
Adaptive Autoscaling in Serverless Platforms
via Non-Stationary Gradient Descent

J. Anselmi
Inria – Ghost

10ème journée COSMOS
Paris, December 2025

Joint work with
D. Ardagna, B. Gaujal, A.W. Kambale, L.-S. Rebuffi

Based on
Non-Stationary Gradient Descent for Optimal Autoscaling, IEEE/ACM Transactions on Networking, 2025

Autoscaling in Serverless Platforms via Online Learning with Convergence Guarantees, submitted.

Autoscaling Architecture – Server/Function States

Goal: adjust the current service capacity automatically in response to the current load

2 / 24

Autoscaling Algorithm

Scale-up principle: “Activate a function (server)
upon a job arrival if no active idle server exists”

Problem: Occurrence of coldstarts

Idea: (from inventory ctl)

Keep a pool of idle servers

“# idle instances” ∈ [θidle , θstock]
container prewarming

Deactivate an idle instance after Exp(θexp) secs

Control parameters:

θidle , θstock : scale-up rule.

θexp: scale-down rule.

3 / 24

Autoscaling Algorithm

Scale-up principle: “Activate a function (server)
upon a job arrival if no active idle server exists”

Problem: Occurrence of coldstarts

Idea: (from inventory ctl)

Keep a pool of idle servers

“# idle instances” ∈ [θidle , θstock]
container prewarming

Deactivate an idle instance after Exp(θexp) secs

Control parameters:

θidle , θstock : scale-up rule.

θexp: scale-down rule.

3 / 24

Optimal Autoscaling

Objective (informal): Learn the three control parameters

θ = (θstock , θidle , θexp) = (θ1, θ2, θ3)

to minimize a cost that balances job delay (or blocking) and energy consumption.

We will compute the optimal trade-off using a stochastic gradient descent algorithm.

4 / 24

Markov Model

State: x ∈ X :=

{
x = (xi ∈ N : i = 1, . . . , 4)

∣∣∣∣∣
3∑

i=1

xi ≤ N, x4 ≤ x3

}
x1: idle-on functions

x2: busy functions

x3: initializing functions

x4: reserved (waiting) jobs

Capacity (N servers max):
x1 + x2 + x3 ≤ N, x4 ≤ x3

Dynamics: job arrivals and completions, server expirations and initializations drive a
continuous-time Markov chain.

5 / 24

Markov Chain: Transitions and Rates

The Markov chain (Xt)t has the following transition matrix:
Recall x = (idle-on, busy, init, init-res)

Qθ(x , x
′) =



λI{x1=0,N−
∑3

i=1 xi>0} if x ′ = x + e4 + (1 + πθstock (x)) e3

λI{0<x1<πθidle
,N−

∑3
i=1 xi>0} if x ′ = x − e1 + e2 + e3 (πθstock (x)− x1 − x3)

λI{x1≥πθidle
} if x ′ = x − e1 + e2

µx2 if x ′ = x + (e1 − e2)I{x4=0} − e4 I{x4>0}

θexp x1 if x ′ = x − e1

βx3I{x4>0} if x ′ = x + e2 − e3 − e4

βx3I{x4=0} if x ′ = x + e1 − e3

for all states x , x ′ ∈ X , with x ′ ̸= x and

πθstock (x) = “scale-up policy”

i.e., the number of servers to initialize upon job arrival.
6 / 24

Stochastic Optimization for Autoscaling

Instantaneous cost:

C (x) =
4∑

i=1

wixi + wrej 1{x2+x4=N}.

w1, . . . ,w4: energy cost per function state.

wrej: penalty for dropped jobs.

Note: θ is not ‘directly inside’ the instantaneous cost C

Objective:
f (θ) = E

[
C (X∞(θ))

]
.

Technical difficulty: The stationary state X∞(θ) is not accessible!
→ (even when transition rates are not known)

7 / 24

General Stochastic Optimization Framework

Setup.

The system evolves as a continuous-time Markov chain (X θ
t)t≥0.

The controller knows the cost function C (·) and the current state X θ
t , and nothing else!

Goal. Tune the parameter vector θ ∈ Rd to minimize the stationary cost: f (θ) = E[C (X θ
∞)].

Key Difficulties.

The cost C does not depend directly on θ (only through X θ
∞), and ∇C is unavailable.

We cannot sample from X θ
∞: only transient trajectories of (X θ

t) are observable.

⇒ This prevents the use of standard SGD or classical Kiefer-Wolfowitz methods.

Approach. To develop a multi-dimensional, non-stationary stochastic gradient method that
converges using only transient samples of the Markov process.

8 / 24

General Stochastic Optimization Framework

Setup.

The system evolves as a continuous-time Markov chain (X θ
t)t≥0.

The controller knows the cost function C (·) and the current state X θ
t , and nothing else!

Goal. Tune the parameter vector θ ∈ Rd to minimize the stationary cost: f (θ) = E[C (X θ
∞)].

Key Difficulties.

The cost C does not depend directly on θ (only through X θ
∞), and ∇C is unavailable.

We cannot sample from X θ
∞: only transient trajectories of (X θ

t) are observable.

⇒ This prevents the use of standard SGD or classical Kiefer-Wolfowitz methods.

Approach. To develop a multi-dimensional, non-stationary stochastic gradient method that
converges using only transient samples of the Markov process.

8 / 24

Related Work

(Pflug, 1994) introduced the first Kiefer-Wolfowitz–type scheme in our setting, but without
convergence rates.

A Robbins–Monro SA approach with known gradients, used in (Chandak, Borkar, Dodhia,
2022), provides anytime convergence rates that depend on the Lipschitz constant of the cost

Results for non-convex costs and non-reversible Markov chains (as in our case) were developed
in (Sun, Sun, Yin, 2018) and othe rpapers, but they require access to the gradient.

Non-stationary ergodic noise / full knowledge of the model parameters has been addressed in
other papers; e.g.,(Duchi, Agarwal, Johansson, Jordan, 2012), (Tournaire, Castel-Taleb, Hyon,
2023).

9 / 24

Non-Stationary Gradient Descent (Kiefer-Wolfowitz) – Scalar Version

NSGD Algorithm.

Initialize the system in state xstart with parameter θ0.
At iteration n (time Tn):

Run K simulated trajectories of length τn = τ log(n + 1) with θn + δn and compute

f̂n(θn + δn) =
1

K

K−1∑
i=0

C
(
X θn+δn

Tn+iτn, Tn+(i+1)τn

)
(or in practice, observe the system Kτn steps).
Run another K simulations under θn − δn and compute

f̂n(θn − δn) =
1

K

K−1∑
i=0

C
(
X θn−δn

Tn+(K+i)τn, Tn+(K+i+1)τn

)
.

Update the parameter via the symmetric finite-difference estimate:

θn+1 = θn − γn
f̂n(θn + δn) − f̂n(θn − δn)

2 δn
.

10 / 24

Assumptions for Convergence

AS1 The function f (θ) has a unique minimizer θ∗, is C3, and f ′ is Lipschitz and bounded.

AS2 The step-size sequences (γn)n, (δn)n, and (τn)n satisfy:

δn → 0, τn → +∞,
∑
n

γn = ∞,
∑
n

γ2nδ
−2
n < ∞,

with (γn)n, (δn)n and (γn/δn)n decreasing.

AS3 Finite variance:
supθ Varθ

(
F (X θ

∞)
)
< ∞.

AS4 Uniform geometric mixing: for all θ, x , and t∥∥Pt
θ(x , ·)−mθ

∥∥
1
≤ C1ρ

t .

AS5 The function f is strongly convex – f ′(θ)(θ − θ′) ≥ κ(θ − θ′)2, κ > 0, ∀θ, θ′ ∈ R.
11 / 24

Convergence Theorems

Let (θn)n be the sequence generated by NSGD.

Theorem (θ ∈ Rd)

Under Assumptions AS1→AS4, θn
a.s.−−→ θ∗.

Theorem (θ ∈ R)

Let δn = n−
2
3 , γn = 1

n , Tn = α log n
log(1/ρ) with α > 1, Under Assumptions AS1→AS5,

lim sup
n→∞

E
[
(θn − θ∗)2

]
n2/3 ≤ O(1)

12 / 24

Sketch of the Proof – θ Scalar

We rewrite the parameter update rule as

θn+1 = θn − γn
(
f ′(θn) + ∆diff,n +∆mart,n +∆mix,n

)
where we define the decomposition:

∆mart,n :=
F (θn + δn,X

θn+δn
∞)− F (θn − δn,X

θn−δn
∞)

2δn
− f (θn + δn)− f (θn − δn)

2δn
,

∆diff,n :=
f (θn + δn)− f (θn − δn)

2δn
− f ′(θn),

∆mix,n :=
f̂n(θn + δn)− f̂n(θn − δn)

2δn
− F (θn + δn,X

θn+δn
∞)− F (θn − δn,X

θn−δn
∞)

2δn
.

⇒ better control of certain difference terms.

13 / 24

Sketch of the Proof of Th. 1: Almost Sure Convergence

Show that (θn)n∈N is an APT (asymptotic pseudotrajectory) of the o.d.e. θ = f ′(θ).

lim
t→∞

sup0≤h≤T d
(
X (t + h),Φh(X (t))

)
= 0

⇒ Long-run behavior = deterministic semiflow of an ODE

Use the fact that this o.d.e has a single fixed point (θ∗).

Construct of a Lyapunov function to show convergence of the flow of the o.d.e. to the
unique fixed point.

For the (negative) gradient flow f strictly decreases along nonstationary trajectories

All this implies a.s. convergence of the sequence θn to θ∗.

14 / 24

Sketch of the Proof of Th. 2: Convergence Rate in the Convex Case

As for the computation of the convergence rate, we decompose the gap between |θn − θ∗| into
the terms ∆mart,n,∆diff,n and ∆mix,n:

∆mart,n is a difference of martingales whose expectation is 0.

∆diff,n is bounded using classical stochastic gradient arguments for convex functions
(AS5).

∆mix,n is the hardest term to bound because it involves non-stationary terms. Here,
uniform mixing (AS4) plays a major part.

15 / 24

Back to Autoscaling: It fits the Framework

All assumptions required in Theorems 1–2 can be ensured in the autoscaling problem by
applying a suitable truncation/extension procedure.

The most delicate part is proving that f is C3 and establishing uniform mixing. Both
follow from regularity properties of the Drazin inverse of (I − Pθ).

The convergence rate of NSGD depends on the strong convexity of the cost function.
This has been verified only numerically in our examples (see next slide).

16 / 24

Cost Function f (θ) and Behavior by NSGD (θ = θstock scalar)

0 5 6 10 15 20 25 30
26

28

30

32

34

36

38

40

42

44

C
o
s
t
fu

n
c
ti
o
n
 -

 f
(

)

*

*

=0.3

=0.15

0 5 10 15 20 25 30

n (# iterations on
n
 by Algorithm 2)

1

2

3

4

5

6

7

8

9

10

n

=0.3,
0
=1

=0.15,
0
=1

=0.3,
0
=10

=0.15,
0
=10

The red line corresponds to the truncation to the interval [0,M] over which the function
appears to be convex 17 / 24

Experimental Evaluation on SimFaaS θ = (θstock , θidle , θexp)

Simulator developed on top of SimFaaS [Mahmoudi and Khazaei, 2021] for realistic
emulation of public serverless platforms [https://github.com/Wamuhindo/NSGD]

(a) θstock (b) θidle (c) θexp

Sequence of θ’s produced by NSGD under exponentially distributed service times.

18 / 24

https://github.com/Wamuhindo/NSGD

Experimental Evaluation on SimFaaS θ = (θstock , θidle , θexp)

NSGD over Pareto service times:

(a) θstock (b) θidle (c) θexp

Evolution of control parameters θinit, θidle, and θexp over 80 iterations under Pareto-distributed service times.

19 / 24

LSTM–PPO Benchmark [Agarwal et al. 2024]

Core Idea. A recurrent RL agent learns an autoscaling policy from observed system metrics.

It integrates Long Short-term Memory (LSTM) with Proximal Policy Optimization (PPO).

LSTM Component:

Captures temporal patterns and stochasticity of the workload.
Processes a window of observations:

avg. CPU & memory utilization, avg. execution time, number of replicas, proportion of
served requests, total arrivals.

PPO Component:

Learns the scaling policy using policy-gradient updates.

Action space: {−2,−1, 0,+1,+2} (scale down / do nothing / scale up).

Reward combines performance (served requests) and resource use.

Implementation [https://github.com/Wamuhindo/NSGD]:

Simulator built on RLlib, extended to expose CPU and memory metrics.
20 / 24

https://github.com/Wamuhindo/NSGD

Comparison with LSTM-PPO (I)

21 / 24

Comparison with LSTM-PPO (II)

Cost sensitivity analysis when changing weights

22 / 24

Main Takeaways

Modeling: autoscaling framed as a multi-parameter stochastic optimization problem
balancing energy and performance.

Algorithmic: NSGD performs online SGDbased tuning of three key control parameters.

Theory: convergence guarantees established in Markovian settings.

Simulation: extensive, realistic experiments (SimFaaS) show robustness even in
non-Markovian workloads.

Insight: principled multi-parameter control can significantly reduce costs compared to
heuristic or state-of-the-art RL algorithms.

23 / 24

La fin

A. W. Kambale, J. Anselmi, D. Ardagna, B. Gaujal Autoscaling in Serverless Platforms via Online Learning with
Convergence Guarantees, submitted

J. Anselmi, B. Gaujal, L.S. Rebuffi Non-Stationary Gradient Descent for Optimal Auto-Scaling in Serverless
Platforms, IEEE/ACM Transactions on Networking, vol. 33, no. 4, pp. 1574-1587, Aug. 2025

Simulator: https://github.com/Wamuhindo/NSGD
24 / 24

https://github.com/Wamuhindo/NSGD

