A mean Field Approach for Optimization in Particles System

Nicolas Gast Bruno Gaujal

Laboratoire d'informatique de Grenoble

Journées ALEA 2009, 16-20 mars 2009

N. Gast

Motivation, description of the problem

A Markov Decision Process

We consider:

- System of *N* particles evolving in a shared environment.
 - Markovian evolution.
 - Two particles are dependent only through the "mean field" (mean number of particles in state s).
- A controller
 - wants to optimize a reward (function of the mean field and environment), finite or infinite horizon.

Previous result:

Mean field limit (without control)

• When N grows, the system tends to a deterministic system (called mean field limit)

Mean Field MDP

N. Gast

Model

Example

Theorems

Our result

The MDP also converges to a deterministic limit. More precisely, when N grows:

- The optimal reward converges.
- 2 The optimal policy also converges.
- The speed of convergence is $O(\sqrt{N})$ (CLT theorem).

Mean Field MDP

N. Gast

Model

Example

Theorems

Our result

The MDP also converges to a deterministic limit. More precisely, when N grows:

- The optimal reward converges.
- 2 The optimal policy also converges.
- **③** The speed of convergence is $O(\sqrt{N})$ (CLT theorem).

In this talk, we will

- Start with an example.
- Show the results and some proofs.

N. Gast

Model

Example

Theorems

- **2** A (simple) example
- **3** Theoretical results

Mean Field MDP

N. Gast

Model

Example

Theorems

Model of interacting particles

- Time is discrete: $t \in \{0, 1, \dots, \}$
- N particles with states $X_t^1 \dots X_t^N$.
 - Finite state space $S = \{1 \dots S\}$
- Context C_t^N
 - $C \in \mathbb{R}^d$ for some d.
- Population Mix: vector \mathbf{M}_t^N : $(\mathbf{M}_t^N)_i = \sum_{n=0}^N \mathbf{1}_{X_t^n = i}$

N. Gast

Model

Example

Theorems

Model of interacting particles

- Time is discrete: $t \in \{0, 1, \dots, \}$
- N particles with states $X_t^1 \dots X_t^N$.
 - Finite state space $\mathcal{S} = \{1 \dots S\}$
- Context C_t^N
 - $C \in \mathbb{R}^d$ for some d.
- Population Mix: vector \mathbf{M}_t^N : $(\mathbf{M}_t^N)_i = \sum_{n=0}^N \mathbf{1}_{X_t^n = i}$

Mean field assumption

• The evolution of C_t^N only depends on the mean field M_t^N :

$$\mathbf{C}_{t+1}^{N} = g(\mathbf{C}_{t}^{N}, \mathbf{M}_{t}^{N})$$

 The evolution of a particle is independent of the others and is Markovian of kernel K(C^N_t). Mean Field

N. Gast

Model

Example

Theorems

Mean Field Limit

We are interested in the behavior of the system when N grows.

- Very popular model
 - Widely used in physics and computer science
 - Often without proof.

Theorem (Le Boudec, McDonald, Mudinger, 07)

Assume that $M_0^N, C_0^N \xrightarrow{a.s} m_0, c_0$ and let us define the mean field limit:

- $m_{t+1} = m_t K(c_t)$
- $c_{t+1} = g(c_t, m_t)$

Then for all time t: $\mathbf{M}_t^N, \mathbf{C}_t^N \xrightarrow{a.s} m_t, c_t$.

N. Gast

Model

Example

Theorems

We add a control variable *a*. The kernel matrix becomes K(a, C)

- At each time *t*, a controller chooses an action $a \in A$.
- If the system is M_t^N, C_t^N , it gets a reward $r(M_t^N, C_t^N)$.

Mean Field MDP

N. Gast

Model

Example

Theorems

We add a control variable *a*. The kernel matrix becomes K(a, C)

- At each time t, a controller chooses an action $a \in A$.
- If the system is M_t^N, C_t^N , it gets a reward $r(M_t^N, C_t^N)$.

Aim of the controller

Choose the best policy to maximize:

• the finite-time expected reward between 0 and T:

$$V_{\pi}^{N}(\mathbf{M}_{0}^{N},\mathbf{C}_{0}^{N}) = \mathbb{E}_{\pi} \Big[\sum_{t=0}^{r} \mathbf{r}(\mathbf{M}_{t}^{N},\mathbf{C}_{t}^{N}) \Big]$$

• the expected discounted reward $(\underset{\pi}{0} < \delta < 1)$: $V_{\pi}^{\delta,N}(M_{0}^{N}, C_{0}^{N}) = \mathbb{E}_{\pi} \Big[\sum_{t=0}^{\infty} \delta^{t} r(M_{t}^{N}, C_{t}^{N}) \Big]$ Mean Field MDP

N. Gast

Model

Example

Theorems

Different types policies

- General case A policy is a (possibly random) function that only depends on the past: π_t : (M₀, C₀, ... M_t, C_t) → a_t.
- Markov Only depends on the current state: $\pi_t : (M_t, C_t) \mapsto a_t$

• Deterministic –
$$\pi_t$$
 is not random.

More restrictions – with limited information,...

Theorem (Optimal policies in MDP problems)

Under mild assumptions, there exists optimal policies that are Deterministic Markov. Optimal cost and policy can be computed backward:

$$V_{t...T}^{*N}(\mathbf{M}_{t}^{N},\mathbf{C}_{t}^{N}) \stackrel{\text{def}}{=} \mathbf{r}_{t}(\mathbf{M}_{t}^{N},\mathbf{C}_{t}^{N}) + \sup_{\mathbf{a}\in\mathcal{A}} \mathbb{E}\Big[V_{t+1...T}^{*N}\big(M_{t+1}^{N},\mathbf{C}_{t+1}^{N}\big)\Big]$$

Mean Field MDP

N. Gast

Model

Example

Theorems

Description of the model

2 A (simple) example

3 Theoretical results

4 Conclusion

Mean Field MDP

N. Gast

Model

Example

Theorems

Resource allocation problem

Mean Field MDP

N. Gast

Model

Example

Theorems

Resource allocation problem

• Size of queue *i*:
$$C_{t+1}^{i} = (C_{t}^{i} - \mu_{i}X_{t}^{i} + a_{t}^{i}Y_{t})^{+}$$

• Cost = total waiting time $\stackrel{\text{def}}{=} \sum_{i} C_{t}^{i}$

Mean Field MDP

N. Gast

Model

Example

Theorems

Computing the optimal policy

The stochastic system is hard to solve.

Policies, from optimal to approximations

1 Brute force resolution of the MDP. But:

- State space for particles: 2^N
- State space for queue: $(Q_{\max})^d$
- Expectation: 2^N states to explore.

Ø Multidimensional restless bandit problem

- Hard to solve exactly
- Index policies

In practice in such systems [EGEE]

Use of heuristics (JSQ)

N. Gast

Model

Example

Theorems

Solving the deterministic case

The problem becomes:

• Find
$$y_1^1 \dots y_T^d$$
 to minimize $\sum_{t=1}^T \sum_{i=1}^d c_t^i$ such that
• $c_{t+1}^i = (c_t^i + y_t^i - x_t^i)^+$ and
• $\sum_i y_t^i = y_t$.

N. Gast

Model

Example

Theorems

T · ,	0	1	0	2	4	-	6	1	Mean Field
i ime t	0	L	2	3	4	5	0		MDP
<i>y_t</i> (packets)	9	1	0	1	7	6	6]	N. Gast
0 1	I						1		Model
Queue 1						1			Example
									Theorems
0									Conclusion
Queue 2							,		
	I								
Queue 3	I								
					1				
Optimal allocation									
L	I	1	I	1	I	1	I	1	
- C " (C"									
Grey = "off"	process	ors.						<u> </u>	

• I : initial packets.

Time t	0	1	2	3	4	5	6]	M
y_t (packets)	9	1	0	1	7	6	6]	r
	I	P0	P0]	
Oursus 1	I	P0	P0						Mo
Queue 1	P0					1			Exa
						-			Th
			P0						Co
Queue 2									
	I	P0							
Queue 3	I	P0						-	
		P0							
Optimal allocation	5							1	
	1							1	
	3]	

• Grey = "off" processors.

• I : initial packets.

• P0: packets arrived at time 0.

Gast

Time t	0	1	2	3	4	5	6
y_t (packets)	9	1	0	1	7	6	6
	I	P0	P0				
	I	P0	P0				
Queue 1	P0						
Queue 2			P0				
Queue 2							
	I	P0	P1				
Queue 3	I	P0					
		P0					
	5						
Optimal allocation	1						
	3	1					

Mean Fiel MDP

N. Gast

Model

Example

Theorems

Conclusion

- Grey = "off" processors.
- I : initial packets.
 - N. Gast (LIG)

Mean Field MDP

Time <i>t</i>	0	1	2	3	4	5	6
y_t (packets)	9	1	0	1	7	6	6
	I	P0	P0	P3			
	I	P0	P0				
Queue 1	P0						
Queue 2			P0				
	I	P0	P1				
Queue 3	I	P0					
		P0					
Optimal allocation	5		-	1			
	1	-	-	-			
	3	1					

Mean Field MDP

N. Gast

Model

Example

Theorems

Conclusion

- Grey = "off" processors.
- I : initial packets.

Time <i>t</i>	0	1	2	3	4	5	6
y_t (packets)	9	1	0	1	7	6	6
	I	P0	P0	P3	P4	P4	
Ouque 1	I	P0	P0		P4		
Queue 1	P0				P4		
					P4		
0			P0				
Queue 2							
	I	P0	P1		P4		
Queue 3	I	P0			P4		
		P0					
Optimal allocation	5	-		1	5		
	1		-	-			
	3	1		-	2		

Mean Field

N. Gast

Model

Example

Theorems

Conclusion

- Grey = "off" processors.
- I : initial packets.

Time t	0	1	2	3	4	5	6
y_t (packets)	9	1	0	1	7	6	6
	I	P0	P0	P3	P4	P4	
Oueue 1	I	P0	P0		P4	P5	
Queue 1	P0				P4		
					P4		
0			P0			P5	
Queue 2						P5	
	I	P0	P1		P4	P5	
Queue 3	I	P0			P4	P5	
		P0				P5	
Optimal allocation	5		-	1	5	1	
	1	-				2	
	3	1	-		2	3	

Mean Field

N. Gast

Model

Example

Theorems

Conclusion

- Grey = "off" processors.
- P0: packets arrived at time 0.

• I : initial packets.

Time t	0	1	2	3	4	5	6
<i>y</i> _t (packets)	9	1	0	1	7	6	6
	I	P0	P0	P3	P4	P4	P6
Queue 1	I	P0	P0		P4	P5	
Queue 1	P0				P4		
					P4		
0			P0			P5	P6
Queue 2						P5	
	I	P0	P1		P4	P5	P6
Queue 3	I	P0			P4	P5	P6
		P0				P5	
Optimal allocation	5		-	1	5	1	1
	1	-	-			2	1
	3	1			2	3	2

Mean Field MDP

N. Gast

Model

Example

Theorems

Conclusion

- Grey = "off" processors.
- I : initial packets.

Time t	0	1	2	3	4	5	6
<i>y</i> _t (packets)	9	1	0	1	7	6	6
	I	P0	P0	P3	P4	P4	P6
Quouo 1	Ι	P0	P0		P4	P5	
Queue 1	P0				P4		
					P4		
0			P0			P5	P6
Queue 2						P5	
	I	P0	P1		P4	P5	P6
Queue 3	I	P0			P4	P5	P6
		P0				P5	
Optimal allocation	5		-	1	5	1	1+2
	1	-	-			2	1
	3	1	•		2	3	2

Mean Field

N. Gast

Model

Example

Theorems

- Grey = "off" processors.
- I : initial packets.

- P0: packets arrived at time 0.
- 2 packets remains at the end.

Numerical example

This gives us two policies

•
$$\pi^*$$
: at t , we apply $\pi_t^*(\mathbf{M}_t^N, \mathbf{C}_t^N)$
• a^* : we apply $a_t^* \stackrel{\text{def}}{=} \pi_t^*(m_t, c_t)$

We want to compare

- V^{*N} optimal cost for the system of size N
- $V_{a^*}^N$ cost when applying a^*
- $V_{\pi^*}^N$ cost when applying π^*
- $V_{\rm JSQ}^N$ cost of Join Shortest Queue.
- v^* cost of the deterministic system.

Mean Field MDP

N. Gast

Model

Example

Theorems

Cost convergence

Cost convergence

Theorem

$$\mathsf{lim}\; \mathsf{V}^{\mathsf{N}}_{\pi^*}(\mathrm{M},\mathrm{C}) = \mathsf{lim}\; \mathsf{V}^{\mathsf{N}}_{\mathsf{a}^*}(\mathrm{M},\mathrm{C}) = \mathsf{v}^*(\mathsf{\textit{m}},\mathsf{\textit{c}})\; \Big(= \mathsf{lim}\; \mathsf{V}^{*\mathsf{N}}(\mathrm{M},\mathrm{C}) \Big)$$

N. Gast (LIG)

ALEA 2009 15 / 29

Speed of convergence – central limit theorem

We plot

 $\sqrt{N}(V_X^N - v^*)$

Mean Field MDP

N. Gast

Model

Example

Theorems

Conclusion

1200

1000 -800 -600 -400 -200 -0 -

Mean Field MDP

Size of the system: N

1000

10000

100

Speed of convergence – central limit theorem

We plot

Description of the model

2 A (simple) example

4 Conclusion

Mean Field MDP

N. Gast

Model

Example

Theorems

Summary of the assumptions

- (A1) Independence of the users, Markov system If environment is C, action is *a*, the evolution of particles is independent and Markovian with kernel K(a, C).
- (A2) Compact action set The action set A is compact.
- (A3) Continuity of K, g, r the mappings K(a, C), g(C, M, a) and r_t(M, C) are continuous deterministic functions, uniformly continuous in a.

(A4) Almost sure initial state $- M_0^N, C_0^N \xrightarrow{a.s} m_0, c_0$. There exists *B* such that almost surely $C_0^N \leq B$.

Mean Field MDP

N. Gast

Model

Example

Theorems

Theorem (Convergence of the optimal reward) Under assumptions (A1,A2,A3,A4), almost surely:

$$\lim_{N \to \infty} V_T^{*N}(M_0^N, C_0^N) = \lim_{N \to \infty} V_{a_0^* \cdots a_{T-1}^*}^N(M_0^N, C_0^N) = v_T^*(m_0, c_0)$$

In particular, this shows that:

- Optimal cost converges
- Fixed policy (a^{*}) is asymptotically optimal

Remark that π^* is also asymptotically optimal but not asymptotically better.

Mean Field MDP

N. Gast

Model

Example

heorems

Optimal reward convergence : sketch of proof

Lemma

Under assumptions (A1,A3,A4) and for any fixed actions $a_0 \dots a_{T-1}$:

$$\lim_{N\to\infty} V^{N}_{a_0...a_{T-1}}(\mathbf{M}^{N}_0,\mathbf{C}^{N}_0) = v_{a_0...a_{T-1}}(m_0,c_0).$$

Mean Field MDP

N. Gast

Model

Example

heorems

Optimal reward convergence : sketch of proof

Lemma

Under assumptions (A1,A3,A4) and for any fixed actions $a_0 \dots a_{T-1}$:

$$\lim_{N \to \infty} V^{N}_{a_0 \dots a_{\tau-1}}(\mathbf{M}^{N}_0, \mathbf{C}^{N}_0) = v_{a_0 \dots a_{\tau-1}}(m_0, c_0).$$

Proof of theorem.

N. Gast (LIG)

•
$$V^{*N} \ge V^N_{a^*} \xrightarrow{a.s} v^*$$

Use backward computation to compare:

$$V_{t...T}^{*N}(\mathbf{M},\mathbf{C}) \stackrel{\text{def}}{=} \mathbf{r}_t(\mathbf{M},\mathbf{C}) + \sup_{a \in \mathcal{A}} \mathbb{E} \left[V_{t+1...T}^{*N} \left(\Phi_a^N(\mathbf{M},\mathbf{C}) \right) \right]$$

$$v_{t...T}^*(m,c) \stackrel{\text{def}}{=} \mathbf{r}_t(m,c) + \sup_{a \in \mathcal{A}} \left[v_{t+1...T}^* \left(\Phi_a(m,c) \right) \right]$$

• Proof that any actions maximizing 1 will also maximize 2.

N. Gast

Speed of convergence: a central limit theorem

Additional assumptions

- (A4-bis) Initial gaussian variable (A4) + there exists G_0 gaussian such that $\sqrt{N}((M_0^N, C_0^N) - (m_0, c_0)) \xrightarrow{\mathcal{L}} G_0$. (A5) Continuous differentiability – g, \mathcal{K}_{ij} and r_t are C^1 . or
- (A5-bis) **Differentiability in** $a_1 \dots a_T g$, K_{ij} and r_t are differentiable in each (m_t, c_t) for all t.

or

- (A5-ter) **Continuous lipschitz** g, K_{ij} and r_t are lipschitz on all compact set of their set of definition.
 - (A4) : natural, e.g if initial states are chosen independently.
 - (A5/bis/ter): give different results.

Mean Field MDP

N. Gast

Model

Example

Theorems

Speed of convergence: a central limit theorem

Theorem (CLT for the evolution of particles)

Under assumptions (A1,A2,A3,A4bis,A5-bis), if the actions taken by the controller are $a_0 \ldots a_{T-1}$, there exist gaussian vectors of mean 0, $G_1 \ldots G_{T-1}$ such that for every t:

$$\sqrt{N}\big((\mathrm{M}_0^N,\mathrm{C}_0^N)-(m_0,c_0),\ldots,(\mathrm{M}_t^N,\mathrm{C}_t^N)-(m_t,c_t)\big)\xrightarrow{\mathcal{L}}G_0,\ldots,G_t$$

The covariance of G_t can be effectively computed.

N. Gast

Model

Example

Theorems

Theorem (CLT for the evolution of particles)

Under assumptions (A1,A2,A3,A4bis,A5-bis), if the actions taken by the controller are $a_0 \ldots a_{T-1}$, there exist gaussian vectors of mean 0, $G_1 \ldots G_{T-1}$ such that for every t:

$$\sqrt{N}\big((\mathrm{M}_0^N,\mathrm{C}_0^N)-(m_0,c_0),\ldots,(\mathrm{M}_t^N,\mathrm{C}_t^N)-(m_t,c_t)\big)\xrightarrow{\mathcal{L}} G_0,\ldots,G_t$$

The covariance of G_t can be effectively computed.

Theorem (CLT for reward)

Under assumptions (A1,A2,A3,A4bis,A5-ter), $\exists \beta, \gamma, \beta', \gamma'$ such that when N does to infinity:

•
$$\sqrt{N} \left| V_T^{*N}(\mathbf{M}_0^N, \mathbf{C}_0^N) - V_{a^*}^N(\mathbf{M}_0^N, \mathbf{C}_0^N) \right| \leq_{\mathrm{st}} \beta + \gamma \|G_0\|_{\infty}$$

•
$$\sqrt{N} \left| V_T^{*N}(\mathrm{M}_0^N,\mathrm{C}_0^N) - v_{0\dots T}^*(m_0,c_0) \right| \leq_{\mathrm{st}} \beta' + \gamma' \|\mathcal{G}_0\|_{\infty}$$

N. Gast (LIG)

Mean Field MDP

N. Gast

Model

Example

Theorems

Sketch of the proof (evolution).

- at time t, we are in state (m_t, c_t) + ¹/_{√N}G_t + o(¹/_{√N}).
 New alea A_t created by dispersion.
 - $K(\mathbf{C}_t) = K(c_t) + \frac{1}{\sqrt{N}} \mathbf{D} K G_t + o(\frac{1}{\sqrt{N}}).$
- thus

$$\begin{split} \mathrm{M}_{t+1}^{N} &\approx (m_t + \frac{1}{\sqrt{N}}G_t)(K(c_t) + \frac{1}{\sqrt{N}}\mathrm{D}KG_t) + \frac{1}{\sqrt{N}}A_t \\ &\approx m_t K(c_t) + \frac{1}{\sqrt{N}}(G_t K + m_t \mathrm{D}KG_t + A_t) \end{split}$$

• Same for C_t^N .

Mean Field

N. Gast

Model

Example

Theorems

Discounted case

Assumptions

(A6) Homogeneity in time – reward and probability kernel K_t do not depend on t.

(A7) Bounded reward – $\sup_{M,C} |r(M,C)| < \infty$.

$$V_{\pi}^{\delta N}(\mathbf{M}_{0}^{N},\mathbf{C}_{0}^{N}) = \mathbb{E}_{\pi} \Big[\sum_{t=0}^{\infty} \delta^{t} \mathbf{r}(\mathbf{M}_{t}^{N},\mathbf{C}_{t}^{N}) \Big].$$

Mean Field MDP

N. Gast

Vodel

Example

Theorems

Discounted case

Assumptions

- (A6) Homogeneity in time reward and probability kernel K_t do not depend on t.
- (A7) Bounded reward $\sup_{M,C} |r(M,C)| < \infty$.

$$V_{\pi}^{\delta N}(\mathbf{M}_{0}^{N},\mathbf{C}_{0}^{N}) = \mathbb{E}_{\pi} \Big[\sum_{t=0}^{\infty} \delta^{t} \mathbf{r}(\mathbf{M}_{t}^{N},\mathbf{C}_{t}^{N}) \Big].$$

Theorem

Under assumptions (A1,A2,A3,A4,A6,A7),

$$\lim_{N\to\infty} V^{\delta N}_*(\mathrm{M}^N,\mathrm{C}^N) = v^\delta_*(m,c) \text{ a.s.}$$

Mean Field MDP

N. Gast

Model

Example

Theorems

Discounted case – sketch of the proof

Sketch of the proof.

Thanks to A7 (bounded reward), finite time convergence suffices. For T big enough:

$$\sum_{t=0}^{\infty} \delta^{t} \mathbf{r}(\mathbf{M}_{t}^{N}, \mathbf{C}_{t}^{N}) \approx \sum_{t=0}^{\mathsf{T}} \delta^{t} \mathbf{r}(\mathbf{M}_{t}^{N}, \mathbf{C}_{t}^{N})$$

Mean Field MDP

N. Gast

Model

Example

heorems

Discounted case – sketch of the proof

Sketch of the proof.

Thanks to A7 (bounded reward), finite time convergence suffices. For T big enough:

$$\sum_{t=0}^{\infty} \delta^{t} \mathbf{r}(\mathbf{M}_{t}^{N}, \mathbf{C}_{t}^{N}) \approx \sum_{t=0}^{\mathsf{T}} \delta^{t} \mathbf{r}(\mathbf{M}_{t}^{N}, \mathbf{C}_{t}^{N})$$

Problem for other asymptotic limits

- Average infinite reward: $\lim_{T\to\infty} \frac{1}{T} \mathbb{E}_{\pi} \sum_{t=0}^{T} r(M_t, C_t)$
- Problem with exchanging limits $N \to \infty$ and $T \to \infty$:
 - ex: $K_{i1}(C) = f(M_1)$ with f(x) = x or $f(x) = 8(\frac{1}{2} x)^3$.
 - Convergence to a set such that A = f(A).

N. Gast

Model

Example

heorems

Description of the model

2 A (simple) example

3 Theoretical results

Mean Field MDP

N. Gast

Model

Example

Theorems

Conclusion

- We presented a model for optimization for interacting particles with mean field interraction.
- In general, the stochastic case is impossible to solve and we restrict the problem to different types of policies:
 - With limited information
 - Based on heuristics
 - Index
 - ▶ ...

We showed that asymptotically this distinction collapses.

- In particular, we showed that:
 - a^*, π^* are asymptotically optimal.
 - Give bounds for the speed of convergence in \sqrt{N} .

Mean Field MDP

N. Gast

Model

Example

Theorems

How to apply this in practice?

We distinguish 3 cases:

1 Solve the deterministic system:

apply a^* or π^* .

- Obesign an approximation algorithm for the deterministic system
 - also an approximation (asymptotically) for stochastic problem.
- Ose brute force computation:
 - $v_{t\ldots T}^*(m,c) = \mathbf{r}(m,c) + \sup_{a} v_{t+1\ldots T}^*(\phi_a(m,c))$
 - Still costly but reduce computational time by removing the expectation $\mathbb{E}_{M,C}$.
 - We can compute forward.

Mean Field MDP

N. Gast

Model

Example

Theorems

References

- Paper corresponding to this talk:
 - Gast N., Gaujal B. A Mean Field Approach for Optimization in Particles Systems and Applications – RR 6877, http://mescal.imag.fr/membres/nicolas.gast/
- Mean field models:
 - Le Boudec, McDonald, Mudinger A Generic Mean Field Convergence Result for Systems of Interacting Objects – QEST 2007
 - J.Y. Le Boudec, Benaïm, M. A Class Of Mean Field Interaction Models for Computer and Communication Systems – Performance Evaluation
- Infinite horizon results:
 - Borkar Stochastic Approximation: A Dynamical Systems Viewpoint – Cambridge University Press 2008

Mean Field MDP

N. Gast

Model

Example

Theorems