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“Standard” Load Balancing

Each incoming job is dispatched to a (unique) queue
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d
where 1; , = 711 (homogeneous case)

Remark. All these load balancing algorithms are stable if and only if AE[n] < 1,




Recent Approach: Replicate

Motivation: to mitigate the effect of stragglers

Two underlying principles
Either replicate:

1) ‘replicate ajob upon its arrival and use the results from whichever replica responds first”

or speculate;

2) ‘replicate a job as soon as the system detects it as a straggler”

Our contribution

Compare Standard Load Balancing, Replication (1st principle) and Speculation (2nd principle)
= Build a Markov model for speculation

= Stability theorem

= Optimal stopping

= Comparison of the stability regions



Speculative Load Balancing
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Main assumptions

- Service times have the general distribution of n (heterogeneous case in [A Walton 2021])
- Fixed visit /, n,,are IID and equal in distribution to n

- Fixed job n, /7 have arbitrary dependency

- Head-of-the- Llne scheduling disciplines (FCFS, priorities, etc.)




Stability Result

Let p(r) = A(Elmin(n1, 7)) + P(n > 7)Elnz | m > 7])
Let X(t) denote the Markov process associated to speculative load balancing

Theorem. If p(r)<1, then X is positive Harris recurrent.
(the system is stable under the natural stability condition)

= General version (general routing probabilities, heterogeneous servers) in [A Walton 2021]

Proof (outline).
- Multiclass representation
- Use the fluid framework of Dai and Bramson.
- Lyapunov function.



Stability Result

Let p(r) = A(Elmin(n1, 7)) + P(n > 7)Elnz | m > 7])
Let X(t) denote the Markov process associated to speculative load balancing

Theorem. If p(r)<1, then X is positive Harris recurrent.
(the system is stable under the natural stability condition)

= General version (general routing probabilities, heterogeneous servers) in [A Walton 2021]

Proof (outline).
- Multiclass representation
- Use the fluid framework of Dai and Bramson.
- Lyapunov function.

Remark. The stability regions of speculative load balancing, p(r)<1, and standard

load balancing, AE[n] < 1, are different!




Speculative vs Standard Load Balancing

Theorem. p(7) < AE[n] ifandonlyif E[ny | n1 > 7] <Elpy — 7 | m > 7]
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E. service time E. remaining
after rerouting service time

S&X Model. n.=S X Slowdowns S and S are IID and independent of the intrinsic size X.

Theorem. Within the S&X model, p(7) < AE|[7] if there exists z such that

E[SxAz] < P(Sx < z) E[S]x, Vz € support(X)

In addition, if X' is deterministic, this is necessary.

= Large sets of such z's exist within common service time distributions (Pareto,
HyperExp, etc.)

= Increased stability region!



Speculative vs Standard Load Balancing
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Speculative vs Standard Load Balancing

Service times at serveri.n.=S5 X — where S, ="server slowdown” and X="job intrinsic size’
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Optimal Timeout Design

Assumption. 4
. . . . 1+ EE[U2|U1 > t] . .
The service time n has a decreasing hazard function and ¢+ Emlm > 1 IS nondecreasing
2171
Definition.

f(7) < 1+ LE[na|m > 7]

Let z* be the smallest 7 such that —= <
I f(s)ds E[n2|n > 7]




Optimal Timeout Design

Assumption.
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The service time n has a decreasing hazard function and ¢~

IS nondecreasing

E[na|n > t]
Definition. d
14+ £E >

Let t* be the smallest = such that Oof(T> < aiElzlm > 7]

I f(s)ds E[n2|n > 7]
Theorem.
There exists a finite * and minimizes the load p(z). £(r) 1

=
If d n., are independent, any value of z satisfyin = = minimizes the load.
n,andn, | P y valu 7 satisfyi ng H(5)ds Bl inimiz

Proof.

- Optimal stopping problem
- Markov decision process formulation
- Application of the one-step-lookahead principle.



Speculation vs Replication

Replication strategies: Cancel-on-Complete-d (CoC-d) and Cancel-on-Start-d (CoS-d)
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= Speculative Load Balancing (SLB) provides a larger stability region!



Speculation vs Replication

Replication strategies: Cancel-on-Complete-d (CoC-d) and Cancel-on-Start-d (CoS-d)
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Speculation vs Replication

Replication strategy: Redundant-to-ldle-Queue-d (RIQ-d)
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Response Time for Large Systems

N FCFS queues, arrival rate AN
Let R, (7) be the long-run average response time.

Conjecture.

Provided that p(z)<1, lim Ry(7) = (1 +P(np > 7)) W + p(7)

where N=oo A
M

A
W= 5(1 +]P>(771 > 7-))1 —p(T)

E[(m A 7)°] + E[33] P( > 7)
1+P(n > 1)

M :=



Response Time for Large Systems
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Conclusions

In this talk
- Comparison between Speculative Load Balancing (SLB), standard load balancing and

replication schemes.

Take away messages
- SLBis convenient when service times are decreasing failure rate
- Cancel-on-Complete-d provides better response times in light/moderate load conditions

- SLB provides better response times in heavy load conditions (larger stability region)

Future research
- Combine SLB and replication
- Multiple levels of speculation

- Re-route with other load balancing algorithms (e.g., to idle queues)
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Thank you
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