L1

N

b t
I(N)c∑
k=0

∆N
π (k)

For all N , π, T , b1 > 0 and b2 > 0, define

Ω1 =

ω ∈ Ω : sup
0≤k≤ T

I(N)

k∑
j=0

∆N
π (j) > b1

 , Ω2 =

ω ∈ Ω : sup
0≤k≤ T

I(N)

∥∥ZNπ (k)
∥∥ > b2

 (23)

Assumption (A1) implies conditions on the first and second order moment of ∆N
π (k). Therefore by

Lemma 5, this shows that for any b1 > 0:

P (Ω1) ≤ TN2

b21

[
I2(N) + I1(N)2 (T + I(N))

]
(24)
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Moreover, we show in Lemma 6 that:

P (Ω2) ≤ 2S2 T

b2

[
I2(N) + I(N) [(I0(N) + L2)]2

]
(25)

Now fix some ε > 0 and let b1 = Nε
2
√

2L1
, b2 = ε/2. For ω ∈ Ω \ (Ω1 ∪ Ω2) and for 0 ≤ t ≤ T :∥∥∥M̂N

π (t)− φt(m0, A
N
π )
∥∥∥ ≤

∥∥MN
π (0)−m0

∥∥+ ε+ I0(N)T

+L1

∫ t

0

∥∥∥M̂N
π (s)− φs(m0, A

N
π )
∥∥∥ ds

By Grönwall’s lemma:∥∥∥M̂N
π (t)− φt(m0, A

N
π )
∥∥∥ ≤ [∥∥MN

π (0)−m0

∥∥+ ε+ I0(N)T
]
eL1t (26)

and this is true for all ω ∈ Ω \ (Ω1 ∪ Ω2). We apply the union bound P (Ω1 ∪ Ω2) ≤ P (Ω1) + P (Ω2)
which, with Eq.(24) and Eq.(25), concludes the proof.

The proof of Theorem 1 uses the following lemmas.

Lemma 5. Let (Wk)k∈N be a sequence of square integrable, nonnegative random variables, adapted
to a filtration (Fk)k∈N, such that W0 = 0 a.s. and for all k ∈ N:

E (Wk+1| Fk) ≤ α

E
(
W 2
k+1

∣∣Fk) ≤ β

Then for all n ∈ N and b > 0:

P
(

sup
0≤k≤n

(W0 + ...+Wk) > b

)
≤ nβ + n(n+ 1)α2

b2
(27)

Proof. Let mn = βn+ n(n+ 1)α2 and Yn =
∑n
k=0Wk. It follows that E (Yn) ≤ αn and

E
(
Y 2
n+1

∣∣Fn) ≤ β + 2nα2 + Y 2
n

so that Zn = Y 2
n −mn is a supermartingale w.r. Fn. Let Tn be the first time k ≤ n at which

Yk > b if it exists, otherwise Tn = n, so that YTn > b if and only if sup0≤k≤n (Yk) > b. By the
optional stopping theorem [18, Thm 6.4.1]:

E (ZTn) ≤ E (Z0) = 0

thus E
(
Y 2
Tn

)
≤ E (mTn) ≤ mn. Now E

(
Y 2
Tn

)
≥ E

(
Y 2
Tn

1YTn>b
)
≥ b2P (YTn > b) thus P (YTn > b) ≤

mn
b2 .

Lemma 6. Define ZNπ as in Eq.(22). For all N ≥ 2, b > 0, T > 0 and all policy π:

P

 sup
0≤k≤b T

I(N)c

∥∥ZNπ (k)
∥∥ > b

 ≤ 2S2 T

b2

[
I2(N) + I(N) [(I0(N) + L2)]2

]

Proof. The proof is inspired by the methods in [1]. For fixed N and h ∈ RS , let

Lk = 〈h, ZNπ (k)〉

By the definition of ZN , Lk is a martingale w.r. to the filtration (Fk)k∈N generated by MN
π . Thus

E
(

(Lk+1 − Lk)2
∣∣∣Fk) = E

(
〈h,MN

π (k + 1)−MN
π (k)〉2

∣∣Fk)+ 〈h, FN
(
MN
π (k), πk(MN

π (k))
)
〉2
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By Assumption (A2):∣∣〈h, FN (MN
π (k), π(MN

π (k))
)
〉
∣∣ ≤ (I0(N) + L2) I(N) ‖h‖

Thus, using Eq.(20) and Assumption (A5):

E
(

(Lk+1 − Lk)2
∣∣∣Fk) ≤ ‖h‖2

[
N−22E

(
∆N
π (k)2

∣∣Fk)+ [(I0(N) + L2) I(N)]2
]

≤ ‖h‖2
[
I(N)I2(N) + [(I0(N) + L2) I(N)]2

]
We now apply Kolmogorov’s inequality for martingales and obtain

P
(

sup
0≤k≤n

Lk > b

)
≤ n

b2
‖h‖2

[
I(N)I2(N) + [(I0(N) + L2) I(N)]2

]
Let Ξh be the set of ω ∈ Ω such that sup0≤k≤n〈h, ZNπ (k)〉 ≤ b and let Ξ :=

⋂
h=±~ei,i=1...S Ξh

where ~ei is the ith vector of the canonical basis of RS . It follows that, for all ω ∈ Ξ and 0 ≤ k ≤ n
and i = 1 . . . S:

∣∣〈ZNπ (k), ~ei〉
∣∣ ≤ b. This means that for all ω ∈ Ξ:

∥∥ZNπ (k)
∥∥ ≤ √Sb. By the union

bound applied to the complement of Ξ, we have

1− P(Ξ) ≤ 2S
n

b2

[
I(N)I2(N) + [(I0(N) + L2) I(N)]2

]
Thus we have shown that, for all b > 0:

P
(

sup
0≤k≤n

∥∥ZWN
π (k)

∥∥ > √Sb) ≤ 2S
nI(N)
b2

[
I2(N) + I(N) [(I0(N) + L2)]2

]
which, by changing b to b/

√
S, shows the result.

5.2 Proof of Theorem 2

We use the same notation as in the proof of Theorem 1. By definition of V N , v and the time
horizons:

V Nπ (MN (0))− E
(
vANπ (m0)

)
= E

(∫ HNI(N)

0

r(M̄N
π (s), ANπ (s))− r(mANπ

(s), ANπ (s))ds

)

−E

(∫ T

HNI(N)

r(mANπ
(s), ANπ (s))ds

)

The latter term is bounded by I(N) ‖r‖∞. Let ε > 0 and Ω0 = Ω1 ∪ Ω2 where Ω1,Ω2 are as in
the proof of Theorem 1. Thus P(Ω0) ≤ J(N,T )

ε2 and, using the Lipschitz continuity of r in m (with
constant Kr):

∣∣V Nπ (MN (0))− E
[
vANπ (m0)

]∣∣ ≤ I(N) ‖r‖∞+
2 ‖r‖∞ J(N,T )

ε2
+KrE

[
1ω 6∈Ω0

∫ T

0

∥∥M̄N
π (s)−mANπ

(s)
∥∥ ds]

For ω 6∈ Ω0 and s ∈ [0, T ]:
∫ T

0

∥∥∥M̄N
π (s)− M̂N

π (s)
∥∥∥ ds ≤ εI(N)

2L1
and, by Eq.(26),

∫ T
0

∥∥∥M̂N
π (s)−mANπ

(s)
∥∥∥ ds ≤(∥∥MN (0)−m0

∥∥+ I0(N)T + ε
)
eL1T−1
L1

thus∣∣V Nπ (MN (0))− E
[
vANπ (m0)

]∣∣ ≤ Bε(N, ∥∥MN (0)−m0

∥∥) (28)

where

Bε(N, δ)
def= I(N) ‖r‖∞ +Kr (δ + I0(N)T + ε)

eL1T − 1
L1

+
KrI(N)

2L1
ε+

2 ‖r‖∞ J(N,T )
ε2
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This holds for every ε > 0, thus∣∣V Nπ (MN (0))− E
[
vANπ (m0)

]∣∣ ≤ B(N,
∥∥MN (0)−m0

∥∥) (29)

where B(N, δ) def= infε>0Bε(N, δ). By direct calculus, one finds that infε>0

(
aε+ b/ε2

)
= 3/2

2
3 a

2
3 b

1
3

for a > 0, b > 0, which gives the required formula for B(N, δ).

5.3 Proof of Theorem 3

Let ᾱN be the right-continuous function constant on the intervals [kI(N); (k + 1)I(N)) such that
ᾱN (s) = α(s). ᾱN can be viewed as a policy independent of m. Therefore, by Theorem 1, on the
set Ω \ (Ω1 ∪ Ω2), for every t ∈ [0;T ]:∥∥∥M̂α(t)− φt(m0, α)

∥∥∥ ≤
[∥∥MN (0)−m0

∥∥+ I0(N)T + ε
]
eL1T + u(t)

with u(t) def=
∣∣φt(m0, ᾱ

N )− φt(m0, α)
∣∣. We have

u(t) ≤
∫ t

0

∣∣f(φs(m0, α), α(s))− f(φs(m0, ᾱ
N ), ᾱN (s))

∣∣ ds
≤

∫ t

0

K
(∥∥φs(m0, α)− φs(m0, ᾱ

N )
∥∥+ d(α(s), ᾱN (s)

)
ds

≤ K

∫ t

0

u(s)ds+Kd1

where d1
def=
∫ T

0

∥∥α(t)− ᾱN (t)
∥∥ dt. Therefore, using Gronwall’s inequality, we have

u(t) ≤ Kd1e
KT

By Lemma 7, this shows Eq.(7). The rest of the proof is as for Theorem 2.

Lemma 7. If α is a piecewise Lipschitz continuous action function on [0;T ], of constant Kα, and
with at most p discontinuity points, then∫ T

0

d(α(t), ᾱN (t))dt ≤ TI(N)
(
Kα

2
+ 2 (1 + min(1/I(N), p)) ‖α‖∞

)
.

Proof of lemma 7. Let first assume that T = kI(N). The left handside d1 =
∫ T

0
d(α(t), ᾱN (t))dt

can be decomposed on all intervals [iI(N), (i+ 1)I(N)):

d1 =
bT/I(N)c∑

i=0

∫ (i+1)I(N)

iI(N)

∥∥α(s)− ᾱN (s)
∥∥ ds

≤
bT/I(N)c∑

i=0

∫ (i+1)I(N)

iI(N)

‖α(s)− α(iI(N))‖ ds

If α has no discontinuity point on [iI(N), (i+ 1)I(N)), then∫ (i+1)I(N)

iI(N)

d(α(s), α(iI(N)))ds ≤
∫ I(N)

0

Kαsds ≤ Kα2I(N)2

If α has one or more discontinuity points on [iI(N), (i+ 1)I(N)), then∫ (i+1)I(N)

iI(N)

d(α(s)α(iI(N)))ds ≤
∫ (i+1)I(N)

iI(N)

2 ‖α‖∞ ds ≤ 2 ‖α‖∞ I(N)
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20 N.Gast & B. Gaujal & J.-Y. Le Boudec

There are at most min(1/I(N), p) intervals [iI(N), (i + 1)I(N)] that have discontinuity points
which shows that

d1 ≤ TI(N)(
Kα

2
+ min(1/I(N), p)2 ‖α‖∞).

If T 6= kI(N), then T = kI(N) + t with 0 < t < I(N). Therefore, there is an additional term
of
∫ kI(N)+t

kI(N)
d(α(s), ᾱN (s))ds ≤ 2 ‖α‖∞ I(N).
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