Adaptive Autoscaling in Serverless Platforms
via Non-Stationary Gradient Descent

J. Anselmi
Inria — Ghost

10eéme journée COSMOS
Paris, December 2025
Joint work with
D. Ardagna, B. Gaujal, A.W. Kambale, L.-S. Rebuffi

Based on
Non-Stationary Gradient Descent for Optimal Autoscaling, IEEE/ACM Transactions on Networking, 2025

Autoscaling in Serverless Platforms via Online Learning with Convergence Guarantees, submitted.

Autoscaling Architecture — Server/Function States

Goal: adjust the current service capacity automatically in response to the current load

. | Jobs leaving the system |
J 1 after their execution !

CENTRAL QUEUE . H H

= olef- i o 4

Job Arrival ! g N :
T "~ '
concurrency reached) ! .@ ;

Job rejected if max

INITIALIZING POOL

CLUSTER i

(a) Snapshot of system at a given time (b) State transitions for each function.
2/24

Autoscaling Algorithm

Scale-up principle: “Activate a function (server)
upon a job arrival if no active idle server exists”

Problem: Occurrence of coldstarts

Idea: (from inventory ctl)
@ Keep a pool of idle servers

e "“# idle instances”" € [Oigie, Ostock]
e container prewarming

@ Deactivate an idle instance after Exp(feyp) secs

Control parameters:
@ Oidgje, Ostock: scale-up rule.

@ Ocyp: scale-down rule.

3/24

Autoscaling Algorithm

1 On each arrival (with rate \) do

.. “ . . 2 if #idle-on_functions = 0 and #cold_functions > 0
Scale-up principle: “Activate a function (server) then
upon a job arrival if no active idle server exists” 3 #init-reserved_functions := 1;
4 #init-free_functions_to_spawn := mg_, . ;
Problem: Occurrence of coldstarts : e Lo esenved funations;
6 Initialize #init-free_functions_to_spawn;
. 7 else if #idle-on_functions > 0 then
Idea: (from |nvent0ry Ctl) 8 #idle-on_functions := #idle-on_functions - 1;
° H 9 if #idle-on_functions < my,,,. and
Keep a p_00| _Of idle servers #cold_functions > 0 then
e "“# idle instances”" € [Oigie, Ostock] 10 #init-free_functions_to_spawn := m,,,, —
e container prewarming (#idle—onjunctlions+#init—free7fu.nctions);
11 Serve the request with an idle-on function;
@ Deactivate an idle instance after Exp(feyp) secs 2 1 Initialize #init-free_functions_to_spawn;
13 else
14 | Reject job
Control parameters: 15 end
. 16 On each expiration of an idle-on function (with rate
@ Oidle, Ostock: scale-up rule. Bezp) do
i 17 ‘ transition to cold the expired idle-on function;
@ Ocyp: scale-down rule. s el

3/24

Optimal Autoscaling

Objective (informal): Learn the three control parameters

0 = (estockv Qidle: eexp) = (91: 927 93)
to minimize a cost that balances job delay (or blocking) and energy consumption.

We will compute the optimal trade-off using a stochastic gradient descent algorithm.

4/24

Markov Model

State: x € X' = {x(x,-EN:il,...A)

3
ZX,' <N, x4 <X3}

i=1
@ xi: idle-on functions

@ xp: busy functions
@ x3: initializing functions

@ xu: reserved (waiting) jobs

Capacity (/N servers max):
x1+x2+x3 <N, Xa < X3

Dynamics: job arrivals and completions, server expirations and initializations drive a
continuous-time Markov chain.

5/24

Markov Chain: Transitions and Rates

The Markov chain (X;); has the following transition matrix:

Recall x = (idle-on, busy, init, init-res)
A
A

{xa=0,N=3"3 | x;>0}

{0<xa<mg, N—37_; x>0}

)‘H{Xlzﬂe
/

Qo(x,x') =q mx

idle }

eexp X1
Bxsl>0y
Bxsl,—0y

for all states x, x" € X, with x" # x and

if X' =x+e+(1+m,,(x))es

if X' =x—e1+ e+ e3(m,,, (x) —x1 — x3)
ifxX =x—e + e

if X' = x + (e1 — &){,—0y — eal{x>0)

ifxX' =x—¢e

ifxX=x+e—e—e

ifx’:x+e1—e3

Ty (X) = “scale-up policy”

i.e., the number of servers to initialize upon job arrival.

6/24

Stochastic Optimization for Autoscaling

Instantaneous cost:
4

C(x) = Z WiXj + Wrej 1{><2+><4:N}'
=1

@ wi,...,wy: energy cost per function state.
@ W: penalty for dropped jobs.

@ Note: 6 is not ‘directly inside’ the instantaneous cost C

Objective:

Technical difficulty: The stationary state X.(f) is not accessible!
— (even when transition rates are not known)

7/24

General Stochastic Optimization Framework

Setup.
@ The system evolves as a continuous-time Markov chain (Xf)tzo.

@ The controller knows the cost function C(-) and the current state X7, and nothing else!

Goal. Tune the parameter vector § € R? to minimize the stationary cost: (6) = E[C(X%)].

8/24

General Stochastic Optimization Framework

Setup.
@ The system evolves as a continuous-time Markov chain (Xf)tzo.

@ The controller knows the cost function C(-) and the current state X7, and nothing else!

Goal. Tune the parameter vector § € R? to minimize the stationary cost: (6) = E[C(X%)].
Key Difficulties.

@ The cost C does not depend directly on ¢ (only through Xo‘go), and VC is unavailable.
e We cannot sample from X’ : only transient trajectories of (X/) are observable.

= This prevents the use of standard SGD or classical Kiefer-Wolfowitz methods.

Approach. To develop a multi-dimensional, non-stationary stochastic gradient method that
converges using only transient samples of the Markov process.

8/24

Related Work

(Pflug, 1994) introduced the first Kiefer-Wolfowitz—type scheme in our setting, but without
convergence rates.

A Robbins—Monro SA approach with known gradients, used in (Chandak, Borkar, Dodhia,
2022), provides anytime convergence rates that depend on the Lipschitz constant of the cost

Results for non-convex costs and non-reversible Markov chains (as in our case) were developed
in (Sun, Sun, Yin, 2018) and othe rpapers, but they require access to the gradient.

Non-stationary ergodic noise / full knowledge of the model parameters has been addressed in
other papers; e.g.,(Duchi, Agarwal, Johansson, Jordan, 2012), (Tournaire, Castel-Taleb, Hyon,
2023).

9/24

Non-Stationary Gradient Descent (Kiefer-Wolfowitz) — Scalar Version

NSGD Algorithm.

@ Initialize the system in state xstar¢ With parameter 0g.
e At iteration n (time T,):
e Run K simulated trajectories of length 7, = 7 log(n + 1) with 6, + 6, and compute

K1

; - 1 0,46,

o0 +0n) = 1) C<XT:HTH. Tn+(i+1)‘rn>
i—0

(or in practice, observe the system KT, steps).
e Run another K simulations under ¢, — §,, and compute

K—-1

2 1 S c(x s

f(On — 0n) = K C<XTn+(K+I‘)TnA, Tn+(K+i+1)Tn> :
i=0

e Update the parameter via the symmetric finite-difference estimate:

i:;(@n“i’(gn) - ﬁ(en*(;n)
20, ’

6n+1 — 9n — n
10/24

Assumptions for Convergence

AS1 The function f(6) has a unique minimizer 6*, is C>, and ' is Lipschitz and bounded.
AS2 The step-size sequences (yn)n, (6n)n, and (7,), satisfy:

on — 0, Tn — +00, Z'yn = 00, 27,2,5;2 < 00,
n n

with (7v5)n, (05)n and (v,/9,)n decreasing.
AS3 Finite variance:
supy Varg(F(XfC)) < 00.

AS4 Uniform geometric mixing: for all 4, x, and t

HP§(X,') - mng < Gp'.

AS5 The function f is strongly convex — f/(0)(0 — 6') > r(6 — 0')?, k>0, V0,0’ € R.

11/24

Convergence Theorems
Let (0,), be the sequence generated by NSGD.

Theorem (0 € RY)

Under Assumptions AS1—AS4, 6, == 9*.

Theorem (0 € R)

Let 6, =n 3, =1 T,= I(f“g'(c’lg/z) with o > 1, Under Assumptions AS1—AS5,

limsup E[(6, — 6%)%] n*/3 < 0(1)

n—oo

12/24

Sketch of the Proof — 6 Scalar

We rewrite the parameter update rule as
9n+1 = en - 'Yn(f,(en) + Adiﬂ”,n + Amart,n + Amix,n)
where we define the decomposition:

F(0n + 6n, X0 t00) — F(0, — 0, X02700) £(0, + 0,) — F(On — 6n)

A =
mart,n 2(5,, 25” ’

f(0,+6,) — (6, —0dp
Adiff,n = ()25 () - f’(@n),

Amix,n =

Fo(On + 0n) = fa(0n — 6n) F(0n + 6n, X0o+90) — F(6 — 65, X% %)

20, 260,

= better control of certain difference terms.

13/24

Sketch of the Proof of Th. 1: Almost Sure Convergence

Show that (6,)nen is an APT (asymptotic pseudotrajectory) of the o.d.e. 6 = f'(0).
° t';”;o supg<p< 7 d(X(t + h), ®4(X(t))) =0
= Long-run behavior = deterministic semiflow of an ODE

Use the fact that this o.d.e has a single fixed point (6%).

Construct of a Lyapunov function to show convergence of the flow of the o.d.e. to the
unique fixed point.

e For the (negative) gradient flow f strictly decreases along nonstationary trajectories

@ All this implies a.s. convergence of the sequence 6, to 6*.

14 /24

Sketch of the Proof of Th. 2: Convergence Rate in the Convex Case

As for the computation of the convergence rate, we decompose the gap between |6, — 67| into
the terms Amartm: Adiff,n and Amix,n:

@ Apart,n is a difference of martingales whose expectation is 0.

@ Agisr,n is bounded using classical stochastic gradient arguments for convex functions

(ASS).

@ Ayix.n is the hardest term to bound because it involves non-stationary terms. Here,
uniform mixing (AS4) plays a major part.

15/24

Back to Autoscaling: It fits the Framework

@ All assumptions required in Theorems 1-2 can be ensured in the autoscaling problem by
applying a suitable truncation/extension procedure.

@ The most delicate part is proving that f is C> and establishing uniform mixing. Both
follow from regularity properties of the Drazin inverse of (I — Pp).

@ The convergence rate of NSGD depends on the strong convexity of the cost function.
This has been verified only numerically in our examples (see next slide).

16 /24

Cost Function f(¢) and Behavior by NSGD (6 = Os0ck scalar)

——A=03, 6,=1
—x—A=0.15, 90=1

\\m,// “eos | 2 e As02, 10
—*—\=0.15 — % -A=0.15, 90:10

0 56 10 15 20 25 30 0 5 10 15 20 25 30
n (# iterations on ﬂn by Algorithm 2)

44 TT T T T 10 = T T T T T
])
[N "
42 [R ol 1 4
] 1%
[N
40 T 1 8
[N .
[N
= 38 [N 7r
[
= [N
36 - 6l
c 1
2 Sig <
2]
S o 5
p [N
3 N
O 32t [N} 4t
[
[N
[N}
[
[N
[N
[N
1

The red line corresponds to the truncation to the interval [0, M| over which the function
appears to be convex 17/24

Experimental Evaluation on SimFaaS 6 = (6stock, Vidle, Gexp)

e Simulator developed on top of SimFaaS [Mahmoudi and Khazaei, 2021] for realistic
emulation of public serverless platforms [https://github.com/Wamuhindo/NSGD]

T=10%,A=5u=1,a=01 T=10%4=5u=1,a=0.1 T=1044=5pu=1,a=01

—— 00 =1, 6%, =1,00,=510"

—— 08, =1,6%,=1,63,=5-10"
— 0ok =1, Oy

—— 0% =1,6%.=5,6, 1073

—— 0%k =3, O%e =10-10"3 9 —— 680 =3, 0= 4, 65,,=10-1073

,0%,=1-10"

| e B =10,6%, 22,69, =110 s o 8 =10, 8,

Bstock

Oy 10°

o
0 0 20 30 40 50 60 70 80 10 20 30 40 50 60 70 8 0 20 30 40 S50 6 70 8
n n n
(a) estock (b) eidle (C) eexp

Sequence of 0's produced by NSGD under exponentially distributed service times.

18/24

https://github.com/Wamuhindo/NSGD

Experimental Evaluation on SimFaaS 6 = (6stock, Vidle, Gexp)

NSGD over Pareto service times:

T=10%A=5u=1,a=0.1

T=10%A=5pu=1,a=0.1

T=10%A=5pu=1,a=0.1
6 11
o — 6% =1,0%,=1,8%,=5:10" —— 0%, =1,60,=1,63,=510" e 00, =1, 0%, = 1,65, =5-10"3
+ 10
e B0 m1, 03,=5, 63,5107 03,=5:10"] 055,08, =5-10

° = Bfock =3, 6= 4,65, =10-1072 ° —— 080 =3, 09 =4,00,=10-102 9 e 0%,=3, 6%, = 4,05, =10-10"

8 = Bk =10, 8y =2, 05, = 11072 —— 080 =10, 6%, =2, 63, =110 s e B0, =10, 60, =2, 62,=1-10
7
3 5 e
= g s

<
2 4
Aae W RTINS et 0P as00eea0d -
3
Pse o M exOOB00m |
1 2
SoeBsoonsssonnugs

1
o

0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

n n

(a) estock

(b) Oide

(c) Oexp

Evolution of control parameters B¢, @igie, and ey, over 80 iterations under Pareto-distributed service times.

19/24

LSTM-PPO Benchmark [Agarwal et al. 2024]

Core Idea. A recurrent RL agent learns an autoscaling policy from observed system metrics

It integrates Long Short-term Memory (LSTM) with Proximal Policy Optimization (PPO).
LSTM Component:

o Captures temporal patterns and stochasticity of the workload.
@ Processes a window of observations:

e avg. CPU & memory utilization, avg. execution time, number of replicas, proportion of
served requests, total arrivals.

PPO Component:

@ Learns the scaling policy using policy-gradient updates.

@ Action space: {—2,—1,0,+1,+2} (scale down / do nothing / scale up).
@ Reward combines performance (served requests) and resource use.

Implementation [https://github.com/Wamuhindo/NSGD]:
@ Simulator built on RLIib, extended to expose CPU and memory metrics.

20/24

https://github.com/Wamuhindo/NSGD

-
Comparison with LSTM-PPO (1)

AN AIN

(a) Exponentially distributed service times. (b) Pareto distributed service times.

Figure 4: Cost comparison of N SG D) with LSTM-PPO [16] under 10 different runs and three arrival rates. The service times follow an exponential distribution
in subfigure (a) and a Pareto distribution in subfigure (b). LSTM-PPO considers two scenarios, one with its original reward (subfigure (a) orange) and another
(LSTM-PPO-COST) with our cost as the negative of the reward (subfigure (b) green).

21/24

Cost

Comparison with LSTM-PPO (l1)

Cost sensitivity analysis

when changing weights

140{ —e— NSGD P 160 o nsGD 2 200] —— NSGD —e— NSGD 2
o LSTM-PPO S LSTM-PPO p o LSTM-PPO 250 LSTM-PPO y
—— -PPO- v & 1401 —— -PPO-(4 —— -PPO- —— -PPO-
120 LSTM-PPO-COST V% LSTM-PPO-COST A = LSTM-PPO-COST LSTM-PPO-COST 4
. ¥ 3 A
120
100 yd // 150
g > 7
. ., 100 P - 2
80 20 2 / / 7 125
o o< . o
80 yd / 100
_/' 60 75
/ 48 I 50
0] ¢ R EE— . Y
100 150 200 250 360 350 400 450 500 20160 150 200 250 300 350 460 450 500 160 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Weight ws Weight wa Weight wa Weight wa
(a) A/N =0.1 (b) A/N =0.2) A/N =0.3 @ A/N =0.7

Figure 6: Cost sensitivity analysis when changing weights associated with init-reserved (w4) and rejection (w;.c;) for different values of A/N.

22/24

Main Takeaways

@ Modeling: autoscaling framed as a multi-parameter stochastic optimization problem
balancing energy and performance.

@ Algorithmic: NSGD performs online SGDbased tuning of three key control parameters.
@ Theory: convergence guarantees established in Markovian settings.

e Simulation: extensive, realistic experiments (SimFaaS) show robustness even in
non-Markovian workloads.

@ Insight: principled multi-parameter control can significantly reduce costs compared to
heuristic or state-of-the-art RL algorithms.

23/24

La fin

A. W. Kambale, J. Anselmi, D. Ardagna, B. Gaujal Autoscaling in Serverless Platforms via Online Learning with
Convergence Guarantees, submitted

J. Anselmi, B. Gaujal, L.S. Rebuffi Non-Stationary Gradient Descent for Optimal Auto-Scaling in Serverless
Platforms, IEEE/ACM Transactions on Networking, vol. 33, no. 4, pp. 1574-1587, Aug. 2025

Simulator: https://github.com/Wamuhindo/NSGD
24 /24

https://github.com/Wamuhindo/NSGD

