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Abstract

In this paper, we study the execution of a single task with an unknown size on a server with variable processing speed.
Our goal is to analyze structural properties of the optimal energy consumption under the optimal speed profile that
minimizes the expected energy consumption while meeting a hard deadline constraint. Specifically, we investigate
how the task size probability distribution impacts the overall energy.

Under mild assumptions, our main result shows that the expected energy consumption induced by the optimal speed
profile preserves the convex increasing order with respect to the task size distribution. Then, we leverage this property
to derive simple bounds and conduct a worst-case analysis. In particular, we derive a simple, general formula for the
energy gap induced by the ’best’ and "worst’ task size distributions, expressed in terms of the support and expectation
of the task size.
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1. Introduction

Energy consumption is a critical factor in modern
computing, impacting both environmental sustainabil-
ity and operational costs. Large-scale GPU clusters,
widely used for Al training, scientific computing, and
cloud-based services, require substantial power to exe-
cute workloads efficiently. The high energy demands of
these systems contribute significantly to carbon emis-
sions, raising concerns about their environmental foot-
print. Moreover, energy costs represent a major expense
for data centers, influencing overall profitability and re-
source allocation strategies. As computing workloads
continue to grow in scale and complexity, optimizing
energy efficiency is essential for reducing costs, mitigat-
ing environmental impact, and ensuring the long-term
sustainability of large-scale computing infrastructures.

Optimizing the energy consumption of a task while
meeting strict performance requirements has been a
key research focus for decades, particularly in appli-
cations with real-time constraints, leading to an exten-
sive body of literature. Most existing work on energy-
efficient scheduling has focused on deterministic set-
tings where task characteristics are fully known in ad-
vance or, equivalently, revealed upon task arrival. More
specifically, when a task consists of a sequence of sub-
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tasks with known sizes, arrival times, and deadlines, the
problem of determining the optimal speed profile has
been studied in [10, 6, 5], where efficient algorithms
for computing or approximating optimal speed profiles
have been developed. This class of problems can be
approached using the theory of Markov decision pro-
cesses; see, for example, [4, 2].

However, in many practical scenarios, task sizes are
uncertain, and only probabilistic information is avail-
able to the scheduler [7, 9]. Understanding the impact
of this uncertainty on energy consumption is crucial for
designing robust and efficient scheduling policies, and
this is the approach taken in this paper. Within this
framework, an elegant “closed-form” expression for the
optimal speed profile has been proposed in [7]. This
work considers the execution of a single task under the
assumptions that (i) power consumption at speed s fol-
lows P(s) = ks>, where k > 0 is a constant, and (ii)
the set of available speeds is R,. In contrast, we use
more realistic assumptions, that is the power function
P(s) is an arbitrary convex and increasing function and
the speed is bounded by sp,. We give an implicit equa-
tion that determines the optimal speed function. Closed-
form solutions are also obtained when the power func-
tion is P(s) = ks® with a > 1. In contrast, the analysis
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in [1] considers discontinuous speed profiles, a scenario
that naturally arises in multi-core or multi-GPU sys-
tems, where the computational platform provides only
a finite set of speeds. Under mild assumptions on the
structure of the power function, it is shown in [1] that an
optimal speed profile corresponds to the unique solution
of a strictly convex optimization problem. Additionally,
an ad-hoc algorithm is developed to solve this optimiza-
tion problem in O(log, n) steps, where n is the number
of available processing speeds.

Finally, let us mention that optimal speed profiles for
executing a single task can be integrated into broader
frameworks to develop heuristics for scheduling multi-
ple jobs arriving at random times [3].

1.1. Contribution

In this work, we consider the expected energy con-
sumption induced by an optimal speed profile as a start-
ing point. Then, our objective is to investigate how the
probability distribution of task sizes influences the total
energy consumed.

Our main result establishes that the expected energy
consumption induced by the optimal speed profile pre-
serves the convex increasing order with respect to the
task size distribution. This fundamental property allows
us to show that the minimal energy consumption to ex-
ecute a task (with P(s) = ks%) can be written as %
where S can be interpreted as the “energetic size” of
the task and D is the deadline. For example if the task
is uniformly distributed between 0 and W, its ener-
getic size is § = %5 Wiax. Using the convex increasing
order property, we can derive explicit upper and lower
bounds for this energetic size: For any random task,
M < S < Wpax, Where M is the expected size of the
task and W« its maximal size. This induces a simple
general formula for the energy gap between the most
and least favorable task size distributions that only de-
pends on the support of the task size and its mean.

1.2. Organization

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the system model and formalize the
energy minimization problem. All of our theoretical re-
sults are presented in Section 3. Finally, Section 4 sum-
marizes our findings and discusses potential research di-
rections.

2. Energy Minimization Framework

The energy minimization framework under investiga-
tion is composed of a server (or processor), a task (or

job) and a scheduler. The server represents the pro-
cessing unit responsible for executing the task, while
the scheduler represents the control unit that decides at
what speed the task must be processed at any point in
time. The objective is to find a speed profile that mini-
mizes the expected energy consumption induced by the
processing of the task while ensuring that the task com-
pletes before a given deadline.

2.1. Server

The server is a processing unit with variable pro-
cessing speed capabilities. It can model a Dynamic
Voltage and Frequency Scaling (DVFS) processor or
a more complicated system. The set of its available
speeds is given by the interval S := [0, syax), Where
Smax € Ry U {+00}.

The power dissipated by the server when running at
speed s € S is denoted by P(s).

2.2. Task

A task is a sequence of operations of random size W
that arrives at time zero. The random variable W rep-
resents the total amount of work. Only statistical infor-
mation is known about the task size W. In particular,
its probability distribution function is given by F(w) :=
P(W < w), which represents the probability that the task
size does not exceed w. Let also F°(w) := P(W > w).

We assume that the support of W is [Wiin, Winaxl,
where Wy, = 0 and Wy,x < oo are the minimum and
maximum task sizes, respectively. Finally, we impose
the following hard real-time constraint: the task must
be completed before a deadline D. We assume that D
satisfies the constraint Wy, /Smax < D, which ensures
that the server can complete the job if it operates at its
maximum speed from the start.

2.3. Scheduler

The role of the scheduler is to control the speed at
which the task is processed at any point in time. We
assume that any change in processing speed is imme-
diate and do not incur any additional energy cost; for
instance, ramp-up and/or speed change effects are ne-
glected. The information available to the scheduler is:

o The deadline D (the task must be completed before
D);

e The task size
[Wmina Wmax]);

e The set of available speeds S;

distribution (with  support

e The dynamic power dissipation function P;



e The current amount of executed work: at time ¢,
this is denoted by w(?).

The task execution process clearly stops as soon as
the task is complete (here, the scheduler puts the server
at rest). Of course, the scheduler does not know when
this is going to happen since it does not know the actual
size of the task W.

Since the scheduler does not know the size of the task
in advance, it is natural to take decisions as a function of
w (the work already executed) instead of as a function
of time, as done in [7]. For this reason, in the following,
we denote by s(w) the speed used once exactly w work
units have been executed, w € [0, Whpax]. Also, we let
QO(s), the dynamic power consumption per unit of work
when operating at speed s, i.e.,

d
0(s) = P(s)j )

where derivatives are always intended as right deriva-
tives.

In the remainder of the paper, we require the follow-
ing assumption, which is satisfied for most electronic
circuits.

Assumption 1. The dynamic power consumption func-
tion Q is convex and increasing.

2.4. Speed Profiles and Energy Consumption

Let 5 : [0, Wnax] — S denote a speed profile. The
mean energy consumption under speed profile s is de-
fined by

w
&E(s):=E [f(; O(s(u)) du] . 2)

By conditioning on the size (W = w) of the task and
changing the order of integration, we obtain

Winax X
E(s) = f ( f O(s(w)) dw) dF(x)
0 0

Wmax Wmax
= O(s(w)) ( f dF (x)) dw
0 w

Winax

=, Q(s(w)) F(w) dw. 3)

Within the foregoing assumptions, we denote by s* the
speed profile that minimizes &(s) subject to the con-

straint
Wi
max d
f Y <p, (4)
0 s(w)

which states that the job has to be completed before the
deadline D.

We recall that in the literature, the structure of s* has
been studied under certain assumptions. If sp,x = +co
and the power function has the form Q(s) = s%, it is
shown in [7] that

s*(w) = K Fe(w) a1 )

where K is a (normalizing) constant such that the
deadline constraint (4) is satisfied with equality, i.e.,
e~ p

0 " (w)

The interpretation in Formula (5) shows that the op-
timal speed profile is increasing in the amount of com-
pleted work w (and thus also time). This is intuitive
because if the deadline approaches and the job has not
completed, it is natural to accelerate.

If S is composed of a finite number of speeds and
Q(s) is increasing, it is shown in [1] that s* is the so-
lution of a strictly convex optimization problem with
|S| — 1 decision variables.

3. Main Results

In this section, we present our main results. Specif-
ically, (i) we generalize Formula (5) to a more general
setting, (ii) we show our stochastic comparison results,
and finally, (iii) we develop an efficiency analysis to
evaluate the impact of the task size distribution.

3.1. Optimal Speed Profile

While (5) provides an elegant solution to the energy
minimization problem under deadline constraint, it has
an important drawback. Since F(w) — 0 as w T Wiax,
Formula (5) implies that the optimal speed profile relies
on arbitrarily large speeds. In other words, it does not
work when the maximal server speed is bounded.

The following result provides an extension of (5) that
works even when sy < ©0.

While (5) was originally proven by using Jensen’s in-
equality, our approach here is more general and relies on
Pontryagin maximum principle. This also lets us deal
with the case where Q is “general”.

Theorem 1. The optimal speed profile s* satisfies

*

s W) Q' (s*(w)) = o)

(6

if s*(w) € [0, Smax] and s* (W) = Smax otherwise.



Proof. We start by characterizing s* using Pontryagin
maximum principle as follows. With respect to the in-
finite dimensional optimization problem ming &(s) sub-
ject to (4) (with &E(s) given by the expression in (3)), we
define the Hamiltonian

A(w)

HO0), 50, A00), w) = FODQ(s(w) = T,

where A(w) is the Lagrangian multiplier. The Pon-

tryagin maximum principle says that the optimal solu-
tion (s*, 1*) satisfies the following conditions:

L. H(@(w), s*(w), (W), w) < H(O(W), s(w), A(w), w)
for all w € [0, Wpax].
2. d/ldeW) — /l*(w)ﬂ(l/g‘r(w)) + INF (w)aQT(s (w)))‘

The second condition implies that A*(w) is a constant
denoted A*, and the first condition gives the optimal
speed under an implicit form. Differentiating with re-
spect to s, we obtain that the optimal speed profile sat-
isfies (9). O

Note that the equation (9) has a unique non-negative
solution because Q is convex increasing. In the classical
case, where

o(s) = ks*, a>1, 7

this gives
s*w) = KTV FEw) ™D A s,

where K is a constant such that fOW"’“X ds—ff = D, which
ensures the validity of the deadline constraint.

Figure 1 displays the shape of the optimal solution
when @ = 2 and the task size is uniformly distributed

over [0, Whax], 1.e., F(w) =1 — WL In this case,

Wi 1/3
‘max 1
f K(l S ) v dw=D
0 Winax Smax

If smax = 400, then the resulting speed profile corre-
sponds to the solution given in [7], and one can indeed
see that s*(w) — oo as w — Wy

3.2. Comparing Task Size Distributions

We are interested in investigating how changes on the
task size W with probability distribution F impact the
optimal mean energy consumption function, which we
define by

Ey =8E(sy), ®)

1/s
AN
K
1/3
1/ Smax 3
\\
A}
A
) w
anax

Figure 1: Optimal speed profile when the job size follows a uniform
distribution (F*(w) = 1= 2=): 1/5*(w) = K(1 = =)' V 1/ smax.
The starting point K is chosen such that the area of the shaded zone

is D.

where sy, is the optimal speed profile to execute a task
of size W. In the following result, we use the increas-
ing convex order (denoted by <;.,) [8]. Given two ran-
dom variables W and W,, we recall that W, <;., W, if
E[h(W})] < E[h(W,)] for all convex increasing function
h: R — R, provided the expectations exist.

When comparing different task sizes, the next re-
sult shows that the optimal mean energy consumption
is monotone w.r.t. the icx order.

Theorem 2. Consider two tasks, let W, and W, denote
their random sizes, and let &y, and &y, their optimal
mean energy consumptions, respectively. If Wi <;.. W»,
then &y, < &y, .

Proof. We have shown in Theorem 1 that if s* is an op-
timal speed profile, then

*

ms if s (W) € [0’ Smax]s (9)

g(s*(w)) =
where we have defined the function g : R — R by
g(x) = x*Q'(x). The equation (9) has a unique non-
negative solution because Q is convex increasing and
this implies that g is increasing. Let g~' denote the in-
verse function of g. Note that

*

Fe(w)

S*(W) = g_l ( ) A Smax
and given that g~! is increasing (because g is increas-
ing) and F°(w) is non-decreasing, we obtain that s*(w)
is non-decreasing in w.

Now, by definition of (2), we can interpret the op-
timal mean energy consumption as given by &*(s) =
E[hw(W)] where hy is convex increasing and depends



on the probability distribution of W (via (9)). To see
this, we notice that we have just shown that s* is in-
creasing, which means that Q(s*(u)) is also increas-
ing and positive, which in turn proves that h(x) =
fox QO(s"(u)) du is convex increasing.

The proof is thus concluded by the following chain
inequalities:

&y, = Elhw,(W)] < Elhw,(W)] < E[hw,(W2)] = &y,

The first inequality holds because hy, is the function in-
duced by the speed profile that is optimal for W;; note
that E[Aw,(W))] is interpreted as the energy consump-
tion induced by a task with size W; under the speed
profile that is optimal for a task of size W,. In turn,
the second inequality holds because W, <;.. W, (by hy-
pothesis) and because we have shown that hy, is convex
increasing. O

3.3. Efficiency Analysis

We now rely on the previous result to find the prob-
ability distribution that maximizes /minimizes &*. To-
wards this purpose, let 7 (Wpin, M, Wiax) denote the set
of task sizes W with support [Wpin, Wiax] and mean M.

In the set 7 (Whin, M, Wiax), We single out the task
size W, with only two atoms at extreme points Wi, and
Wiax]. Its distribution is

Wmax -M

Fyw) = 2

Wmax _ Wmin Yw e (Wmin» Wmax]-

We also focus on the deterministic task size W, €=
T (Whin, M, Wiax) : Wi = M with probability 1.

The following result, a corollary of Theorem 2, says
that among all task sizes in 7 (Wpin, M, Wiax), the best
one (minimizing the convex increasing order) is W and
the bast one is W,

Corollary 1. Let &} and &} be the optimal mean energy
consumption when the task size is Wi and W, respec-
tively. Then, for all W in T (Wmin, M, Wiax),

& <&y <&

Proof. Let <., denote the convex order (by definition,
X <. YiIf E(W(X)) < E(h(Y)) for all & convex). Theo-
rem 3.A.44 in [8] says that for two random variables X
and Y with equal means and distribution functions F and
G respectively on [a, b], X <., Y if there exists a crit-
ical value i € [a, b] such that function F¢(w) < G°(w)
for all w < h and F°(w) > G°(w) otherwise. Consider
any W in T (Whin, M, Whax) with distribution function
F. Let us first show that the critical value /4; in the com-
parison between F and F (the distribution function of

the deterministic size W, = M), is hy = M. Indeed,
by definition, F.(w) < 1 = F{(w), for all w < M and
Fe(w) > 0 = F{(w), for all w > M because its mean
cannot be smaller than M. As for the comparison be-
tween W with W5, remark that the distribution function
F¢ of W starts with value 1 in Wyy,, is decreasing and
ends at a value strictly smaller than F»(Wp,) (otherwise
its mean would be larger than M). This implies the ex-
istence of a critical value h,.
Therefore,

Wi Sex W <ex Wa.
By definition of the <., and <;, orders, this implies
Wi Siex W Siex Wa,
and the proof is concluded by applying Theorem 2. [

Our objective is now to examine the impact of the dis-
tribution function of the random task on the magnitude
of &°. In view of Corollary 1, we define the efficiency
ratio

*

p(W) := vy 1,

& = We T(Wmin’ M, Wmax)
1

and leverage the previous two corollaries to establish
bounds on ¢(F). Before proceeding, we introduce the
following intermediate result that characterizes the op-
timal speed profile when the task size distribution is F>.

Proposition 1. Assume that the task size distribution is
Fo. If Wiin > 0, then

-1
Winax— Wi
gy = 4 Winin (D = ) 5w < Wy
Sm Winin <w < Wiax

where sy minimizes over T~ the function

Wm X Wmin -
5 > Wain Q(Wmin (p - =) )+(M—Wmin) 0(s).
K
(10)
Imein =0, then s*(w) = Wiax/D.
Proof. Let p := va‘“a+ufll Substituting F; in (2), we

obtain

Winin Winax
&(s) = Pfo O(s(u))du + (1 - P)fo O(s(u)) du

Winax

O(s(u)) du
an

and the optimal speed profile s* is thus given by min-
imization of (11) over s subject to (4). Note that the

Winin
= j; O(s(u)) du + (1 - p)

Whnin



integrals in (11) are defined over disjoint sets, so min-
imizing &(s) over s : [0, Wiax] — R, is equivalent to
minimizing

Wmin Wmax
E@oo:bﬂ Quw»du+a—p{f 00(u)) di
Winin

over

D= {(x [0, Wanin] = Ryt [Whnin, Winax] = Ry)

fwmin dW . meax dW < D}
o xw)  Jw,, yw) T )

Since Q is convex, the structure of this optimization im-
plies that x and y are constants. So

&5 = min E(x,
27 (xyed (x.)

= SIniI’A/IIWmin O(sm) + (1 — p)(Wmax — Whin) Q(sm)

Win ~ Winax — Wani
st — 4 —ma ™ <D (12)
Sm Sm

Sm=>0,8, >0

Since Q is increasing, the inequality in (12) can be re-
placed by equality. This gives
Wmax - Wmin -

Sm = Whin (D -
Sm

and the previous optimization becomes in dimension
one with the objective function given by (10). Finally,
when Wy, — 0, s,, — 0 and the deadline constraint
gives sy = Whax/D. O

We can now present our results on the worst case ef-
ficiency ratio ¢(F).

Theorem 3. Assume that Wy, = 0. Then,
* Wmax
& 0 (T)

sup - p(W)= =2 =
S T & o(%)

13)

Proof. The first equality is trivial given Corollary 1. If
the task size is M, then it is optimal to run at the constant
speed that completes the task exactly at D. This is given
by s* = M/D, and thus

M
& =M (—) 14
1 0 D (14)
If the task size distribution is F> and Wy, = O,

then s* = WT (by Proposition 1), and this gives & =
MQ (W%) Dividing by &, we obtain (15). O

This characterizes in simple terms the efficiency loss
in energy consumption caused by perturbations in the
task size probability distribution function. Depending
on the support, it is clear that this loss can be arbitrarily
large. If the power function follows the form (7) then
the previous result yields (provided that W, = 0)

a

sup  g(w) = (e
WET (Wanin, M, Winax) M

which indicates that efficiency is primarily influenced

by the ratio between the maximum task size and its ex-

pected value.

We now consider the specific case where Q(s) = ks
but Whin is not necessarily zero. In this case, the next
result provides an explicit expression for the efficiency
ratio.

Theorem 4. Assume that (7) holds. Then,

Wmin + W* )(H—l (]5)

sup (W) = (=

WeT (Win, M, Wnax)

where Wy, := (M = Winin) 1 (Winay — Woin) 7.

Proof. By Proposition 1, the optimal speed profile in-
duced by W, is composed by two speeds only. Let
us refer to the speed to be used in [0, Wy,] as W‘;‘“.
Then, the speed to be used in [Wpin, Wiax] needs to
be (Whax — Win)/(D — d), as otherwise the deadline
constraint would not be respected. Let p := %
Therefore,

W .
N . min Wm]n
& = i, (L Q (T) dw

/%
e Wmax - Wmin
+ (1 - (—)d
( p) Wmin Q D - d W)
. Wmin . Wmax - Wmin .
= oﬁénDWm‘“( d ) (M- W‘“‘“)( D-d )

Differentiating, we obtain that the minimizing d satisfies

wadl (Winax — Wanin)®
min__ _ysTmax - Pming
doetl (M = Wiin) (D — d)o!
After some algebra, this gives
Wmin
d = D 1 a
Wmin + (M - Wmin)ﬁ(Wmax - VVmin)m
=W,
and, substituting back in &3,
W(H—l (Wmax - Wmin)a

o min M— Wmin
6= g * " D=ay



— (Wmin + W*)QH
D* ’

Ma+!

Using Corollary 1 and &} = 5

(see (14)), we obtain
& (Wmin +W )a+1
sup ¢W) = 8_3 = Tﬂ*
WEeT (Wiin,M,Wiax) 1

as desired. O

4. Conclusion

This work analyzed the impact of task size uncer-
tainty on energy-optimal scheduling in systems with
variable processing speed. We established fundamen-
tal properties of the optimal speed profile and leveraged
them to derive energy bounds and a worst-case analysis,
showing that the energy gap between the best and worst
task size distributions essentially depends on the ratio
between its maximal size and its average size, when the
dynamic power follows the classical form.

Our findings contribute to the broader understand-
ing of energy-efficient scheduling under uncertainty and
highlight key structural properties that can inform prac-
tical scheduling policies. In fact, when scheduling mul-
tiple tasks, our results may be leveraged to determine
the optimal processing order based on their size dis-
tributions. We leave this issue as future research, to-
gether with extensions to cases where the set of avail-
able speeds is finite.
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