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Abstract

Sturmian words are very particular infinite words with many equivalent definitions:
minimal complexity of aperiodic sequences, balanced sequences and mechanical words.
One natural way to generalized this definition to trees is to consider trees of complexity
n+ 1 but then one looses the two other properties.

In this paper we will study non-planar balanced tree and show that they are exactly
mechanical trees. Moreover we will see that they are also aperiodic trees of minimal
complexity.

1 Introduction

Sturmian words are infinite words over a binary alphabet, say {0, 1}, that have exactly n +
1 factors of length n. They also admit other equivalent definitions (see [?], for a rather
exhaustive presentation of Sturmian words).

Definition 1.1. A word w ∈ {0, 1}N is Sturmian word if it verifies of the three equivalent
properties.
(i) For all n ≥ 0: w has exactly n+ 1 factor of length n.
(ii) w is balanced and aperiodic: if x and y are two factors of length n and if we denote by

|x|1 the number of 1 in x, then
∣

∣

∣
|x|1 − |y|1

∣

∣

∣
≤ 1.

(iii) w is a mechanical word with an irrational slope: there exist α ∈ R\Q and φ ∈ [0; 1[ such
that: for all i, wi = ⌊(i+ 1)α + φ⌋ − ⌊iα + φ⌋ or wi = ⌈(i+ 1)α+ φ⌉ − ⌈iα+ φ⌉.

In [?], Berstel and al. generalized this notion to Sturmian trees which are planar binary
trees with complexity n+1, that is irrational trees with minimal complexity. But contrary to
the case of words, it seams that there is no simple equivalent definition. In particular, there
is no link with the balance property or with the mechanical construction.

In this document, we will focus on non-planar balanced tree, showing that they provide
several existence and equivalent definitions in the flavor of Sturmian words. A longer version
of this paper with detailed proofs is available on request to any of the two authors.

1.1 Definitions

Throughout this document, we will focus on trees which are rooted, binary, infinite, labelled
by {0, 1} and non planar (i.e. there is no distinction between the “left” or “right” sub-tree).
More precisely:

Definition 1.2 (Infinite tree). A tree is a triplet (E,P, f) where:
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1. E ⊂ N is the set of nodes.

2. P : E → E has the following properties:

• ∃!r such that P(r) = r (r is the root of the tree)

• ∀n 6= r : P(n) < n

• ∀n 6= r : card({x/P(x) = n}) = 2 (the tree is binary).

• card({x/P(x) = r}) = 3.

3. f : E → {0; 1}. f(n) is the label of n.

Definition 1.3 (Rooted sub-tree, non-rooted sub-tree). Let A = (E,P, f) be a tree.
We call sub-tree of root n and height k ∈ N∪{+∞} and we denote by A[n,k] = (E[n,k],P[n,k], f[n,k]),

the tree defined by:

• E[n,k] =
{

x/∃q < k such that Pq(x) = n
}

• P[n,k] is the restriction of P to E[n,k] with P[n,k](n) = n.

• f[n,k] is the restriction of f to E[n,k].

A non-rooted sub-tree of height k and wide 2q (q¡k) is the restriction of a tree to the subset
E[n,k] \ E[n,q].

Figure 1: The left sub-tree is a rooted sub-tree of height 4, the right sub-tree is a non-rooted
sub-tree of height 2 and width 2

In the rest of the document, we will call tree either an infinite tree or a sub-tree of an
infinite tree. We can also define the height of tree B by ∞ if B is an infinite tree and by k if
B = A[n,k] for a tree A.

The number of node of a tree B is card(N) if B infinite and 2k − 1 if B = A[n,k].

Canonical representation

Two trees (E,P, f), (E′,P′, f ′) are equivalent if there exists a bijection b : E 7→ E
′ such that:

b(r) = r′, f(n) = f ′(b(n)) and b(P(n)) = P′(b(n))
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Let A be a tree, we can choose a canonical representation of A by a word on {0, 1}: if we
call {B} the set of the trees equivalent to A such that ∀k∀0 ≤ i ≤ k−1 : PB(2k+1+2i) = 2k+i,
we can define for each B a word uB by ui = fB(i). The word associated with A is the minimal
word (considering the lexical order) of these uB.

Density

Let A be an infinite tree, n a node and k ≥ 0. We define h(A[n,k]) to be the number of nodes
labeled by 1 is the sub-tree of root n and height k:

h(A[n,k]) =
∑

i∈E[n,k]

f(i)

The density of a sub-tree Π(A[n,k]) by the number of 1 on its total number of nodes:

Π(A[n,k]) =
h(A[n,k])

2k − 1

We want to call density of an infinite tree A, the average number of 1 in the tree. Actually,
this quantity is the limit of the density of sub-trees of height n and it may or may not exists.
We say that the density of a tree is α iff :

lim
k→∞

Π(A[n,k]) = α

1.2 Rational trees: complexity and density

For words, there is a simple definition of what a periodic word is: it is a finite factor that
repeats itself. The case of trees is a little more complicated. The property captured in the
definition below is that a finite number of finite paterns will define the infinite tree.

Definition 1.4. Let A be a infinite tree. We call Sn(A) the set of the equivalence class of
sub-trees of A of height n.

We denote by P (A, n) the number of this class:

P (A, n) = card(Sn(A))

A tree has always a finite number of sub-trees of height k (bounded by 2k −1). Let n ≥ 0,
we call factor graph of order n of A the graph Gn = (Sn, En) defined by:

• Sn is the set of sub-trees of A defined above.

• a tuple (F,C1, C2) belongs to En ⊂ Sn × (Sn × Sn) iff there exists three nodes f, c1, c2
such that c1 and c2 are the two children of f and f, c1, c2 are roots of sub-trees respec-
tively equivalent to F,C1, C2. In that case, we say that there is an edge from F to
{C1, C2}.

An example of such a graph is shown figure 2
Let us consider an infinite tree and let u be a node. The signification of this graph is

that if the sub-tree of size n corresponding to u is F , its two children will be in the set
{{C1, C2}/(F,C1, C2) ∈ En}. For example if the graph has exactly one outgoing edge for
each vertices F , the tree is fixed by the graph and its first sub-tree.
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Figure 2: A rational tree and its factor graph

Definition 1.5 (Rational tree). Let A be an infinite tree labeled with an alphabet with k
elements. We said that A is rational if it satisfy one of the three equivalent properties:

(i)
{

P (A, n)
}

n
is bounded

(ii) P (A, n) = P (A, n+ 1) for one n.

(iii) P (A, n) < n+ k− 1 for one n where k is the number of different letters appearing in A.

Proof. (i) implies (iii) is clear.
(iii) implies (ii): if P (A, i) < P (A, i + 1) for i < n, then P (A, n) ≥ n − 1 + P (A, 0) =

n− 1 + k, which contradicts (iii).
(ii) implies (i): for all n, we can define the factor graph of A. As each node of this graph

is a factor of the tree there is at least one edge going out of each node. Moreover the number
of outgoing edges is the number of factor of length n+1 so it is P (A, n+1) = P (A, n). Thus
there is one and only one edge going out of each node. That means that if we start from a
vertex of the graph, we will follow a deterministic path so there is exactly P (A, n) factors of
length k ≤ n

Proposition 1.6. Let A be a rational tree. If A has a density α, then α is rational.

Proof. (sketch) As A is rational, there exists k such that the tree is completely defined by its
sub-trees (A1, . . . , Ak) of height k. As the tree is rational, each sub-tree Ai has two children
(Ai1 , Ai2). We consider a Markov chain (Xn) on the set {A1, . . . , Ak}:

P(Xn+1 = Ai1 |Xn = Ai) = P(Xn+1 = Ai2 |Xn = Ai) =
1

2

A sequence X0, . . . ,Xn, . . . defines a unique path in the tree corresponding to a word w
where wi is the label of the root of Ai. We call density of this path the density of the word
w if it exists.

If the Markov chain is irreducible and aperiodic, there exists α such that all paths w have
almost surely a density α corresponding to the stationary distribution of the chain, which is a
solution of a rational linear system and is therefore rational. The rest of the proof is skipped
and is available in the long version of the paper.

4



2 Balanced trees

An infinite word w is said to be balanced if for all n > 0, two subsequences of w of length n
will have almost the same density of 1. More precisely, if we call h(x) the number of 1 in the
word x, w is balanced iif for all n > 0 and for all x, y of length n:

|h(x) − h(y)| ≤ 1

A balanced word has many properties. In particular, a balanced word always admits a
density (which means limn→∞

h(w1...wn)
n

exists) and an aperiodic balanced word is Sturmian.
In this document, we will study two generalizations to trees of this definition. The first

one and probably the most natural one, is what we call a balanced tree: a tree is said to be
balanced if all of its rooted sub-trees of height k have almost the same number of 1:

Definition 2.1 (Balanced tree). A infinite tree A is balanced if for all node n and for all
k ≥ 0:

|h(A[n,k]) − h(A[n′,k])| ≤ 1

Let us also introduce a stronger definition: a tree is strongly balanced if all of its non-rooted
sub-tree of height k and wide w have (almost) the same number of 1:

Definition 2.2 (Strongly balanced tree). A tree A is said to be strongly balanced if for all
k, q ≥ 0 and for all nodes n, n′:

∣

∣

∣

∣

|h(A[n,k]) − h(A[n,q])| − |h(A[n′,k]) − h(A[n′,q])|

∣

∣

∣

∣

≤ 1

This latest definition is clearly stronger than the standard one since taking q = 0 implies
∣

∣

∣
h(A[n,k])−h(A[n′,k])

∣

∣

∣
≤ 1. We will see in the next part that this definition is strictly stronger

since there exist trees that are balanced but not strongly balanced.
Although the definition of a balanced tree is weaker and seams more natural for a gener-

alization from words, we will see that strongly balanced tree have almost the same properties
than its counterpart on words.

2.1 Density of a balanced tree

In this part, A denotes a balanced tree. As for the case of balanced sequences, we can define
the density of a balanced tree.

For all n, |h(A[n,k])−h(A[n′,k]| ≤ 1 thus for all k we can define mk which as the minimum
of h(A[n,k]) over all n.

mk ≤ h(A[n,k]) ≤ mk + 1

A sub-tree of height q+k is composed of a tree of size q which has between mq and mq +1
ones with 2q childs of size k which have between mk and mk + 1 ones. Thus:

2qmk +mq ≤ mq+k ≤ 2q(mk + 1) +mq
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Proposition 2.3 (Density of balanced tree). Let A be a balanced tree.
There exists a unique α, called the density of A such that for all n:

lim
k→∞

Π(A[n,k]) = α

Moreover
∀n, k : |h(A[n,k]) − ⌊(2k − 1)α⌋| ≤ 1

Proof. (sketch) The proof simply uses the definition of mq to bound Π(A[n,k+q]) − Π(A[n,k])
on both sides.

If A is a strongly balanced tree, there is a very similar formula linking its density and the
number of 1 in one of its sub-tree: let us assume that k > q > 0, then for all node n, we have:

∣

∣h(A[n,k]) − h(A[n,q]) − (2k − 2q)α
∣

∣ ≤ 1 (1)

The remarkable property about density it that it does not depends on the sub-tree chosen:
there exists α such that the density of any sequence of sub-trees of increasing height will
converge to α. Naturally, many trees do not have a density. For example the tree which line
i is labeled by i mod 2 does not have a density.

Also, deciding if a finite tree is balanced can be done in linear time in the number of nodes
of the tree.

Similarly, testing if a tree of height k is strongly balanced can be done in time O(2k) and
size O(k2).

3 Mechanical trees

Let us recall the definition of a mechanical words: w is a mechanical word with slope α if
there exist φ ∈ [0, 1) such that:

for all i : wi = ⌊(i+ 1)α + φ⌋ − ⌊iα + φ⌋

Sturmian words can be also defined as aperiodic balanced words or as mechanical words
of irrational slope. In this part, we will see that we have the same equivalence properties
between strongly balanced trees and mechanical trees.

Definition 3.1 (Mechanical tree). A tree A is said to be mechanical of density α if for all
node n:

∃φn ∈ [0, 1[ ∀k : h(A[n,k]) = ⌊(2k − 1)α+ φn⌋ or ∃φn ∈ [0, 1[ ∀k : h(A[n,k]) = ⌈(2k − 1)α − φn⌉

If the node n of an mechanical tree verifies the relation ∀k : h(A[n,k]) = ⌊(2k − 1)α+ φ⌋,
this node is said inferior of phase φ. In fact it is an abuse of notation to say so because there
could exist φ1 and φ2 such that for all k: h(A[n,k]) = ⌊(2k − 1)α + φ1⌋ = ⌊(2k − 1)α + φ2⌋.
However to simplify the notation, when the phase of a sub-tree is said to be φ, it could be
any φ that works.

Let us call frac(x) the fractional part of a real number x and let us look at the sequence
(

frac(2kα−α+φ)
)

k
. If this sequence can be arbitrary close to 0, this means that if ψ > φ, there
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exists k such that ⌊(2k−1)α+ψ⌋ > ⌊(2k−1)α+φ⌋. On the other hand, if this sequence can be
arbitrary close to 1, if ψ < φ, then there exists k such that ⌊(2k − 1)α+ψ⌋ < ⌊(2k − 1)α+φ⌋.

Therefore, a phase φ is unique iff
(

frac((2k − 1)α+ φ)
)

k
is arbitrary close to 0 and 1.

Now let us call α1, α2, . . . , αn, · · · ∈ {0; 1}N the sequence of digits of α in base 2 and
x1, . . . , xn, . . . the sequence of digits of α−φ in base 2. A multiplication by 2k corresponds to
a shift of the digits by k. If x1, . . . , xk does not end with neither an infinite number of 0 nor
an infinite sequence of 11,

(

frac((2k − 1)α + φ)
)

k
is arbitrary close to 0 or 1 means that for

all n, there exists k such that αk, . . . , αk+n−1 = x1, . . . , xn. More precisely, if for all n, there
exists m > n and k > 0 such that xm = 0 (resp. 1) and αk, . . . , αk+m−1 = x1, . . . , xm−1, 1
(resp. x1, . . . , xm−1, 0), then

(

frac((2k − 1)α + φ)
)

k
is arbitrary close to 0.

Thus we have to distinguish three cases:

• If α is a number such that all finite binary sequences appear in the binary expansion of
α, then for all phase φ, then φ is unique. In particular, all normal numbers verify this
property and we know that almost every number in [0, 1] is normal, see [?] (a number
is normal if all sequences of length k appear with rate 2−k in the binary expansion of
α).

• If α ∈ Q, then the sequence frac((2k − 1)α + φ)
)

is periodic and there are no phase φ
such that φ is unique.

• If α is neither rational nor has the property that all binary sequences appear in α, then
some φ can be unique and some others may not. For example, if α is the number:

α = 0.101100111000111100001111100000 . . . ,

then if frac(α− φ) = 0, φ is unique, while φ1 and φ2 such that frac(α − φ1) = 0.10100
and frac(α− φ2) = 0.1010 are equivalent.

If one fixes the density α and the phase φn of each node, there is at most one matching
mechanical tree.

Proposition 3.2. Let α ∈ [0, 1], φ ∈ [0, 1[.
There exists a unique mechanical tree A of density α and initial phase φ0.

Proof. (sketch) It is based on some relations on rounding functions that will prove that if a
node has a phase φ, the phases of its two children are fixed.

3.1 Strongly balanced and mechanical are the same

In this section, we will show that if the density is irrational, a strongly balanced tree is a
mechanical tree. This result can be expressed by the following proposition.

Proposition 3.3. Let A be a infinite binary tree.
(i) If A is mechanical then A is strongly balanced.
(ii) If A is strongly balanced and not rational, then A is a mechanical tree.
(iii) If A is strongly balanced and rational, A is ultimately mechanical.

1The case where x ends with an infinite number of 0 (or 1) is quite similar: if x1, x2, . . . , = x1, xl, 1, 0, 0, 0, . . . ,
that means that

`

frac((2k
− 1)α + φ)

´

k
is arbitrarily close to 1 if for all m, there exists k such that

αk, . . . , αk+n−1 = x1, . . . , xl, 0, 0, 0, . . . , 0
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Proof. (sketch) The first point is a rather direct consequence of the definition of mechanical
trees. As for the second point, let τ be a real number and n a node. At least one of the two
following properties is true:

• For all k: h(A[n,k]) ≤ ⌊(2k − 1)α+ τ⌋

• For all k: h(A[n,k]) ≥ ⌊(2k − 1)α+ τ⌋

To prove this, assume that it is not true. Then there exists k, q such that h(A[n,k]) <

⌊(2k − 1)α+ τ⌋ and h(A[n,k+q]) > ⌊(2k+q − 1)α+ τ⌋ (or the opposite).

In that case: h(A[n,k+q])−h(A[n,k]) ≤ 2+⌊(2k+q−1)α+φ⌋−⌊(2k−1)α+φ⌋ > 1+(2k+q−2k)α
which violates the formula obtained in (1).

Let us define the number φ as follows:

φ = inf
τ

{

For all k : h(A[n,k]) ≤ ⌊(2k − 1)α + τ⌋
}

Then we have for all k:

h(A[n,k]) ≤ (2k − 1)α + φ ≤ h(A[n,k]) + 1

If α /∈ { p

2k−2q , p, k, q ∈ N}, then (2k − 1)α+φ is an integer for at most one k0. Depending

on the value in k0: if h(A[n,k0]) = (2k0 − 1)α+ φ, then for all k: h(A[n,k]) = ⌊(2k − 1)α+ φ⌋.

Otherwise for all k: h(A[n,k]) = ⌈(2k − 1)α + φ− 1⌉.
As for the last assertion, the same as for the previous point holds until the fact that there

is at most integer k0 such that (2k
0 − 1)α+ φ ∈ N

Now we assume that there exists k0, k1 such that (2ki − 1)α + φ ∈ N (otherwise we go to
the end of the proof of (ii)).

A direct computation leads to α /∈ { p

2k−2q , p, k, q ∈ N} and thus there exist p and q0 < q1
such that

α =
p

2q0 − 2q1
,GCD(p, 2q0 − 2q1) = 1

According to the formula 1, this means that h(A[n,q1])− h(A[n,q1]) equals p− 1,p or p+ 1.
But as the tree is strongly balanced, there can not be in the tree two sub-trees with values
p − 1 and p + 1. Assume there is q1 − q0 other pairwise disjoint sub-trees with value p + 1,
then there would be two of them for which the roots will be at height h and h+ (q1 − q0) ∗ n
and the minimal sub-tree that contains this two sub-trees would violate the formula 1.

Thus ultimately, all sub-trees corresponding to h(A[n,q1]) − h(A[n,q1]) will take the value
p. For the rest of the proof, we assume that our tree verifies this property.

Now, let us recall that for all k:

h(A[n,k]) ≤ (2k − 1)α + φ ≤ h(A[n,k]) + 1

If there are two integers k0, k1 such that (2ki − 1)α + φ ∈ N we have 2k1−2k0

2q0−2q1 p ∈ N. Thus
2k1−2k0

2q0−2q1 ∈ N. If we write x = q1 − q0 and y = k1 − k0, y = px + r (0 ≤ r < x), we have:
2k1−2k0

2q0−2q1 = 2k0−q0 2x−1
2y−1 which implies 2x−1

2y−1 ∈ N, 2x−1
2y−1 = 2r 2px−1

2x−1 + 2r−1
2x−1 ∈ N, so r = 0 and

q0 − q1 divides k1 − k0.
As for all n′: h(A[n′,q1]) − h(A[n′,q0]) = p, if h(A[n,k0]) = (2k0 − 1)α + φ then h(A[n,k1]) =

(2k1 − 1)α + φ and then for all k:
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h(A[n,k]) = ⌊(2k − 1)α + φ⌋

If h(A[n,k0]) = (2k0 − 1)α+ φ− 1 then h(A[n,k1]) = (2k1 − 1)α + φ− 1 and then for all k:

h(A[n,k]) = ⌈(2k − 1)α + φ⌉

Although we can characterize strongly balanced trees, it is still an open question to char-
acterize balanced trees. The first answer is that there exist some trees that are balanced but
not strongly balanced. We give an example with figure 3 where this picture is the beginning
of a rational tree with density 3/7.

This tree is rational: it has 3 sub-trees of height 3 (the 3 written on the figure).

Figure 3: Beginning of a balanced tree of density 3/7 which is not strongly balanced (and
thus non mechanical). This tree is not strongly balanced since in the picture h(A) = 2 and
h(B) = 0. As this tree is rational, it is neither ultimately strongly balanced since the motifs
A and B are repeated an infinite times.

The previous example shows a rational tree which is balanced but not strongly balanced
but as we have seen, rational trees admit more exceptions than irrational ones. However,
there are multiple examples of trees that are irrational but not strongly balanced. Such a
construction is more involved and is given in the long version of the paper.

3.2 Strongly balanced tree are Sturmian

Proposition 3.4. Let A be a mechanical tree and k ≥ 0.
(i) There exists at most k + 1 sub-tree of height k
(ii) Moreover, if α is irrational, then the number of sub-trees is exactly k + 1.

Proof. Let A be a mechanical tree of density α and let k ≤ 0. According to the proposition
3.2, the sub-tree A[n,k] depends only on its phase φn. In fact, this sub-tree depends only on
the values ⌊(2i − 1)α+ φn⌋.

For all i ≤ k and φ ≤ 1, we can define functions hi(.)

hi(φ) = ⌊(2i − 1)α+ φ⌋

These are increasing functions taking integer values and hi(1) − hi(0) = 1.

9



Thus the k−tuple (h1(φ), . . . , hk(φ)) can take at most k + 1 values and there are at most
k + 1 sub-trees.

Moreover if α is irrational, the tree has an irrational density and then it is not rational so
there are at least k+1 trees of height k which means that the tree has exactly k+1 sub-trees
of height k.

As shown in the previous section, if a tree has k factors of size k, it is rational. Thus
strongly balanced trees of irrational density are trees with minimal complexity. We know
that in the case of words, aperiodic balanced word are exactly words with complexity n + 1
however this is not the case here. [?] gives some examples of planar Sturmian trees, although
some of theses examples do not work in the non-planar case, many do.

• Uniform trees: considering a word w, define the uniform for w as the tree where a node
with height k is labeled by wk. If w is Sturmian, this tree is also Sturmian.

• Left branch trees: considering a word wk, this definition works in the planar case: the
label of a node n is wk where k is the number of time with have to go left on a path from
the root. Even if we consider the non-planar version of this tree, it is clearly Sturmian
iff w is Sturmian.

• Dyck tree: recall that in the planar case, a node can be represented by a word on {0, 1}
representing the path from the root. The Dyck tree is the tree where the label of a node
is 1 iff its representing word belongs to the Dyck language. The non-planar version of
this tree is also Sturmian.

To end this part about complexity, notice that two mechanical trees with the same density
are very close. Also, two mechanical trees with different densities just have a finite number
of factors in common.

Proposition 3.5. Let A and B be two mechanical trees. Let S(A) and S(B) be the set of
their respective sub-trees.
(i) If the densities of A and B are the same, then S(A) = S(B).
(ii) If the densities are different, then S(A) ∩ S(B) is finite.
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