Stability and Optimization of Speculative Queueing Networks

Jonatha Anselmi,

Inria

Joint work with Neil Walton, Durham University

"Standard" Load Balancing

Objective Minimize response time

Huge Literature

Random Round-Robin Join-the-shortest-queue, JSQ Power-of-*d* Join-the-idle-queue Least Left Workload, aka JSW Size Interval Task Allocation

... and a lot more

"Standard" Load Balancing

Objective Minimize response time

Huge Literature

Random Round-Robin Join-the-shortest-queue, JSQ Power-of-*d* Join-the-idle-queue Least Left Workload, aka JSW Size Interval Task Allocation

... and a lot more

Remark. All these load balancing algorithms are *stable* if and only if $\lambda \mathbb{E}[\eta] < 1$, where $\eta_{i,n} \stackrel{d}{=} \eta$ (homogeneous case)

Recent Approach: Replicate

Motivation: to mitigate the effect of *stragglers*

Two underlying principles

Either replicate:

1) "replicate a job upon its arrival and use the results from whichever replica responds first"

or speculate:

2) "replicate a job as soon as the system detects it as a straggler"

Our contribution

Compare Standard Load Balancing, Replication (1st principle) and Speculation (2nd principle)

- ⇒ Build a Markov model for speculation
- ⇒ Stability theorem
- \Rightarrow Optimal stopping
- \Rightarrow Comparison of the stability regions

The mean processing time of any job is $\mathbb{E}[\min(\eta_1, \tau)] + \mathbb{P}(\eta_1 > \tau)\mathbb{E}[\eta_2 \mid \eta_1 > \tau]$

The mean processing time of any job is $\mathbb{E}[\min(\eta_1, \tau)] + \mathbb{P}(\eta_1 > \tau)\mathbb{E}[\eta_2 \mid \eta_1 > \tau]$

Main assumptions

- Service times have the general distribution of η (heterogeneous case in [A Walton 2021])
- Fixed visit *i*, $\eta_{i,n}$ are IID and equal in distribution to η
- Fixed job *n*, $\eta_{i,n}^{i,n}$ have <u>arbitrary dependency</u>
- Head-of-the-Line scheduling disciplines (FCFS, priorities, etc.)

Stability Result

Let
$$\rho(\tau) := \lambda \Big(\mathbb{E}[\min(\eta_1, \tau)] + \mathbb{P}(\eta_1 > \tau) \mathbb{E}[\eta_2 \mid \eta_1 > \tau] \Big)$$

Let X(t) denote the Markov process associated to speculative load balancing

Theorem. If $\rho(\tau) < 1$, then X is positive Harris recurrent.

(the system is stable under the natural stability condition)

⇒ General version (general routing probabilities, heterogeneous servers) in [A Walton 2021]

Proof (outline).

- Multiclass representation
- Use the fluid framework of Dai and Bramson.
- Lyapunov function.

Stability Result

Let
$$\rho(\tau) := \lambda \Big(\mathbb{E}[\min(\eta_1, \tau)] + \mathbb{P}(\eta_1 > \tau) \mathbb{E}[\eta_2 \mid \eta_1 > \tau] \Big)$$

Let X(t) denote the Markov process associated to speculative load balancing

Theorem. If $\rho(\tau) < 1$, then X is positive Harris recurrent.

(the system is stable under the natural stability condition)

⇒ General version (general routing probabilities, heterogeneous servers) in [A Walton 2021]

Proof (outline).

- Multiclass representation
- Use the fluid framework of Dai and Bramson.
- Lyapunov function.

Remark. The stability regions of speculative load balancing, $\rho(\tau)<1$, and standard load balancing, $\lambda \mathbb{E}[\eta] < 1$, are different!

Theorem. $\rho(\tau) < \lambda \mathbb{E}[\eta]$ if and only if $\mathbb{E}[\eta_2 \mid \eta_1 > \tau] < \mathbb{E}[\eta_1 - \tau \mid \eta_1 > \tau]$

E. service time after rerouting E. remaining service time

S&X Model. $\eta_i = S_i X$. Slowdowns S_1 and S_2 are IID and independent of the intrinsic size X.

Theorem. Within the S&X model, $\rho(\tau) < \lambda \mathbb{E}[\eta]$ if there exists z such that

 $\mathbb{E}\left[Sx \wedge z\right] < \mathbb{P}\left(Sx \le z\right) \mathbb{E}[S] x, \quad \forall x \in \mathrm{support}(X)$

In addition, if X is deterministic, this is necessary.

- ⇒ Large sets of such z's exist within common service time distributions (Pareto, HyperExp, etc.)
- \Rightarrow Increased stability region!

Service times at server i: $\eta_i = S_i X$ — where S_i = "server slowdown" and X="job intrinsic size"

Optimal Timeout Design

Assumption.

The service time η has a <u>decreasing hazard function</u> and $t \mapsto \frac{1 + \frac{d}{dt}\mathbb{E}[\eta_2|\eta_1 > t]}{\mathbb{E}[\eta_2|\eta_1 > t]}$ is nondecreasing

Definition. Let τ^* be the smallest τ such that $\frac{f(\tau)}{\int_{\tau}^{\infty} f(s)ds} \leq \frac{1 + \frac{d}{dt}\mathbb{E}[\eta_2|\eta_1 > \tau]}{\mathbb{E}[\eta_2|\eta_1 > \tau]}$

Optimal Timeout Design

Assumption.

The service time η has a <u>decreasing hazard function</u> and $t \mapsto \frac{1 + \frac{d}{dt}\mathbb{E}[\eta_2|\eta_1 > t]}{\mathbb{E}[n_2|n_1 > t]}$ is nondecreasing

Definition.

Definition.
_et
$$\tau^*$$
 be the smallest τ such that $\frac{f(\tau)}{\int_{\tau}^{\infty} f(s)ds} \leq \frac{1 + \frac{d}{dt}\mathbb{E}[\eta_2|\eta_1 > \tau]}{\mathbb{E}[\eta_2|\eta_1 > \tau]}$

Theorem.

There exists a finite τ^* and minimizes the load $\rho(\tau)$.

If η_1 and η_2 are independent, any value of τ satisfying $\frac{f(\tau)}{\int_{-\infty}^{\infty} f(s) ds} = \frac{1}{\mathbb{E}[n_2]}$ minimizes the load.

Proof.

- Optimal stopping problem -
- Markov decision process formulation -
- Application of the one-step-lookahead principle.

Speculation vs Replication

Replication strategies: Cancel-on-Complete-*d* (CoC-*d*) and Cancel-on-Start-*d* (CoS-*d*)

⇒ Speculative Load Balancing (SLB) provides a larger stability region!

Speculation vs Replication

Replication strategies: Cancel-on-Complete-d (CoC-d) and Cancel-on-Start-d (CoS-d)

Speculation vs Replication

Replication strategy: Redundant-to-Idle-Queue-d (RIQ-d)

Response Time for Large Systems

N FCFS queues, arrival rate λN

Let $R_N(\tau)$ be the long-run average response time.

Conjecture.

Provided that $\rho(\tau) < 1$, $\lim_{N \to \infty} R_N(\tau) = (1 + \mathbb{P}(\eta_1 > \tau))W + \frac{\rho(\tau)}{\lambda}$ where

$$W := \frac{\lambda}{2} (1 + \mathbb{P}(\eta_1 \ge \tau)) \frac{M}{1 - \rho(\tau)}$$
$$M := \frac{\mathbb{E}[(\eta_1 \land \tau)^2] + \mathbb{E}[\hat{\eta}_2^2] \mathbb{P}(\eta_1 > \tau)}{1 + \mathbb{P}(\eta_1 > \tau)}$$

Response Time for Large Systems

N FCFS queues, arrival rate λN

Let $R_N(\tau)$ be the long-run average response time.

Conjecture.

Provided that $\rho(\tau) < 1$, $\lim_{N \to \infty} R_N(\tau) = (1 + \mathbb{P}(\eta_1 > \tau))W + \frac{\rho(\tau)}{\lambda}$ where

$$W := \frac{\lambda}{2} (1 + \mathbb{P}(\eta_1 \ge \tau)) \frac{M}{1 - \rho(\tau)}$$
$$M := \frac{\mathbb{E}[(\eta_1 \land \tau)^2] + \mathbb{E}[\hat{\eta}_2^2] \mathbb{P}(\eta_1 > \tau)}{1 + \mathbb{P}(\eta_1 > \tau)}$$

Conclusions

In this talk

- Comparison between Speculative Load Balancing (SLB), standard load balancing and replication schemes.

Take away messages

- SLB is convenient when service times are decreasing failure rate
- Cancel-on-Complete-*d* provides better response times in light/moderate load conditions
- SLB provides better response times in heavy load conditions (larger stability region)

Future research

- Combine SLB and replication
- Multiple levels of speculation
- Re-route with other load balancing algorithms (e.g., to idle queues)

Conclusions

Take away messages

- SLB is convenient when service times are decreasing failure rate
- Cancel-on-Complete-*d* provides better response times in light/moderate load conditions
- SLB provides better response times in heavy load conditions (larger stability region)

Thank you

J. Anselmi and N. Walton, "Stability and Optimization of Speculative Queueing Networks," in IEEE/ACM Transactions on Networking, vol. 30, no. 2, pp. 911-922, April 2022, doi: 10.1109/TNET.2021.3128778.