Reinforcement Learning in a Birth and Death Process: Breaking the Dependence on the State Space

Louis-Sébastien Rebuffi Jonatha Anselmi, Bruno Gaujal

December 2nd, 2022

Inglo-

1 [Introducing an Example of a basic MDP](#page-2-0)

2 [Classic Reinforcement Learning Algorithms on MDPs](#page-12-0)

Consider a processor with:

• Poisson arrivals with rate
$$
\lambda \left(1 - \frac{s_t}{5-1}\right)
$$
.

Consider a processor with:

- Poisson arrivals **with rate** $\lambda\left(1-\frac{s_t}{S-1}\right)$,
- Service rate $\pi(s_t)$ and power dissipation $\pi(s_t)^3.$

Consider a processor with:

- Poisson arrivals **with rate** $\lambda\left(1-\frac{s_t}{S-1}\right)$,
- Service rate $\pi(s_t)$ and power dissipation $\pi(s_t)^3$,
- \bullet Jobs with Markovian deadlines that induce a cost C when dropped from the queue.

Consider a processor with:

- Poisson arrivals **with rate** $\lambda\left(1-\frac{s_t}{S-1}\right)$,
- Service rate $\pi(s_t)$ and power dissipation $\pi(s_t)^3$,
- \bullet Jobs with Markovian deadlines that induce a cost ϵ when dropped from the queue.

Objective: Find the optimal speeds that minimize the long term energy spent by the processor and the cost of missed deadlines.

Model as an MDP

Define the MDP $M := (\mathcal{S} = \{0, \dots, S - 1\}, \mathcal{A} = \{0, \dots, A - 1\}, Q, c)$.

Figure: Transition diagram of the Markov chain induced by a policy $\pi : \mathcal{S} \to \mathcal{A}$.

With the expected instant cost:

$$
c(s,\pi):=C\mu s+\pi(s)^3.
$$

Classically, different types of reward are considered, like the total discounted reward, for a discount $\gamma < 1$:

$$
\rho_\gamma(\pi) := \lim_{T \to \infty} \sum_{t=1}^T \gamma^t \mathbb{E}[r(s_t, \pi(s_t))].
$$

or the long-run average reward:

$$
\rho(\pi) := \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E}[r(s_t, \pi(s_t))].
$$

While using discounted rewards would guarantee the stability of the system, the average reward is more suitable forqueuing systems.

Let $\rho^* := \sup_{\pi} \rho(\pi)$ be the optimal average reward.

Definition (Regret)

For an MDP M, the regret at time T of a learning algorithm **L** is:

$$
\mathrm{Reg}(M,\mathbb{L},\mathcal{T}):=\mathcal{T}\rho^*-\sum_{t=1}^T r_t.
$$

We place ourself in the context of tabular MDPs:

- \rightarrow Exploration: Learn the transitions probabilities and rewards for each state-action pair.
- \rightarrow Exploitation: Use the best policies to minimize the regret.

Define the bias of any policy π :

$$
h_{\pi}(s) := \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} \left(r \left(s_t^{\pi} \right) - \rho(\pi) \right) \mid s_1^{\pi} = s \right], \quad \forall 0 \leq s \leq S-1,
$$

In the computations of the regret, we use the Bellman equation:

$$
\rho(\pi) + h_{\pi}(s) = r_{\pi}(s) + \sum_{s'} P_{\pi}(s' \mid s)h_{\pi}(s').
$$

Usually, to control the bias, we need to introduce the diameter:

Definition

Letting $\tau\left(s'|\pi,s\right)$ be the time to go from s to s' , the the diameter D of the MDP is:

$$
D := \max_{\mathbf{s} \neq \mathbf{s}'} \min_{\pi: \mathcal{S} \to \mathcal{A}} \mathbb{E}\left[\tau\left(\mathbf{s}'|\pi, \mathbf{s}\right)\right].
$$

Note that the bias and the diameter are related:

$$
h_\pi(s)-h_\pi(s')\leq r_{\max}D_\pi
$$

The diameter is an important quantity in the average reward case.

Queues have a large diameter.

In our example, the stationary measure m_{π} decreases exponentially, the diameter itself is therefore exponential in S.

In the average reward case:

- UCRL2-Jaksch et al. (2010), upper bound of the regret in $\mathcal{\tilde{O}}(\textit{r}_{\text{max}}\textit{DS}\sqrt{\textit{AT}}).$
- UCRL2B Fruit et al. (2019), regret bounded in $\tilde{\mathcal{O}}(r_\textsf{max}\sqrt{r_\textsf{max}})$ DΓSAT) with Γ the highest number of neighbours of any state.
- Using additional information in the algorithm, such as a upper bound on the bias H , in Zhang et al. (2019) the regret is bounded in $\tilde{\mathcal{O}}\left(r_{\mathsf{max}}\right)\sqrt{\mathsf{HSAT}}$.

In these algorithms, the parameters D and H still depend on S .

Examples of algorithms using the structure of MDPs:

- We could think to use linear mixture models with d parameters. With discount γ , the regret is upper bounded by $\sf r_{\sf max}d\sqrt{\cal T}/(1-\gamma)^2$ [Zhou et al. 2021], but it does not deal with the long-run average reward case.
- Model free algorithms with Q learning: Wei et al. (2020), regret bound close to $\mathcal{O}\left(r_{max}\sqrt{t_{mix}^3SAT}\right)$ for ergodic MDPs, where t_{mix} is the mixing time of the MDP, which depends on S. This algorithm also requires additional information, such as a bound on t_{mix} and also on the worst hitting time.

Theorem (Universal Lower Bound - Jaksch et al. (2010))

For any learning algorithm L, any $S, A > 10$, $D > 20 \log_A S$, and $T >$ DSA, there is an MDP M, such that:

> $\mathbb{E}[\operatorname{Reg}(\mathcal{M}, \mathbb{L}, \mathcal{T})] \geq 0.015r_{\textsf{max}}$ √ DSAT.

Existing learning algorithms have upper bounds in the regret that almost match this lower bound.

However this regret bound is unsatisfactory for queueing systems, where the diameter D is exponential in the number of states S .

MDPS for queuing systems have the following challenging characteristics:

- We consider the long run average reward rather than the total discounted reward.
- \bullet The considered MDPs have a large diameter D, *i.e.* a large expected time to cross the MDP.
- The transition matrices for queues are sparse and structured.

We have seen that the previous bounds depend on the diameter, meaning that they are inaccurate for birth and death processes.

Question

When the underlying MDP has the structure of a queueing system, do the diameter D or the number of states S actually play a role in the regret?

To answer this question, we study the algorithm UCRL2 on our previous example.

UCRL2 Algorithm

Algorithm 1: The UCRL2 algorithm.

Set $s_1 = 0$ for episodes $k = 1, 2, \ldots$ do **Initialize** episode k with current reward and transition estimates \hat{r}_k and \hat{p}_k . **Find** a policy $\tilde{\pi}_k$ and an optimistic MDP $\tilde{M}_k \in \mathcal{M}_k$. Execute policy $\tilde{\pi}_k$ on the true MDP M until the end of the episode. end

The optimistic MDP \tilde{M}_k with policy $\tilde{\pi}_k$ is the queue of largest gain with rewards \tilde{r} and transitions \tilde{p} such that:

$$
\forall (s, a), \quad |\tilde{r}(s, a) - \hat{r}_k(s, a)| \leq r_{\max} \sqrt{\frac{2 \log (At_k)}{\max\{1, N_{t_k}(s, a)\}}}
$$

$$
\forall (s, a), \quad ||\tilde{p}(\cdot|s, a) - \hat{p}_k(\cdot|s, a)||_1 \leq \sqrt{\frac{8 \log (2At_k)}{\max\{1, N_{t_k}(s, a)\}}}
$$

For the class of MDPs M , we assume the following assumptions hold:

Monotonicity

Denoting by π^0 a reference policy and π any other policy, if $s_0^{\pi} \leq_{st} s_0^{\pi^0}$ $\overline{0}^{\pi}$, then for all t, $s_t^{\pi} \leq_{st} s_t^{\pi^0}$.

The reference policy controls the number of visits of a given state regardless of the chosen policy for the current episode:

Lemma

For $f : \mathcal{S} \to \mathbb{R}^+$ non-decreasing non-negative, we obtain

$$
\mathbb{E}\left[\sum_{s\geq 0}f(s)N_t(s)\right]\leq t\sum_{s\geq 0}f(s)m^{\pi^0}(s).
$$

Reminder: define the optimal bias:

$$
h_{\pi^*}(s):=\mathbb{E}_{\pi^*}\left[\sum_{t=1}^{\infty}\left(r\left(s^{\pi^*}_t\right)-\rho(\pi)\right)\mid s^{\pi^*}_1=s\right],\quad \forall 0\leq s\leq S-1,
$$

Bias Bound

There is a positive, bounded function Δ such that:

$$
-\Delta(s)\leq H(s)-H(s-1)\leq 0.
$$

Here, in our example $\Delta(s) = C$ is constant.

Main Result

Independently of S and D, let $E_2 := \left(\sum_{s \in \mathcal{S}} f(s)^{-1} \right) \mathbb{E}_{m^{\pi^0}} \left[(\Delta + r_{\text{max}})^2 f \right]$, where $f : s \mapsto \frac{\max\{1, s(s-1)\}}{(\Delta(s)+r_{\max})^2}$.

Theorem

The expected regret achieved by UCRL2 is upper bounded as follows:

$$
\mathbb{E} \left[\operatorname{Reg} (M, \operatorname{UCRL2}, \mathcal{T}) \right] \leq 19 \sqrt{E_2 AT \log \left(2AT\right)} + \mathcal{O} \left(\mathcal{T}^{1/4} \right)
$$

where the lower order term contains terms polynomial in D and S.

In the example, $\mathit{E_{2}} \leq 12 \mathit{r_{\sf max}^2} \left(1 + \frac{\lambda^2}{\mu^2}\right)$ $\frac{\lambda^2}{\mu^2}\Big)$, so that the regret satisfies

$$
\mathbb{E}\left[\operatorname{Reg}(M,\operatorname{UCRL2},\mathcal{T})\right]=\mathcal{O}\left(r_{\text{max}}\sqrt{AT\left(1+\frac{\lambda^2}{\mu^2}\right)\log\left(AT\right)}\right)
$$

,

.

- Despite using a basic and non-specific reinforcement learning algorithm, the analysis of the regret can be greatly improved when studying queueing systems.
- The regret bounds should not involve D nor S. Our bound relies instead on the stationary measure of a reference policy.
- This type of regret bound could be generalized to other queueing systems, such as optimal routing or admission control for example.