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Motivation, description of the problem

A Markov Decision Process

We consider:

System of N particles evolving in a shared
environment.

I Markovian evolution.
I Two particles are dependent only through the “mean

field” (mean number of particles in state s).

A controller
I wants to optimize a reward (function of the mean

field and environment), finite or infinite horizon.

Previous result:

Mean field limit (without control)

When N grows, the system tends to a
deterministic system (called mean field limit)
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Main results

Our result

The MDP also converges to a deterministic limit.
More precisely, when N grows:

1 The optimal reward converges.

2 The optimal policy also converges.

3 The speed of convergence is O(
√

N) (CLT theorem).

In this talk, we will

Start with an example.

Show the results and some proofs.
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Model of interacting particles

Time is discrete: t ∈ {0, 1, . . . , }
N particles with states X 1

t . . .X
N
t .

I Finite state space S = {1 . . . S}
Context CN

t
I C ∈ Rd for some d .

Population Mix: vector MN
t : (MN

t )i =
∑N

n=0 1X n
t =i

Mean field assumption

The evolution of CN
t only depends on the mean field MN

t :

CN
t+1 = g(CN

t ,M
N
t )

The evolution of a particle is independent of the others and
is Markovian of kernel K (CN

t ).
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Mean Field Limit

We are interested in the behavior of the system when N grows.

Very popular model
I Widely used in physics and computer science
I Often without proof.

Theorem (Le Boudec, McDonald, Mudinger, 07)

Assume that MN
0 ,C

N
0

a.s−→ m0, c0 and let us define the mean field
limit:

mt+1 = mtK (ct)

ct+1 = g(ct ,mt)

Then for all time t: MN
t ,C

N
t

a.s−→ mt , ct .
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Controlling the system

We add a control variable a. The kernel matrix becomes
K (a,C)

At each time t, a controller chooses an action a ∈ A.

If the system is MN
t ,C

N
t , it gets a reward r(MN

t ,C
N
t ).

Aim of the controller

Choose the best policy to maximize:

the finite-time expected reward between 0 and T :

V N
π (MN

0 ,C
N
0 ) = Eπ

[ T∑
t=0

r(MN
t ,C

N
t )
]

the expected discounted reward (0 < δ < 1):

V δ,N
π (MN

0 ,C
N
0 ) = Eπ

[ ∞∑
t=0

δtr(MN
t ,C

N
t )
]
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Different types of policies

Different types policies

General case – A policy is a (possibly random) function that
only depends on the past: πt : (M0,C0, . . .Mt ,Ct) 7→ at .

Markov – Only depends on the current state:
πt : (Mt ,Ct) 7→ at

Deterministic – πt is not random.

More restrictions – with limited information,...

Theorem (Optimal policies in MDP problems)

Under mild assumptions, there exists optimal policies that are
Deterministic Markov. Optimal cost and policy can be
computed backward:

V ∗Nt...T (MN
t ,C

N
t )

def
= rt(MN

t ,C
N
t ) + sup

a∈A
E
[
V ∗Nt+1...T

(
MN

t+1,C
N
t+1

)]
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Resource allocation problem

...

M on/off
sources

Yt

tasks

a1
t

ad
t

Broker

...

µ1

µ1

P1 processorsC1

...

µd

µd

Pd processorsCd

...

Size of queue i : Ci
t+1 =

(
Ci

t − µiX
i
t + ai

tYt

)+

Cost = total waiting time
def
=
∑

i C
i
t
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Computing the optimal policy

The stochastic system is hard to solve.

Policies, from optimal to approximations

1 Brute force resolution of the MDP. But:
I State space for particles: 2N

I State space for queue: (Qmax)d

I Expectation: 2N states to explore.

2 Multidimensional restless bandit problem
I Hard to solve exactly
I Index policies

3 In practice in such systems [EGEE]
I Use of heuristics (JSQ)
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Optimal policies of the deterministic system

Solving the deterministic case

The problem becomes:

Find y1
1 . . . y

d
T to minimize

T∑
t=1

d∑
i=1

c i
t such that

I c i
t+1 = (c i

t + y i
t − x i

t )+ and
I
∑

i y i
t = yt .

yt

y1
t

yd
t

c1
t+1 = (c1

t + y1
t − x1

t )+

cd
t+1 = (cd

t + yd
t − xd

t )+

. . .
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Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I
I

Queue 2

Queue 3
I
I

Optimal allocation

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.
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Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I P0 P0
I P0 P0

P0

Queue 2
P0

Queue 3
I P0
I P0

P0

Optimal allocation
5
1
3

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.
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Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I P0 P0
I P0 P0

P0

Queue 2
P0

Queue 3
I P0 P1
I P0

P0

Optimal allocation
5 .
1 .
3 1

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.
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Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3
I P0 P0

P0

Queue 2
P0

Queue 3
I P0 P1
I P0

P0

Optimal allocation
5 . . 1
1 . . .
3 1 . .

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.
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Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4
I P0 P0 P4

P0 P4
P4

Queue 2
P0

Queue 3
I P0 P1 P4
I P0 P4

P0

Optimal allocation
5 . . 1 5
1 . . . .
3 1 . . 2

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field MDP ALEA 2009 13 / 29



Mean Field
MDP

N. Gast

Model

Example

Theorems

Conclusion

Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4
I P0 P0 P4 P5

P0 P4
P4

Queue 2
P0 P5

P5

Queue 3
I P0 P1 P4 P5
I P0 P4 P5

P0 P5

Optimal allocation
5 . . 1 5 1
1 . . . . 2
3 1 . . 2 3

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.
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Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4 P6
I P0 P0 P4 P5

P0 P4
P4

Queue 2
P0 P5 P6

P5

Queue 3
I P0 P1 P4 P5 P6
I P0 P4 P5 P6

P0 P5

Optimal allocation
5 . . 1 5 1 1
1 . . . . 2 1
3 1 . . 2 3 2

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.
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Optimal policy of the deterministic system

Time t 0 1 2 3 4 5 6

yt (packets) 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4 P6
I P0 P0 P4 P5

P0 P4
P4

Queue 2
P0 P5 P6

P5

Queue 3
I P0 P1 P4 P5 P6
I P0 P4 P5 P6

P0 P5

Optimal allocation
5 . . 1 5 1 1+2
1 . . . . 2 1
3 1 . . 2 3 2

Grey = “off” processors.

I : initial packets.

P0: packets arrived at time 0.

2 packets remains at the end.
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Numerical example

This gives us two policies

π∗ : at t, we apply π∗t (MN
t ,C

N
t )

a∗ : we apply a∗t
def
= π∗t (mt , ct)

We want to compare

V ∗N – optimal cost for the system of size N

V N
a∗ – cost when applying a∗

V N
π∗ – cost when applying π∗

V N
JSQ – cost of Join Shortest Queue.

v∗ – cost of the deterministic system.
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Cost convergence
C

os
t

 0

 100

 200

 300

 400

 500

 10  100  1000  10000

Deterministic cost
A* policy
Pi* policy

JSQ
weighted JSQ

Size of the system: N

Theorem

lim V N
π∗(M,C) = lim V N

a∗(M,C) = v∗(m, c)
(

= lim V ∗N(M,C)
)
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Speed of convergence – central limit theorem

We plot
√

N(V N
π∗(M,C)− v∗(m, c))√

N(V N
a∗(M,C)− v∗(m, c))

√
N

(V
N X
−

v
∗ )

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10  100  1000  10000

A* policy
Pi* policy

Size of the system: N
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Speed of convergence – central limit theorem

We plot
√

N(V N
π∗(M,C)− v∗(m, c)) −−→ γ√

N(V N
a∗(M,C)− v∗(m, c)) −−→ γ′

√
N

(V
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v
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Cost convergence

Summary of the assumptions

(A1) Independence of the users, Markov system – If
environment is C, action is a, the evolution of particles is
independent and Markovian with kernel K (a,C).

(A2) Compact action set – The action set A is compact.

(A3) Continuity of K , g , r – the mappings K (a,C),
g(C,M, a) and rt(M,C) are continuous deterministic
functions, uniformly continuous in a.

(A4) Almost sure initial state – MN
0 ,C

N
0

a.s−→ m0, c0. There
exists B such that almost surely CN

0 ≤ B.
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Optimal reward convergence

Theorem (Convergence of the optimal reward)

Under assumptions (A1,A2,A3,A4), almost surely:

lim
N→∞

V ∗NT (MN
0 ,C

N
0 ) = lim

N→∞
V N

a∗0 ...a
∗
T−1

(MN
0 ,C

N
0 ) = v∗T (m0, c0)

In particular, this shows that:

Optimal cost converges

Fixed policy (a∗) is asymptotically optimal

Remark that π∗ is also asymptotically optimal but not
asymptotically better.
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Optimal reward convergence : sketch of proof

Lemma

Under assumptions (A1,A3,A4) and for any fixed actions
a0 . . . aT−1:

lim
N→∞

V N
a0...aT−1

(MN
0 ,C

N
0 ) = va0...aT−1

(m0, c0).

Proof of theorem.

V ∗N ≥ V N
a∗

a.s−→ v∗

Use backward computation to compare:

1 V ∗Nt...T (M,C)
def
= rt(M,C) + supa∈A E

[
V ∗Nt+1...T

(
ΦN

a (M,C)
)]

2 v∗t...T (m, c)
def
= rt(m, c) + supa∈A

[
v∗t+1...T

(
Φa(m, c)

)]
Proof that any actions maximizing 1 will also maximize 2.
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Speed of convergence: a central limit theorem

Additional assumptions

(A4-bis) Initial gaussian variable – (A4) + there exists G0

gaussian such that
√

N((MN
0 ,C

N
0 )− (m0, c0))

L−→ G0.

(A5) Continuous differentiability – g , Kij and rt are C 1.

or

(A5-bis) Differentiability in a1 . . . aT – g , Kij and rt are
differentiable in each (mt , ct) for all t.

or

(A5-ter) Continuous lipschitz – g , Kij and rt are lipschitz on
all compact set of their set of definition.

(A4) : natural, e.g if initial states are chosen independently.

(A5/bis/ter): give different results.
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Speed of convergence: a central limit theorem

Theorem (CLT for the evolution of particles)

Under assumptions (A1,A2,A3,A4bis,A5-bis), if the actions
taken by the controller are a0 . . . aT−1, there exist gaussian
vectors of mean 0, G1 . . .GT−1 such that for every t:

√
N
(
(MN

0 ,C
N
0 )−(m0, c0), . . . , (MN

t ,C
N
t )−(mt , ct)

) L−→ G0, . . . ,Gt

The covariance of Gt can be effectively computed.

Theorem (CLT for reward)

Under assumptions (A1,A2,A3,A4bis,A5-ter), ∃β, γ, β′, γ′ such
that when N does to infinity:
√

N
∣∣∣V ∗NT (MN

0 ,C
N
0 )− V N

a∗(MN
0 ,C

N
0 )
∣∣∣ ≤st β + γ‖G0‖∞

√
N
∣∣∣V ∗NT (MN

0 ,C
N
0 )− v∗0...T (m0, c0)

∣∣∣ ≤st β
′ + γ′‖G0‖∞
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Speed of convergence: a central limit theorem

Sketch of the proof (evolution).

at time t, we are in state (mt , ct) + 1√
N

Gt + o( 1√
N

).

I New alea At created by dispersion.
I K (Ct) = K (ct) + 1√

N
DKGt + o( 1√

N
).

thus

MN
t+1 ≈ (mt + 1√

N
Gt)(K (ct) + 1√

N
DKGt) + 1√

N
At

≈ mtK (ct) + 1√
N

(GtK + mtDKGt + At)

Same for CN
t .
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Discounted case

Assumptions

(A6) Homogeneity in time – reward and probability kernel Kt

do not depend on t.

(A7) Bounded reward – supM,C |r(M,C)| <∞.

V δN
π (MN

0 ,C
N
0 ) = Eπ

[ ∞∑
t=0

δtr(MN
t ,C

N
t )
]
.

Theorem

Under assumptions (A1,A2,A3,A4,A6,A7),

lim
N→∞

V δN
∗ (MN ,CN) = v δ∗ (m, c) a.s.
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Discounted case – sketch of the proof

Sketch of the proof.

Thanks to A7 (bounded reward), finite time convergence
suffices. For T big enough:

∞∑
t=0

δtr(MN
t ,C

N
t ) ≈

T∑
t=0

δtr(MN
t ,C

N
t )

Problem for other asymptotic limits

Average infinite reward: limT→∞
1
T Eπ

∑T
t=0 r(Mt ,Ct)

Problem with exchanging limits N →∞ and T →∞:
I ex: Ki1(C) = f (M1) with f (x) = x or f (x) = 8( 1

2 − x)3.
I Convergence to a set such that A = f (A).
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Conclusion

1 We presented a model for optimization for interacting
particles with mean field interraction.

2 In general, the stochastic case is impossible to solve and we
restrict the problem to different types of policies:

I With limited information
I Based on heuristics
I Index
I ...

We showed that asymptotically this distinction collapses.
3 In particular, we showed that:

I a∗, π∗ are asymptotically optimal.
I Give bounds for the speed of convergence in

√
N.
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Computational issues

How to apply this in practice?

We distinguish 3 cases:
1 Solve the deterministic system:

I apply a∗ or π∗.

2 Design an approximation algorithm for the deterministic
system

I also an approximation (asymptotically) for stochastic
problem.

3 Use brute force computation:
I v∗t...T (m, c) = r(m, c) + supa v∗t+1...T (φa(m, c))
I Still costly but reduce computational time by removing the

expectation EM,C.
I We can compute forward.
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