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Motivation, description of the problem

A Markov Decision Process

We consider: N. Gast

@ System of N particles evolving in a shared
environment.
Markovian evolution.
Two particles are dependent only through the “mean
field” (mean number of particles in state s).
@ A controller

wants to optimize a reward (function of the mean
field and environment), finite or infinite horizon.

Previous result:

Mean field limit (without control)

@ When N grows, the system tends to a
deterministic system (called mean field limit)
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Main results

N. Gast
Our result

The MDP also converges to a deterministic limit.
More precisely, when N grows:

© The optimal reward converges.
© The optimal policy also converges.
© The speed of convergence is O(v/N) (CLT theorem).
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Main results

N. Gast
Our result

The MDP also converges to a deterministic limit.
More precisely, when N grows:

© The optimal reward converges.
© The optimal policy also converges.
© The speed of convergence is O(v/N) (CLT theorem).

In this talk, we will
@ Start with an example.

@ Show the results and some proofs.
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© Description of the model
© A (simple) example
© Theoretical results

© Conclusion



Model of interacting particles

Time is discrete: t € {0,1,...,}
N particles with states X} ... XN
Finite state space S = {1...S}
Context CV
C € R9 for some d.

Population Mix: vector MN: (MV); = Z,I)I:o 1xn—;

N. Gast
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Model of interacting particles

@ Time is discrete: t € {0,1,...,}

o N particles with states X} ... XN e
Finite state space S = {1...S}

e Context CN
C € R9 for some d.

@ Population Mix: vector MN: (MN); = Z,’Yzo 1xn—;

Mean field assumption

@ The evolution of C) only depends on the mean field M-
C{“V—i-l = g(C{“\IvMév)

@ The evolution of a particle is independent of the others and
is Markovian of kernel K(CN).
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Mean Field Limit

We are interested in the behavior of the system when N grows. J . G

@ Very popular model

» Widely used in physics and computer science
» Often without proof.

Theorem (Le Boudec, McDonald, Mudinger, 07)

Assume that MY, CY 22 mq, ¢y and let us define the mean field
limit:
@ Miy1 — th(Ct)

® cti1 = glce, my)

Then for all time t: MY, CN 2% m, c;.
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Controlling the system

We add a control variable a. The kernel matrix becomes
N. Gast
K(a,C)
@ At each time t, a controller chooses an action a € A.
o If the system is MM CV, it gets a reward r(MY, CN).
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Controlling the system

We add a control variable a. The kernel matrix becomes
N. Gast
K(a,C)
@ At each time t, a controller chooses an action a € A.
o If the system is MM CV, it gets a reward r(MY, CN).

Aim of the controller
Choose the best policy to maximize:

@ the finite-time expected reward be;_cween 0and T:

VY, CY) = B | Do r(ml, cl)]

t=0
o the expected discounted reward (0 < 6 < 1):
VANV, o) [Z&f MQQC’V)}
t=0
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Different types of policies

Different types policies

N. Gas
@ General case — A policy is a (possibly random) function that ;

only depends on the past: 7; : (Mg, Co, ... M, Cy) — a¢.

@ Markov — Only depends on the current state:
Tt . (Mt, Ct) — at

@ Deterministic — 7; is not random.

@ More restrictions — with limited information,...

Theorem (Optimal policies in MDP problems)

Under mild assumptions, there exists optimal policies that are
Deterministic Markov. Optimal cost and policy can be
computed backward:

def
Viltr(at!, ) < ro(ul, OF) + sup B[ Vel (M, O
a
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@ Description of the model
© A (simple) example
© Theoretical results

@ Conclusion



Resource allocation problem

Yi

O
% tasks

M on/off

sources

Broker

N. Gast (LIG)

:

a\g’,‘cd
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Resource allocation problem

Yi

O
% tasks

M on/off

sources

Broker

:

a\g’,‘cd

1
. P71 processors
M1

®

Hd
. P4 processors
d

®.®

, , . Nt
@ Size of queue i: Cy,; = (C’t = s 4= &L Yt>

oo def ;
o Cost = total waiting time = >, Ci
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Computing the optimal policy

The stochastic system is hard to solve. N. Gast

Policies, from optimal to approximations

© Brute force resolution of the MDP. But:

State space for particles: 2V
State space for queue: (Qmax)?
Expectation: 2N states to explore.

© Multidimensional restless bandit problem

Hard to solve exactly
Index policies

© In practice in such systems [EGEE]
Use of heuristics (JSQ)
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Optimal policies of the deterministic system

Solving the deterministic case N. Gast

The problem becomes:
T d
e Find yi...y% to minimize ZZ c! such that
t=1 j=1
iy = (ci +yi — xi)* and
DoVt = Ve

Yt

d
yi = (cf +yd —x)*
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Optimal policy of the deterministic system

y Time t [ o] 1] 23] 4]57]¢6 |
‘ ye (packets) o J1Jo [ 1] 7] 6] 6] N. Gast
I
Queue 1 !
Queue 2
I
Queue 3 |

Optimal allocation

@ Grey = "“off" processors. ) .
S @ PO: packets arrived at time 0.
@ I : initial packets.
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Optimal policy of the deterministic system

y Time t [ o] 1] 23] 4]57]¢6 |
‘ ye (packets) 9 J1Jo [ 1] 7] 6] 6] N. Gast
| PO | PO
I PO | PO
Queue 1 PO
Queue 2 L
| PO
Queue 3 | PO
PO
5
Optimal allocation 1
3

@ Grey = “off" processors. ) .
@ PO: packets arrived at time 0.

@ I : initial packets.
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Optimal policy of the deterministic system

y Time t [ o] 1] 23] 4]57]¢6 |
‘ ye (packets) o1 Jo [ 1] 7 7] 6] 6] N. Gast
| PO | PO
I PO | PO
Queue 1 50
Queue 2 PO
| PO | P1
Queue 3 | PO
PO
5
Optimal allocation 1
3 1

@ Grey = “off" processors. ) .
@ PO: packets arrived at time 0.

@ I : initial packets.
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Optimal policy of the deterministic system

y Time t [ o] 1] 23] 4]57]¢6 |
‘ ye (packets) 9o J1Jo [ 1] 7] 6] 6] N. Gast
| PO | PO | P3
I PO | PO
Queue 1 50
Queue 2 PO
| PO | P1
Queue 3 | PO
PO
5 1
Optimal allocation 1
3 1

@ Grey = “off" processors. ) .
@ PO: packets arrived at time 0.

@ I : initial packets.
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Optimal policy of the deterministic system

y Time t [ o] 1] 23] 4]57]¢6 |
ye (packets) 9 1 o] 1] 7] 6] 6] N. Gast
| PO| PO| P3| P4 | P4
Queue 1 ILO PO PO Ei
P4
Queue 2 PO
| PO | P1 P4
Queue 3 | PO P4
PO
5 1 5
Optimal allocation 1 )
3 1 2

@ Grey = “off" processors. ) .
@ PO: packets arrived at time 0.

@ I : initial packets.
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Optimal policy of the deterministic system

y Time t [ o] 1] 23] 4]57]¢6 |
‘ ye (packets) o J1Jo ] 1] 7] 6] 6] N. Gast
| PO | PO| P3| P4 | P4
Q 1 I PO | PO P4 | P5
ueue PO P4
P4
Queue 2 PO Eg
| PO | P1 P4 | P5
Queue 3 | PO P4 | P5
PO P5
5 1 5 1
Optimal allocation 1 ) 2
3 1 2 3

@ Grey = "“off" processors. ) .
S @ PO: packets arrived at time 0.
@ I : initial packets.
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Optimal policy of the deterministic system

y Time ¢ o[ 1 [ 2[3]4]57]6]
‘ ye (packets) o1 Jo ] 1]7 6 | 6 |
| PO | PO| P3| P4 | P4 | P6
Q 1 I PO | PO P4 | P5
ueue PO P4
P4
Queue 2 PO Eg 0
| PO | P1 P4 | P5 | P6
Queue 3 | PO P4 | P5 | P6
PO P5
5 1 5 1 1
Optimal allocation 1 . ) 2 1
3 1 2 3 2

@ Grey = “off" processors.

@ I : initial packets.

N. Gast (LIG)

@ PO: packets arrived at time 0.
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Optimal policy of the deterministic system

y Time ¢ o[ 1 [ 2[3]4]5] 6 |
‘ ye (packets) o1 Jo ] 1]7 6 | 6 |
| PO | PO| P3| P4 | P4 P6
Q 1 I PO | PO P4 | P5
ueue PO P4
P4
Queue 2 PO Eg P
| PO | P1 P4 | P5 P6
Queue 3 | PO P4 | P5 P6
PO P5
5 1 5 1 1+2
Optimal allocation 1 . ) 2 1
3 1 2 3 2

@ Grey = “off" processors.

@ I : initial packets.

N. Gast (LIG)

@ PO: packets arrived at time 0.

@ 2 packets remains at the end.

Mean Field MDP
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Numerical example

This gives us two policies N. Gast
e 7* : at t, we apply 7F(MN, CN)

def
o a* : we apply af = w¥(my, ¢;)

We want to compare

V*N — optimal cost for the system of size N

Va’y — cost when applying a*

(]

o

° Vﬂ — cost when applying 7*

o Vg — cost of Join Shortest Queue.
°

v* — cost of the deterministic system.
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Cost convergence

500 [ 3 Deterministic cost ]
| A* policy —&—
Pi* policy -
\ JSQ i~ N. Gast
400 |+ “,“ weighted JSQ ——+-—
300 - g
=
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o)
Y ol e 1
\35*4&;»,‘_\ RN
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100 F = 4
0 ‘ ‘
10 100 1000 10000

Size of the system: N
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Cost convergence

500 -

400

A* policy ----&---

Pi* policy -

L I
weighted JSQ --+-~

10000

300 1
=
(2]
o
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200 q
\Bji -
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100 e :
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10 100 1000
Size of the system: N
Theorem

lim VN (M, C) = lim VN(M, C) = v*(m, c) (

— lim V*N(M, C))
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Speed of convergence — central limit theorem

We plot o VN(VX(M,C) - v*(m,c))
o VN(VN(M,C) — v*(m,c))

N. Gast

A* policy —=—

1400 Pi* policy —&—
1200
—~~
* 1000
>
| 800 -
By
— 600
S
400 +
\\\D"B"“E*"EF\-—9-9--D-—-Er--»Er-—»D--va---—a—————ﬂ--»av—-
200
0 I I
10 100 1000 10000

Size of the system: N
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Speed of convergence — central limit theorem

We p|0t . \/N( V7£\’I" (M7 C) - V*(mv C)) — 7
o VN(VNM,C) - v*(m,c)) \—

N. Gast

A* policy —=—

1400 Pi* policy = |
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Size of the system: N
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Cost convergence

Summary of the assumptions N. Gast

(A1) Independence of the users, Markov system — If
environment is C, action is a, the evolution of particles is
independent and Markovian with kernel K(a, C).

(A2) Compact action set — The action set A is compact.
(A3) Continuity of K, g,r — the mappings K(a, C),
g(C, M, a) and r+(M, C) are continuous deterministic

functions, uniformly continuous in a.

(A4) Almost sure initial state - M}, C) 2% mg, cy. There
exists B such that almost surely C(’)V < B.
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Optimal reward convergence

Theorem (Convergence of the optimal reward) N: Gast

Under assumptions (A1,A2,A3,A4), almost surely:

: N(pN N : N N ~N
Nlinoo Vit (Mg, Go') = le'oo Vag...a§71(Mo , Co') = v(mo, o)

In particular, this shows that:
@ Optimal cost converges
@ Fixed policy (a*) is asymptotically optimal

Remark that 7* is also asymptotically optimal but not
asymptotically better.
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Optimal reward convergence : sketch of proof

Lemma
N. Gast

Under assumptions (A1,A3,A4) and for any fixed actions
apg...ar—1-

. N N ~N
Nlinoo Vao...ar_1(MO ,Co') = Vag...ar_1 (Mo, o).
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Optimal reward convergence : sketch of proof

Lemma
Under assumptions (A1,A3,A4) and for any fixed actions
apg...ar—1-

N N N
Nlinoo Vao .ar— 1(MO >C0 ) = Vao-‘-arfl(m07 CO)'

Proof of theorem.
o VN > YN 22,
@ Use backward computation to compare:

0 VN (M, C) ¥ (M, Q) +supa€A1E{v:+’V1 (ch’(M,C))}

Q v ;(mc) def r¢(m, c) + sup,c 4 {v:‘HH'T(d)a(m, c))}

@ Proof that any actions maximizing 1 will also maximize 2.

Ol

N. Gast (LIG) Mean Field MDP ALEA 2009

N. Gast

20 / 29



Speed of convergence: a central limit theorem

Additional assumptions

(A4-bis) Initial gaussian variable — (A4) + there exists Gop
gaussian such that v N((MY, CY) — (mo, ) £, Go.

(A5) Continuous differentiability — g, Kj; and 1, are CL.

or

N. Gast

(Ab-bis) Differentiability in a;...a7 — g, Kjj and 1; are
differentiable in each (my, ¢;) for all t.

or

(Ab-ter) Continuous lipschitz — g, Kj; and r; are lipschitz on
all compact set of their set of definition.

o (A4) : natural, e.g if initial states are chosen independently.
o (A5/bis/ter): give different results.
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Speed of convergence: a central limit theorem

Theorem (CLT for the evolution of particles)

Under assumptions (A1,A2,A3,A4bis,A5-bis), if the actions b (e
taken by the controller are ag . .. at_1, there exist gaussian
vectors of mean 0, Gy ... Gy_q such that for every t:

VN(MY, C)—(mo, o), - .., (MY, CM)—=(my, ) = Go, ..., G

The covariance of G; can be effectively computed.
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Speed of convergence: a central limit theorem

Theorem (CLT for the evolution of particles)

Under assumptions (A1,A2,A3,A4bis,A5-bis), if the actions b (e
taken by the controller are ag . .. at_1, there exist gaussian
vectors of mean 0, Gy ... Gy_q such that for every t:

VN(MY, CY)—(mo, o), ..., (MY, CM)—(my, ) = Go, ..., G

The covariance of G; can be effectively computed.

Theorem (CLT for reward)

Under assumptions (A1,A2,A3,A4bis,A5-ter), 33,~, 5,7 such
that when N does to infinity:

o VN|VEN (MY, Cl) - VMY, CY)| <ot B+ 711Gl
o VNIVNMY, CY) — v +(mo, )| <st B + ]| Golloo
Mean Field MDP ALEA 2000 22 /29




Speed of convergence: a central limit theorem

N. Gast
Sketch of the proof (evolution).

@ at time t, we are in state (my, ¢t) + ﬁGt + o(ﬁ)_
New alea A; created by dispersion.

K(Cy) = K(ct) + \%NDKGt + o(\%,v)_

@ thus
Mt+1 ~ ( t+ T )(K(Ct) %DKGLL) T ﬁAt
( ) . (GtK aF mtDKGt aF A )

@ Same for CN.
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Discounted case

Assumptions
N. Gast

(A6) Homogeneity in time — reward and probability kernel K;
do not depend on t.

(A7) Bounded reward — supy; ¢ [r(M, C)| < oc.

VAN, CN) = B, [Z ste(MV, ey
t=0
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Discounted case

Assumptions
N. Gast

(A6) Homogeneity in time — reward and probability kernel K;
do not depend on t.

(A7) Bounded reward — supy; ¢ [r(M, C)| < oc.

VAN MY, Cy [Z ste(MN, My

Theorem
Under assumptions (A1,A2,A3,A4,A6,A7),

lim V2N(MN, CN) = v2(m, ¢) a.

N—oo
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Discounted case — sketch of the proof

Sketch of the proof.

Thanks to A7 (bounded reward), finite time convergence e Gast

suffices. For T big enough:

o) T
> ooty Cf) & Y str(My, Cy)
t=0 t=0
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Discounted case — sketch of the proof

Sketch of the proof.

Thanks to A7 (bounded reward), finite time convergence e Gast

suffices. For T big enough:

o) T
> ooty Cf) & Y str(My, Cy)
t=0 t=0

Problem for other asymptotic limits

o Average infinite reward: limr_ o +E, S o t(My, Cy)

@ Problem with exchanging limits N — oo and T — oc:
ex: Ki1(C) = f(My) with f(x) = x or f(x) = 8(3 — x)*.
Convergence to a set such that A = f(A).
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Conclusion

@ We presented a model for optimization for interacting N: Gast

particles with mean field interraction.

@ In general, the stochastic case is impossible to solve and we
restrict the problem to different types of policies:

With limited information
Based on heuristics
Index

We showed that asymptotically this distinction collapses.
© In particular, we showed that:
a*, " are asymptotically optimal.
Give bounds for the speed of convergence in v/N.
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Computational issues

How to apply this in practice?
We distinguish 3 cases:
@ Solve the deterministic system:
apply a* or 7*.
© Design an approximation algorithm for the deterministic
system
also an approximation (asymptotically) for stochastic
problem.

© Use brute force computation:

*

vi_r(m, c) =r(m,c) +sup, vy 7(da(m, c))

Still costly but reduce computatlonal time by removing the
expectation Ey c.

We can compute forward.
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