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Introduction

Mean field has been introduced by physicists to study systems of
interacting objects. For example, the movement of particles in the air:

First solution: the microscopic
description

The system is represented by the
states of each particle.

@ Impossible to study.
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Introduction

Mean field has been introduced by physicists to study systems of
interacting objects. For example, the movement of particles in the air:

First solution: the microscopic Second solution: macroscopic
description equations
The system is represented by the System described by
states of each particle. temperature, pressure,...
@ Impossible to study. @ Much easier )

@ The transition from microscopic description to macroscopic equations
is called the mean field approximation.
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Mean Field in Computer Science

More recently, Mean field has been used to analyze performance of
communication systems with one goal: prove the convergence.

Approximation of population processes [Kurtz, 81]

Propagation of chaos [Sznitman, 91]

Performance of TCP [Baccelli, McDonald, Reynier 02]
Approximation of stochastic evolution in games [Benain, Weibull 03]
Random Acces Control [Bordenave, McDonald, Proutiere 05]

Reputation Systems [Le Boudec et al. 07]
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Mean Field in Computer Science

More recently, Mean field has been used to analyze performance of
communication systems with one goal: prove the convergence.

Approximation of population processes [Kurtz, 81]

Propagation of chaos [Sznitman, 91]

Performance of TCP [Baccelli, McDonald, Reynier 02]
Approximation of stochastic evolution in games [Benain, Weibull 03]
Random Acces Control [Bordenave, McDonald, Proutiére 05]
Reputation Systems [Le Boudec et al. 07]

In many examples, it can be shown that when the number of users grows,
the average behavior of the system becomes deterministic.
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Mean Field in Computer Science

More recently, Mean field has been used to analyze performance of
communication systems with one goal: prove the convergence.

Approximation of population processes [Kurtz, 81]

Propagation of chaos [Sznitman, 91]

Performance of TCP [Baccelli, McDonald, Reynier 02]
Approximation of stochastic evolution in games [Benain, Weibull 03]
Random Acces Control [Bordenave, McDonald, Proutiére 05]
Reputation Systems [Le Boudec et al. 07]

In many examples, it can be shown that when the number of users grows,
the average behavior of the system becomes deterministic.

Aim of this work
Study mean field results for a large class of optimization problems. J
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Our Approach

Stochastic system
N objects.

Compute optimal
policy (hard)

!

Optimal system
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Our Approach

Stochasti t
oclvajb;:tf o % N — 0o ==—__ Mean Field Limit |

Compute optimal
policy (hard)

!

Optimal system

© Compute mean field limit (constructive definition). J
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Our Approach

Stochastic system : _
{ N objects. N — oo —)[ Mean Fliald Limit ]

‘ Deterministic

Compute optimal optimization
policy (hard) (Easier)
Optimal system ’Optimal mean field ‘
© Compute mean field limit (constructive definition).
@ Solve the deterministic problem.
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Our Approach

Stochastic system . —
{ N objects. }7 N — oo —)[ Mean Flisld Limit ]
‘ ' Deterministic
Compute optimal optimization
policy (hard) (Easier)

!

Optimal system 4= iz 22 éxc.hange i —ﬁ Optimal mean field ‘
limits

Our results

The Markov Decision Process also converges to a deterministic limit.
More precisely, when N grows:

© The optimal cost converges.
© The optimal policy is asymptotically optimal.
© The speed of convergence is O(v/N).

v
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© Model

© Theoretical results

© A (simple) example

© Conclusion
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A Markov Decision Process

Controller, chooses an action a € A
ao ar-—1

)
flary

e - ~
X1(0) & Xi(1) & o Xi(T)
- g i — g—> <<<<<< > —%—>
O | XD s | x(D
E(0) & E(1) & ° E(T)
(v

@ N objects evolving in a finite state space.
@ Environment E(t) at time t (E(t) € RY)
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A Markov Decision Process

Controller, chooses an action a € A
ap 1 ar—1

a
rel e ST
X1(0) ~ X1(1) & N X1(T)
N . N m ;
: J— g — : — g — > —\E/—» :
Xn(0) o Xn(1) o o Xn(T)
E(0) E E(1) E 2 E(T)
(o]

Mean field assumption
We define the Empirical measure M(t) — The ith component (M(t)); is
the proportion of objects in state / at time t.
© E(t+ 1) only depends on the empirical measure M(t).
@ The evolution of an object is Markovian, depends on E(t) but is
independent of the other objects. |
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A Markov Decision Process

X1(0)

XN:(O)
£(0)

Controller, chooses an action a € A
ar-—1

)
flary

ap

el ~ e

o Xi(1) & H X1(T)

E — JE— E —_ > —%—>

3 Xn(1) 3 ) Xn(T)

& E(1) s 2 E(T)

— i — e J'
Cost(X,.E) + o +  Cost(X,E)
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A Markov Decision Process

Controller, chooses an action a € A
ar-—1

ap

)
flary

e 2 ~
X1(0) S Xi(1) & kXM
Dl —E | | —E— , —%—’ :
Xn(0) '8 Xn(1) -8 s Xn(T)
E(0) s E(1) s 2 E(T)
— i - e J'
Cost(X,.E) + o +  Cost(X,E)

Goal: Find a policy to minimize finite-time expected cost (or
infinite horizon discounted cost):
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A Markov Decision Process

Controller, chooses an action a € A
art—1

ap ai

/ M ~
X1(0) S rxa@ 5 LX)
: —\g—> : —\(E/—) > —3—> :
xw© | 9 (| S 5 | xum
E(0) S E(1) S g E(T)
d € d
Cost(X,.E) + o +  Cost(X,E)

Goal: Find a policy to minimize finite-time expected cost (or
infinite horizon discounted cost):

;
> e (=), EX (z"))

t=1

N. Gast (LIG) Mean Field Optimization ValueTools 2009 6 /21



A Markov Decision Process

Controller, chooses an action a € A
art—1

ap ai

/ M ~
X1(0) S rxa@ 5 LX)
: —\g—> : —\(E/—) > —3—> :
xw© | 9 (| S 5 | xum
E(0) S E(1) S g E(T)
d € d
Cost(X,.E) + o +  Cost(X,E)

Goal: Find a policy to minimize finite-time expected cost (or
infinite horizon discounted cost):

E|> cM ("), E(x"))
t=1
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A Markov Decision Process

Controller, chooses an action a € A
art—1

ao a
el ! e
X1(0) g X1(1) & H X1(T)
| _E | | _E S
Xw(0) 3 Xu(1) 3 5 Xu(T)
E(0) S E(1) S 2 E(T)
Cost(X,.E) + o +  Cost(X,E)

Goal: Find a policy to minimize finite-time expected cost (or
infinite horizon discounted cost):

V?N(MSIaEQI)ZinAf E|) ey (="),EY(xV))
g t=1
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© Theoretical results
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Construction of limit

A1l Users are only dependent through environment;
A2 Compact action set; A3 Continuity of parameters;

A4 MY EY 22 mo, e
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Construction of limit

A1l Users are only dependent through environment;
A2 Compact action set;

A3 Continuity of parameters;
A4 MY EN 2% mg, ep.

Theorem (Without control — Le Boudec, Mc Donald, Mudinger 07)
Let a = apai ... be a sequence of actions. Under (A1,A3,A4), for all t:

MY (£), EJ'(t) =5 my(t), es(t)

where m,, e, is a discrete time dynamical system, i.e. can be written

ma(t + 1), ea(t + 1) = F(ma(t), ea(t)).
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Construction of limit

A1l Users are only dependent through environment;
A2 Compact action set; A3 Continuity of parameters;
A4 M(I)V,E(I)V i mo, €p.

Theorem (Without control — Le Boudec, Mc Donald, Mudinger 07)
Let a = apai ... be a sequence of actions. Under (A1,A3,A4), for all t:

MY (£), EJ'(t) =5 my(t), es(t)

where m,, e, is a discrete time dynamical system, i.e. can be written
my(t+ 1), es(t + 1) = f(ma(t), ea(t)).

This defines a deterministic optimization problem'

Find a*= argmin th m,(t), es(t))

a0..-a7-1
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Optimal cost convergence

o V*N — optimal cost for the system of size N.

@ v* — optimal cost for the deterministic limit.

@ ajaja, ... — sequence of optimal actions for the deterministic limit.
Theorem (Convergence of the optimal cost)
Under assumptions (A1,A2,A3,A4), almost surely:

- NN N : N N N
A}inoo Vi (My', Ey') = vi(mo, e0) = Nllnoo Va(’)‘...ai‘,._l(MO Eo')

In particular, this shows that:
@ Optimal cost converges

@ Static policy (a*) is asymptotically optimal

Remark: 7* is also asymptotically optimal but not asymptotically better.

v
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Speed of convergence: a central limit theorem

(A4-bis) VN((MY,EN) — (mo, &)) £, Go. (A5) Parameters differentiable.

Theorem (CLT for the evolution of objects)

Under assumptions (A1,A2,A3,A4bis,A5), if the actions taken by the
controller are fixed, then there exists a Gaussian variable G; s.t:

VN((MYEN) — (me,e)) =25 G,

The covariance of G; is given by an iterative expression.
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Speed of convergence: a central limit theorem

(A4-bis) \/N((M(I)V, EY) — (mo, e0)) £, Go. (A5) Parameters differentiable.

Theorem (CLT for the evolution of objects)

Under assumptions (A1,A2,A3,A4bis,A5), if the actions taken by the
controller are fixed, then there exists a Gaussian variable G; s.t:

VN((MYEN) — (me,e)) =25 G,

The covariance of G; is given by an iterative expression.

Theorem (Second order theorem for cost)

Under assumptions (A1,A2,A3,A4bis,A5), 33,~, 3,7 such that when N
does to infinity:

o VN| ViV (MY, EY) - VEMY, EY)| <u B+ 1|Goloo
o VN|VNMY EY) — ¢ +(mo, e0)| <st B+ 71| Golloo
TR T T




Discounted case

Assumptions

A6 Homogeneity in time — cost and probability kernel K; do not
depend on t.

A7 Bounded cost — supy; i [c(M, E)| < oo.

VAN MY, EN) [Zaf (MY, EN) ]

Theorem
Under assumptions (A1,A2,A3,A4,A6,A7),

lim VNN, EN) = v2(m, e) a.s.

N—oo
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© A (simple) example
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A simple resource allocation problem

Aim of the example
@ The set of problem we solved is non empty!

@ When does N becomes large enough for the approximation to apply?
i.e. when do we beat classical solutions?

@ Show the tightness of the bounds
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A simple resource allocation problem

Number of objectsis N =S+ Py +--- + Py.

Q a/%* E

@0 &G

P1 processors

———  |Broker| zZIII17_ :
tasks i :
S on/off a\gA Ey P, processors
sources
Stochastic Stochastic availability:
arrivals failure,. ..
o Optimize the total completion time = >>7 79 | Ei(¢). J
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Optimal policy: stochastic and limit case

The stochastic system is hard to solve

© This problem is a multidimensional restless bandit problem

Known to be hard
Existence of heuristics (Index policies)

@ In practice in such systems [EGEE]
Use of heuristics (JSQ)
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Optimal policy: stochastic and limit case

The stochastic system is hard to solve

© This problem is a multidimensional restless bandit problem
Known to be hard
Existence of heuristics (Index policies)

@ In practice in such systems [EGEE]
Use of heuristics (JSQ)

Using our framework: compute optimal mean field
The problem becomes: T d
e Find yi...y4 € R to minimize ZZ el such that
t=1 i=1
el = (el +y{—x{)*" and
SiVi=Ve
@ Optimal policy can be computed by a greedy algorithm (best effort).

v
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Numerical example

This provides two policies for the initial stochastic system.

*

def : .
e a* : we apply af = 7} (m;, e;) — static policy.

*

e 7 : at t, we apply m} (MY, EN) - adaptive policy.

@ Static policy a*
At time t, we apply the optimal deterministic sequence of actions
ai...ar, regardless of the current state MM EV.

o Adaptive policy 7*
N

At time t, the system is in state MY, EN. We compute the optimal

deterministic action that would be taken in this state: we apply
(MY, EY)
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Numerical example

This provides two policies for the initial stochastic system.

def . .
e a* : we apply a} = m¥(m;, e;) — static policy.

o m* : at t, we apply 75(MN, EN) - adaptive policy.

We want to compare
N .
@ V.. — cost when applying a*
N .
@ V. — cost when applying 7*
o Vg — cost of Join Shortest Queue.
@ v* — cost of the deterministic limit.
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Cost convergence

500 ¢ Deterministic cost g
4 A* policy ----&---
Pi* policy -
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Cost convergence
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Cost convergence
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Cost convergence
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Speed of convergence — central limit theorem

Plot of VN(VN(M,E) — v¥(m,e)) and VN(VY(M, E) — v*(m, e))

J
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Speed of convergence — central limit theorem

Plot of VN(VN(M,E) — v¥(m,e)) and VN(VY(M, E) — v*(m, e))
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© Conclusion
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Conclusion

Theoretical results
@ Optimal policy of the deterministic limit is asymptotically optimal.

@ Speed of convergence in O(v/N).

The example shows
o Efficient for low values of N (=~ 100 in the example).
Beats classical heuristics

@ Two new heuristics for the stochastic problem: a* and [1*.

@ The bounds for speed are tight: Q(v/N).
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Conclusion

How to apply this in practice?
To apply this in practice, there are three cases (from best to worse):
© We can solve the deterministic limit:
apply a* or 7*.
@ Design an approximation algorithm for the deterministic system:
also an approximation (asymptotically) for stochastic problem.
© Use brute force computation:

vi..r(m,e) =c(m, e) +infavy, 1(da(m,e))
Compared to the random case, there is no expectation to compute.
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Conclusion

How to apply this in practice?
To apply this in practice, there are three cases (from best to worse):
© We can solve the deterministic limit:
apply a* or 7*.
@ Design an approximation algorithm for the deterministic system:
also an approximation (asymptotically) for stochastic problem.
© Use brute force computation:

vi r(m;e) =c(m,e) +infa vy 1(da(m,e))
Compared to the random case, there is no expectation to compute.

Future work
@ Study other limiting regimes (e.g. number of transitions is o(N)).
@ Steady-state behavior

@ Dependence of the users.
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Thanks

Thank you for your attention.
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