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Example of a Simple Queue

Consider a processor with:

Poisson arrivals with rate λ
(
1 − st

S−1

)
.

Service rate π(st) and power dissipation π(st)
3,

Jobs with Markovian deadlines that induce a cost C when dropped
from the queue.

π(st)λ
(
1 − st

S−1

)

µµµµµ π(st)
3

CµCµ Cµ Cµ Cµ Objective:
Find the optimal speeds that minimize the long term energy spent by the
processor and the cost of missed deadlines.
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Model as an MDP

Define the MDP M := (S = {0, · · · ,S − 1} ,A = {0, . . . ,A− 1} ,Q, c).

0 • • • s − 1 s s + 1

µs + π(s)

λ
(
1 − s

S−1

)
• • • S − 1

Figure: Transition diagram of the Markov chain induced by a policy π : S → A .

With the expected instant cost:

c(s, π) := Cµs + π(s)3.
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Definition of Rewards

Classically, different types of reward are considered, like the total
discounted reward, for a discount γ < 1:

ργ(π) := lim
T→∞

T∑
t=1

γtE[r(st , π(st))].

or the long-run average reward:

ρ(π) := lim
T→∞

1
T

T∑
t=1

E[r(st , π(st))].

While using discounted rewards would guarantee the stability of the system,
the average reward is more suitable forqueuing systems.
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Definition of the Regret

Let ρ∗ := supπ ρ(π) be the optimal average reward.

Definition (Regret)
For an MDP M, the regret at time T of a learning algorithm L is:

Reg(M,L,T ) := Tρ∗ −
T∑
t=1

rt .

We place ourself in the context of tabular MDPs:
→ Exploration: Learn the transitions probabilities and rewards for each

state-action pair.
→ Exploitation: Use the best policies to minimize the regret.
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Definition of the Bias

Define the bias of any policy π:

hπ(s) := Eπ

[ ∞∑
t=1

(r (sπt )− ρ(π)) | sπ1 = s

]
, ∀0 ≤ s ≤ S − 1,

In the computations of the regret, we use the Bellman equation:

ρ(π) + hπ(s) = rπ(s) +
∑
s′

Pπ(s
′ | s)hπ(s ′).
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Relating the Diameter to the Bias

Usually, to control the bias, we need to introduce the diameter:

Definition
Letting τ (s ′|π, s) be the time to go from s to s ′, the the diameter D of the
MDP is:

D := max
s ̸=s′

min
π:S→A

E
[
τ
(
s ′|π, s

)]
.

Note that the bias and the diameter are related:

hπ(s)− hπ(s
′) ≤ rmaxDπ

The diameter is an important quantity in the average reward case.
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Diameter in our Model

Queues have a large diameter.
→ We indeed have that: Dπ ≥ E [τ(S − 1 | π,S − 2)]. Letting

p := P(S − 1 | S − 2, π(S − 2)).

• • • S − 2 S − 1

At least mπ(S − 2)−1 timesteps 1 timestep

1 − p p

In our example, the stationary measure mπ decreases exponentially, the
diameter itself is therefore exponential in S .
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Infinite Horizon in the Literature

In the average reward case:

UCRL2-Jaksch et al. (2010), upper bound of the regret in
Õ(rmaxDS

√
AT ).

UCRL2B Fruit et al. (2019), regret bounded in Õ(rmax

√
DΓSAT )

with Γ the highest number of neighbours of any state.
Using additional information in the algorithm, such as a upper bound
on the bias H, in Zhang et al. (2019) the regret is bounded in
Õ (rmax)

√
HSAT .

In these algorithms, the parameters D and H still depend on S .
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Using the MDP Structure in the Literature

Examples of algorithms using the structure of MDPs:

We could think to use linear mixture models with d parameters. With
discount γ, the regret is upper bounded by rmaxd

√
T/(1 − γ)2 [Zhou

et al. 2021], but it does not deal with the long-run average reward
case.
Model free algorithms with Q learning: Wei et al. (2020), regret

bound close to O
(
rmax

√
t3mixSAT

)
for ergodic MDPs, where tmix is

the mixing time of the MDP, which depends on S . This algorithm also
requires additional information, such as a bound on tmix and also on
the worst hitting time.

14 / 22



Bounds for Generic MDPs

Theorem (Universal Lower Bound - Jaksch et al. (2010))

For any learning algorithm L, any S ,A ≥ 10, D ≥ 20 logA S , and
T ≥ DSA, there is an MDP M, such that:

E[Reg(M,L,T )] ≥ 0.015rmax

√
DSAT .

Existing learning algorithms have upper bounds in the regret that almost
match this lower bound.

However this regret bound is unsatisfactory for queueing systems, where
the diameter D is exponential in the number of states S .
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Learning in MDPs with the Structure of Queueing Systems

MDPS for queuing systems have the following challenging characteristics:

We consider the long run average reward rather than the total
discounted reward.

The considered MDPs have a large diameter D, i.e. a large expected
time to cross the MDP.

The transition matrices for queues are sparse and structured.
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Our Contribution

We have seen that the previous bounds depend on the diameter, meaning
that they are inaccurate for birth and death processes.

Question
When the underlying MDP has the structure of a queueing system, do the
diameter D or the number of states S actually play a role in the regret?

To answer this question, we study the algorithm UCRL2 on our previous
example.
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UCRL2 Algorithm

Algorithm 1: The UCRL2 algorithm.

Set s1 = 0
for episodes k = 1, 2, . . . do

Initialize episode k with current reward and transition estimates r̂k
and p̂k .
Find a policy π̃k and an optimistic MDP M̃k ∈ Mk .
Execute policy π̃k on the true MDP M until the end of the episode.

end

The optimistic MDP M̃k with policy π̃k is the queue of largest gain with
rewards r̃ and transitions p̃ such that:

∀(s, a), |r̃(s, a)− r̂k(s, a)| ≤ rmax

√
2 log (Atk)

max {1,Ntk (s, a)}

∀(s, a), ∥p̃(·|s, a)− p̂k(·|s, a)∥1 ≤

√
8 log (2Atk)

max {1,Ntk (s, a)}
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Monotonicity

For the class of MDPs M, we assume the following assumptions hold:

Monotonicity

Denoting by π0 a reference policy and π any other policy, if sπ0 ≤st s
π0

0 ,
then for all t, sπt ≤st s

π0
t .

The reference policy controls the number of visits of a given state
regardless of the chosen policy for the current episode:

Lemma
For f : S → R+ non-decreasing non-negative, we obtain

E

∑
s≥0

f (s)Nt(s)

 ≤ t
∑
s≥0

f (s)mπ0
(s).
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Bound on the Bias

Reminder: define the optimal bias:

hπ∗(s) := Eπ∗

[ ∞∑
t=1

(
r
(
sπ

∗
t

)
− ρ(π)

)
| sπ∗

1 = s

]
, ∀0 ≤ s ≤ S − 1,

Bias Bound
There is a positive, bounded function ∆ such that:

−∆(s) ≤ H(s)− H(s − 1) ≤ 0.

Here, in our example ∆(s) = C is constant.
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Main Result

Independently of S and D, let E2 :=
(∑

s∈S f (s)−1)E
mπ0

[
(∆ + rmax)

2f
]
,

where f : s 7→ max{1,s(s−1)}
(∆(s)+rmax)2

.

Theorem

The expected regret achieved by UCRL2 is upper bounded as follows:

E [Reg(M,UCRL2,T )] ≤ 19
√

E2AT log (2AT ) +O
(
T 1/4

)
,

where the lower order term contains terms polynomial in D and S .

In the example, E2 ≤ 12r2
max

(
1 + λ2

µ2

)
, so that the regret satisfies

E [Reg(M,UCRL2,T )] = O

(
rmax

√
AT

(
1 +

λ2

µ2

)
log (AT )

)
.
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Conclusion

Despite using a basic and non-specific reinforcement learning
algorithm, the analysis of the regret can be greatly improved when
studying queueing systems.

The regret bounds should not involve D nor S . Our bound relies
instead on the stationary measure of a reference policy.

This type of regret bound could be generalized to other queueing
systems, such as optimal routing or admission control for example.
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