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Challenge: Design algorithms that achieve low wait and energy consumption



Some Examples

In France, 10% of the electricity produced is consumed

only to meet the needs of data centres
[source: https://corporate.ovhcloud.com]
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https://corporate.ovhcloud.com/en/newsroom/news/distiller-research-program/

Serverless Computing

In the queueing literature, load balancing and auto-scaling have been mostly studied
independently of each other (timescale separation assumption)



Serverless Computing

In the queueing literature, load balancing and auto-scaling have been mostly studied
independently of each other (timescale separation assumption)

In serverless computing:

% aserveris asoftware function that

> can be flexibly instantiated in milliseconds (a time window that is comparable with
the magnitude of job inter-arrival and service times)

> No timescale separation

% Autoscaling mechanisms are extremely reactive and the decision of turning servers on
are based on instantaneous observations of the current system state rather than on the
long-run equilibrium behavior.



Serverless Computing: Architectures
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Existing architectures: centralized or decentralized / synchronous or asynchronous
e Synchronous: Scale-up decisions taken at job arrival times (coldstarts)

e Asynchronous: Scale-up decisions taken independently of the arrival process

Scale-down rule: turn a server off if that server remains idle for a certain amount of time



Serverless Computing: P
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[Borst et al. 2017, Goldsztajn et al.
2018, Clausen et al. 2021]

Knative (Google Cloud Run)
[Anselmi 2024]




Asynchronous Load Balancing and Auto-scaling
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Challenget oo
To build a model to evaluate the performance of Knative ! Pool of OFF servers N servers max
e User-defined scale-uprules ~  —o------- a
e Power-of-dand JoinBelowThreshold-d (JBT-d)

Challenge 2
Asymptotic Delay and Relative Energy Optimality (DREO), ie,
e the user-perceived waiting time and the relative energy wastage induced by idle servers
vanish as N—w
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Markov Model ,

Microscopic description —

Just one server:
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f(x) and are the load-balancing and auto-scaling rules

AN is the job arrival rate
is the rate of the auto-scaling clock
and yare the server initialization and expiration rates
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Simple example
f(x) =1/(Nx0N), random dispatching
g(x) = constant

B=oo

= challenging stability region!
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Fluid Model and Connection with the Markov Model

Definition 1. A continuous function x(t) : R, — S is said to
be a fluid model (or fluid solution) if for almost all t € [0, 00)

Z0,0 = ¥Z0,2 — Gt 2, 050} — YZ0,2 Lzg 0=0, yo 2<ag} (42)
20,1 = agliz, o031 — BTo,1 + Y02 Lizg 0=0, yzo 2<ag} (4D)
To,2 = 21,2 — ho(T) + Bro1 — Y202 (40)
®5,2 = Tig1,20< By — Ti2 + hiea () — hi(z), (4d)

where g := g(z) : S — [0, 1], and h;(x) = min{Bxo 1, A} if
yo > 0 and otherwise (yo = 0):
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(6)
if JBT-d is applied.
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stochastic process (X (t)),e(o,) exist and almost surely satisfy
the conditions that define a fluid solution started at ().
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Fluid Model and Connection with the Markov Model
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Optimal Design

Goal: to design scaling rules ensuring that a global attractor exists and is given by x* with

/-* — ,—».* —
Torr =1 = A Tion = A

In x* asymptotic “"delay and relative energy optimality” (DREO)



Optimal Design

Goal: to design scaling rules ensuring that a global attractor exists and is given by x* with

* . * .
Topr = 1 — A, L1 0N = A

(well, 25, =1—X, a3, =2A)

In x* asymptotic “"delay and relative energy optimality” (DREO)

THEOREM 2.
such that

Let x(t) denote a fluid solution induced by JIQ and any auto-scaling rule g(x)

g(x) =0 if and only if x5+ Bxo1 > .

Then, lim,_, ||z(t) — z*||, = 0.

Theorem 2 (rephrased). DREO is obtained only by using Join-the-ldle-Queue and a non-zero
scale-up rate iff A > “overall rate at which servers become idle-on“.




Empirical Comparison: Synchronous vs Asynchronous

We compare: 1
e our asynchronous combination of JIQ and Rate-Idle (ALBA), ie, g(z) = X(/\ — Bz — 112)7
with
e TABS [Borst et al., 2017], which is synchronous, and achieves DREO.

]

a N (rate of the auto-scaling clock) set to make both scale-up rates equal
(scale-up rate = number of server initialization signals divided by time horizon)

Our metrics:
e the empirical probability of waiting
e the empirical energy consumption

ALBA EALBA
I Pwait R o
Wait -— TABS ’ Energy -— ETABS

p Wait



Empirical Comparison: Synchronous vs Asynchronous

ALBA ALBA
> I Pwait R — L
Wait -— pTABS ) Energy -— E’TABS
Wait,
a) \=0.35 b) A=0.70
T T T T T T T T T
_ 100} o= —= ® - — 100 - 3 ® -
==, ;
3 —0— N=100 & —&— N=100
Ra) - ® =N=500 %o - ® =N=500
> ==®==N=1000 > ==@®==N=1000
2 —8— N=100 5 —8— N=100
& - ® =N=500 S - ® =N=500
2 ==®==N=1000 ==®==N=1000
(?\: a ..~ D\: 102 m— )
> e 2
o, .N.N.N -~ — T [ 8
= Rl o = (Sl
'_:‘ ~.~- '_‘:: .~.\ .~
—_— A L9 — B -
f— e ~— o -
.~.
3 10 ~as g, AR
g .N.~ -~ g ~~. - ..
—_— ~.~.~ ~ — 10 -4 ‘n.-.~.
& ~~~.:.: ° m ---.~.-'~-~-~
I 1 Sy 1 1 1 1 l.---._
1 3 5 7 9 10 1 3 5 7 9 10
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Possible explanation. Asynchronous is “proactive”: jobs do not necessarily need to wait any

time a scale-up decision is taken.



