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Introduction

Mean field has been introduced by physicists to study systems of
interacting objects. For example, the movement of particles in the air:

First solution: the microscopic
description

The system is represented by the
states of each particle.

Impossible to study.

Second solution: macroscopic
equations

System described by
temperature, pressure,...

Much easier

The transition from microscopic description to macroscopic equations
is called the mean field approximation.
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Mean Field in Computer Science

More recently, Mean field has been used to analyze performance of
communication systems with one goal: prove the convergence.

Approximation of population processes [Kurtz, 81]

Propagation of chaos [Sznitman, 91]

Performance of TCP [Baccelli, McDonald, Reynier 02]

Approximation of stochastic evolution in games [Benäın, Weibull 03]

Random Acces Control [Bordenave, McDonald, Proutière 05]

Reputation Systems [Le Boudec et al. 07]

. . .

In many examples, it can be shown that when the number of users grows,
the average behavior of the system becomes deterministic.
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Approximation of population processes [Kurtz, 81]

Propagation of chaos [Sznitman, 91]

Performance of TCP [Baccelli, McDonald, Reynier 02]

Approximation of stochastic evolution in games [Benäın, Weibull 03]

Random Acces Control [Bordenave, McDonald, Proutière 05]

Reputation Systems [Le Boudec et al. 07]

. . .

In many examples, it can be shown that when the number of users grows,
the average behavior of the system becomes deterministic.

Aim of this work

Study mean field results for a large class of optimization problems.
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Our Approach

Stochastic system
N objects.

Optimal system

Compute optimal
policy (hard)

1 Compute mean field limit (constructive definition).

2 Solve the deterministic problem.

Our results

The Markov Decision Process also converges to a deterministic limit.
More precisely, when N grows:

1 The optimal cost converges.

2 The optimal policy is asymptotically optimal.

3 The speed of convergence is O(
√

N).
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Our Approach

Stochastic system
N objects.

Optimal system

Mean Field Limit

Optimal mean field

Compute optimal
policy (hard)

N →∞

Deterministic
optimization

(Easier)

We can exchange the
limits

Our results

The Markov Decision Process also converges to a deterministic limit.
More precisely, when N grows:
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1 Model

2 Theoretical results

3 A (simple) example

4 Conclusion
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A Markov Decision Process

Controller, chooses an action a ∈ A

a0 a1 aT−1 X1(0)

...
XN(0)
E(0)

  X1(1)

...
XN(1)
E(1)

  X1(T )

...
XN(T )
E(T )


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0
)

ra
n

d
om

(a
1
)

ra
n

d
om

(a
T
−

1
)

N objects evolving in a finite state space.
Environment E (t) at time t (E (t) ∈ Rd)

Goal: Find a policy to minimize finite-time expected cost (or
infinite horizon discounted cost):

V ∗NT (MN
0 ,E

N
0 ) = inf

πN
E

[
T∑

t=1

c(MN
t (πN),EN

t (πN))

]

N. Gast (LIG) Mean Field Optimization ValueTools 2009 6 / 21



A Markov Decision Process

Controller, chooses an action a ∈ A

a0 a1 aT−1 X1(0)

...
XN(0)
E(0)

  X1(1)

...
XN(1)
E(1)

  X1(T )

...
XN(T )
E(T )


ra

n
d

om
(a

0
)

ra
n

d
om

(a
1
)

ra
n

d
om

(a
T
−

1
)

Mean field assumption

We define the Empirical measure M(t) – The i th component (M(t))i is
the proportion of objects in state i at time t.

1 E (t + 1) only depends on the empirical measure M(t).

2 The evolution of an object is Markovian, depends on E (t) but is
independent of the other objects.

Goal: Find a policy to minimize finite-time expected cost (or
infinite horizon discounted cost):

V ∗NT (MN
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N
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1 Model
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3 A (simple) example
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Construction of limit

A1 Users are only dependent through environment;
A2 Compact action set; A3 Continuity of parameters;

A4 MN
0 ,E

N
0

a.s−→ m0, e0.

Theorem (Without control – Le Boudec, Mc Donald, Mudinger 07)

Let a = a0a1 . . . be a sequence of actions. Under (A1,A3,A4), for all t:

MN
a (t),EN

a (t)
a.s−→ ma(t), ea(t)

where ma, ea is a discrete time dynamical system, i.e. can be written

ma(t + 1), ea(t + 1) = f (ma(t), ea(t)).

This defines a deterministic optimization problem:

Find a∗ = arg min
a0...aT−1

T∑
t=0

ct(ma(t), ea(t))
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Optimal cost convergence

V ∗N – optimal cost for the system of size N.

v∗ – optimal cost for the deterministic limit.

a∗0a∗1a∗2 . . . – sequence of optimal actions for the deterministic limit.

Theorem (Convergence of the optimal cost)

Under assumptions (A1,A2,A3,A4), almost surely:

lim
N→∞

V ∗NT (MN
0 ,E

N
0 ) = v∗T (m0, e0) = lim

N→∞
V N

a∗0 ...a
∗
T−1

(MN
0 ,E

N
0 )

In particular, this shows that:

Optimal cost converges

Static policy (a∗) is asymptotically optimal

Remark: π∗ is also asymptotically optimal but not asymptotically better.
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Speed of convergence: a central limit theorem

(A4-bis)
√

N((MN
0 ,E

N
0 )− (m0, e0))

L−→ G0. (A5) Parameters differentiable.

Theorem (CLT for the evolution of objects)

Under assumptions (A1,A2,A3,A4bis,A5), if the actions taken by the
controller are fixed, then there exists a Gaussian variable Gt s.t:

√
N
(
(MN

t ,E
N
t )− (mt , et)

) Law−−→ Gt

The covariance of Gt is given by an iterative expression.

Theorem (Second order theorem for cost)

Under assumptions (A1,A2,A3,A4bis,A5), ∃β, γ, β′, γ′ such that when N
does to infinity:

√
N
∣∣∣V ∗NT (MN

0 ,E
N
0 )− V N

a∗(MN
0 ,E

N
0 )
∣∣∣ ≤st β + γ‖G0‖∞

√
N
∣∣∣V ∗NT (MN

0 ,E
N
0 )− v∗0...T (m0, e0)

∣∣∣ ≤st β
′ + γ′‖G0‖∞
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Discounted case

Assumptions

A6 Homogeneity in time – cost and probability kernel Kt do not
depend on t.

A7 Bounded cost – supM,E |c(M,E)| <∞.

V δN
π (MN

0 ,E
N
0 ) = Eπ

[ ∞∑
t=0

δtc(MN
t ,E

N
t )
]
.

Theorem

Under assumptions (A1,A2,A3,A4,A6,A7),

lim
N→∞

V δN
∗ (MN ,EN) = v δ∗ (m, e) a.s.
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A simple resource allocation problem

Aim of the example

The set of problem we solved is non empty!

When does N becomes large enough for the approximation to apply?
I i.e. when do we beat classical solutions?

Show the tightness of the bounds

Number of objects is N = S + P1 + · · ·+ Pd .

...

S on/off
sources

tasks

a1
t

ad
t

Broker

...

µ1

µ1

P1 processorsE1

...

µd

µd

Pd processorsEd

...

Stochastic
arrivals

Stochastic availability:
failure,. . .

Optimize the total completion time =
∑T

t=0

∑d
i=1 Ei (t).
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Optimal policy: stochastic and limit case

The stochastic system is hard to solve

1 This problem is a multidimensional restless bandit problem
I Known to be hard
I Existence of heuristics (Index policies)

2 In practice in such systems [EGEE]
I Use of heuristics (JSQ)

Using our framework: compute optimal mean field

The problem becomes:

Find y 1
1 . . . y

d
T ∈ R to minimize

T∑
t=1

d∑
i=1

e i
t such that

I e i
t+1 = (e i

t + y i
t − x i

t )+ and
I
∑

i y i
t = yt .

Optimal policy can be computed by a greedy algorithm (best effort).
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Numerical example

This provides two policies for the initial stochastic system.

a∗ : we apply a∗t
def
= π∗t (mt , et) – static policy.

π∗ : at t, we apply π∗t (MN
t ,E

N
t ) – adaptive policy.

Static policy a∗

At time t, we apply the optimal deterministic sequence of actions
a1 . . . aT , regardless of the current state MN

t ,E
N
t .

Adaptive policy π∗

At time t, the system is in state MN
t ,E

N
t . We compute the optimal

deterministic action that would be taken in this state: we apply
π∗(MN

t ,E
N
t )

We want to compare

V N
a∗ – cost when applying a∗

V N
π∗ – cost when applying π∗

V N
JSQ – cost of Join Shortest Queue.

v∗ – cost of the deterministic limit.
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Speed of convergence – central limit theorem

Plot of √
N(V N

π∗(M,E)− v∗(m, e)) and
√

N(V N
a∗(M,E)− v∗(m, e))

√
N

(V
N X
−

v
∗ )

0

200

400

600

800

1000

1200

1400

10 100 1000 10000

A* policy
Pi* policy

Size of the system: N
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Conclusion

Theoretical results

Optimal policy of the deterministic limit is asymptotically optimal.

Speed of convergence in O(
√

N).

The example shows

Efficient for low values of N (≈ 100 in the example).
I Beats classical heuristics

Two new heuristics for the stochastic problem: a∗ and Π∗.

The bounds for speed are tight: Ω(
√

N).
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Conclusion

How to apply this in practice?

To apply this in practice, there are three cases (from best to worse):
1 We can solve the deterministic limit:

I apply a∗ or π∗.

2 Design an approximation algorithm for the deterministic system:
I also an approximation (asymptotically) for stochastic problem.

3 Use brute force computation:
I v∗t...T (m, e) = c(m, e) + infa v∗t+1...T (φa(m, e))
I Compared to the random case, there is no expectation to compute.

Future work

Study other limiting regimes (e.g. number of transitions is o(N)).

Steady-state behavior

Dependence of the users.
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Thanks

Thank you for your attention.
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