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Data Centers and Cloud Computing
Resource allocation problems

➢ Align IT resources with service demand

➢ optimizing resource usage

➢ reducing costs

Load balancing in data-storage and 
computing systems

● Replication

● Minimizing delays
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Computing systems
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Architecture of the distributed 
system

Dispatching Algorithms
 Random, RND
 Round-Robin, RR
 Join the shortest queue, SQ(N)
 Power-of-d-choice, SQ(d)
 Redundancy-d, Red-d
 Join the idle queue, JIQ
 Idle-one first, JIQ++
 d-choices with memory, SQ(d,b)
 . . .

➢ Which one the best?

Stochastically arriving
random-size jobs
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Heavy traffic optimality
If the workload or queue-lengths process 
is minimized over all time in the diffusion 
limit as λ ↑ 1 and N is fixed.

QL HT 
optimality

Fluid 
optimality Overhead

RND  No, No, 0

RR  No, No,  ≥ 0

SQ(N) Yes Yes ̴ N2

SQ(d) Yes No,  ⋍ ̴ N2 

Red-d - No ̴ N2

JIQ No, ⋍ RND Yes ̴ N2

JIQ++ No, ⋍ RND Yes ̴ N2

SQ(d,b) Yes No ̴ N2

What we know in a nutshell

Fluid (or mean field) 
optimality
If the steady-state probability of an arriving 
job experiencing waiting converges to zero 
when N ↑ ∞ and λ < 1 is fixed.

➢ Orthogonal standpoints
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Our approach: SQ(d,N)
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Our main results
SQ(d,N) is fluid optimal if and only if 

If λ∈ [0,1), the longest queue is

Heavy traffic optimality
Consequence of the HT 
optimality of SQ(d). SQ(d,N) unique fluid- and heavy-traffic optimal 

algorithm employing a linear overhead
➤
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The remainder of the talk

➔ A stochastic and a deterministic model for the dynamics of SQ(d,N)
Continuous time Markov chain, differential equation.

➔ Connection between both models
Kurtz-like result

➔ Fixed points, stability and fluid optimality
Lyapunov-like result

➔ Conclusions and future research
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Stochastic model
➔ Arrivals: Poisson process with rate λ N

➔ Job sizes: Poisson process with rate 1

➔ Server speeds: constant c=1

         : number of jobs in queue k at time t

          : the last observation collected from server k at time t

Define                                                       where 

Then,              is a continuous-time Markov chain (with involved non-Lipschitz transitions and rates!)

Proportion of (i,j)-servers
ie servers with i jobs and observation j→

11



Sample path construction on (0,0)
➔               for p=1,...,d, to select the servers to sample at each arrival (Line 5 of Alg. 1)

➔               to randomize among the servers having the lowest observations (Line 8 of Alg. 1)

All random variables are independent and                 . Then,
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Note that                                                                                           and                                                           

is interpreted as the rate in which             tends to remain on zero on [t,t+ε] when N→∞ and ε↓0.

Deterministic model
Let                                                                                                   , 

A function                              is said to be a fluid model (or fluid solution) if it is absolutely continuous 
and                                almost everywhere for all i and j where b(x) satisfies: 

Definition.
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Deterministic model (continued)

Interpretation.

We let

Discovery of new (1,·)-servers, as for

Departures from (1,1)-servers. They occur with rate                  and decrease               by 1/N➔ A: 

➔ B: 

➔ C: 

➔ D: 

➔ E: 

 

Job assignments to (0,0)-servers, see 

Job assignments to (1,1)-servers when a (strictly) positive mass of (·,1)-servers exists

Job assignments to (1,1)-servers when a null (!) mass of (·,1)-servers exists
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Deterministic model (continued)
The remaining coordinates of b(x) admit similar interpretations

where
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Connection between both models

Theorem. 
Assume that                                   almost surely. With probability one, any limit point of the stochastic 
process                          satisfies the conditions that define a fluid solution. 

Plot on the right: 

vs
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Proof strategy

➔ Coupled construction of                          for all N≥d on a single probability space in terms of the 
fundamental processes               , for p=1,...,d,                   and 

➔ Tightness of sample paths: limit trajectories exist and are Lipschitz continuous, with probability 
one [Tsitsiklis and Xu 2012, Bramson 1998]

➔ Any limit trajectory satisfies the differentiability condition of a fluid solution (main difficulty).
Deep analysis of                          on convergent subsequences.

3 steps:
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Fixed points
A fluid solution is a fixed point if                       , for all t.Definition.

Let 

                        There exists a unique fixed point, say       . 

It is such that                                   and

Theorem.
0,0 0,1 0,2 0,3 0,4

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

i

j

Queue lengths (and thus delays) are 
uniformly bounded!

In contrast with SQ(d)

Example.
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Fixed points
A fluid solution is a fixed point if                       , for all t.Definition.

Let 

                        There exists a unique fixed point, say       . 

It is such that                                   and

Theorem.
0,0 0,1 0,2 0,3 0,4

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

i

j

If                         ,  jobs always assigned to (0,0)-servers!

Fluid optimality of SQ(d,N)
Fluid optimality.
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Mean queue lengths at the fixed point

Corollary.

Let 

                       : the number of jobs scaled by N  in the system at time t.
                       : the number of jobs scaled by N the load balancer believes are in the system at time t.
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Stability
Theorem.                        Let          be a fluid solution. Then,                                        . Furthermore, if                     
convergence occurs exponentially fast.

Proof (schema). 
                             is a Lyapunov function, where

Whenever t is a point of differentiability of a fluid solution          and                     ,

Thus, there must be a point where             increases. When it does,          “couples” with a linear 
ODE system.
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Some practical improvements
➔ Server selections without replacements

➔ Do not allow to sample (0,0)-servers

➔ Upon a job arrival, if i is both the least loaded of the d sampled servers and the least observation 
contained in the memory immediately before the sampling, then send the job to one of the ( · , 
i)-server known to the load balancer immediately before the sampling.

. . . though the fluid limit does not change!
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Merci
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