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Application Problems : Modeling and Analysis
of Complex Systems

Complex system

output

Environment

Input of the system

System

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Generate “typical” states
- steady-state sampling
- ergodic simulation starting point
- state space exploring techniques
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Queuing Networks with Finite Capacity

Network model

Finite set of resources :

servers

waiting rooms

Routing strategies :

state dependent

overflow strategy

blocking strategy

...

Average performance :

load of the system

response time

loss rate

...

Markov model

1−p

λ

µ

ν

C1

C2 Rejection

Blocking

p

Poisson arrival, exponential services distribution, probabilistic routing
⇒ continuous time Markov chain

C1

0

1

2

C2−1

C2

Queue 2

0 2 Queue 11 C1−1

Problem

Computation of steady state distribution
⇒ state-space explosion
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Interconnexion Networks

Delta network
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Input rates
Service rates
Homogeneous routing
Overflow strategy

Problem

Loss probability at each level
Analysis of hot spot
...
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Call centers

Multilevel Erlang model
Traffic 2

Overflow traffic 2Overflow traffic 1

Type I servers Type II servers

Type III servers

Traffic 1

Types of requests
Input rates
Different service rates
Overflow strategy

Problem

Optimization of resources
Quality of service (waiting time, rejection probability,...)
...
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Resource Broker

Grid model

Q9

Resource
   Broker

λ

µ2

µ1

µ3

µ4

µ5

µ6

µ7

µ8

µ9

Overflow

Q2

Q3

Q1

Q10

Q11

Q12

Q4

Q6

Q5

Q7

Q8

Input rates
Allocation strategy
State dependent allocation
Index based routing : destination
minimize a criteria

Problem

Optimization of throughput, response time,...
Comparison of policies, analysis of heuristics
...
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Formalization : Markov Chain

Quantification

7
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21

Stochastic matrix : transition probability

P =
1

12

2664
2 3 0 7
0 0 1 11
0 3 6 3
4 0 7 1

3775
Non-negative, if irreducible and aperiodic
Unique probability vector π satisfying π = πP,
π = 1

350
[46, 47, 142, 115]

1856-1922
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Solving methods

Solving π = πP

Analytical/approximatin methods

Formal methods N 6 50
Maple, Sage,...

Direct numerical methods N 6 1000
Mathematica, Scilab,...

Iterative methods with preconditioning N 6 100, 000
Marca,...

Adapted methods (structured Markov chains) N 6 1, 000, 000
PEPS,...

Monte-Carlo simulation N > 107

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions)
Utilization, response time,...
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Ergodic Sampling(1)

Ergodic sampling algorithm

Representation : transition fonction

Xn+1 = Φ(Xn, en+1).

x ← x0

{choice of the initial state at time =0}
n = 0;
repeat

n ← n + 1;
e ← Random event();
x ← Φ(x , e);
Store x
{computation of the next state Xn+1}

until some empirical criteria
return the trajectory

Problem : Stopping criteria
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Ergodic Sampling(2)

Start-up

Convergence to stationary behavior

lim
n→+∞

P(Xn = x) = πx .

Warm-up period : Avoid initial state dependence
Estimation error :

||P(Xn = x)− πx || 6 Cλn
2.

λ2 second greatest eigenvalue of the transition matrix
- bounds on C and λ2 (spectral gap)
- cut-off phenomena

λ2 and C non reachable in practice
(complexity equivalent to the computation of π)
some known results (Birth and Death processes)
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Ergodic Sampling(3)

Estimation quality

Ergodic theorem :

lim
n→+∞

1

n

n∑
i=1

f (Xi ) = Eπf .

Length of the sampling : Error control (CLT theorem)
CLT for additive functionals of Markov chains

Complexity

Complexity of the transition function evaluation (computation of Φ(x , .))
Related to the stabilization period + Estimation time
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Ergodic sampling(4)

Typical trajectory

States

0 time

Warm−up period Estimation period
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Replication Method

Typical trajectory

States

0 time
replication periods

Sample of independent states
Drawback : length of the replication period (dependence from initial
state)
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Regeneration Method

Typical trajectory

States

0 time

start−up period

regeneration period

R1 R2 R3 ....

Sample of independent trajectories
Drawback : length of the regeneration period (choice of the regenerative
state)
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Stochastic recursive sequences

Description [Borovkov et al]

Discrete state space X (usually lattice, product of intervals,...)

Innovation state space, and an innovation process

Dynamic of the system : transition function

Φ : X × E −→ X
(x , ξ) 7−→ y

Trajectory given by x0 and {ξn} an innovation process

X0 = x0; Xn+1 = Φ(Xn, ξn)

Discrete event systems

state space : usually lattice, product of intervals,...

Innovations : usually a set of events E
Independent innovation process : Poisson systems (uniformization)
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Markovian Modelling

Theorem (Markov process)

If {ξn} is a sequence of iid random variables , the process {Xn} is a
homogeneous discrete time Markov chain.

Random Iterated system of functions

The trajectory Xn is the successive application of random functions taken
in the set {Φ(., ξ), ξ ∈ E} according a probability measure on E
[Diaconis and Friedman 98]
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Coupling Inequality

Typical trajectory

Coupling time

Stationary version

τ0 time

States

After τ the two processes are not distinguishable, then stationary
Scheme used to prove Markov convergence (coupling inequality)

|P(Xn ∈ A)− πA| 6 P(τ > n)
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Forward Sampling : avoid initial state
dependence

Forward coupling

Steady-state ?

f3f4f6f7f3f1
Time

State

Example

1

1− p p

Always couple in the blue state
Does not guarantee the steady state !
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Perfect Sampling : Backward Idea

Set dynamic

In what state could I be at time n = 0 ?

X0 ∈ X = Z0

∈ Φ(X , e−1) = Z1

∈ Φ(Φ(X , e−2), e−1) = Z2

...
...

∈ Φ(Φ(· · ·Φ(X , e−n), · · · ), e−2), e−1) = Zn

22 / 115Perfect Sampling of Queuing Networks with Complex Routing



System Simulation Perfect Sampling Discrete Time Markov Chain Event Driven Simulation Case Studies Advanced Topics Synthesis

Perfect sampling : Backward Idea

All the trajectories

Time

0

−i

−j

−τ ∗

Statio
nary

Proce
ss

X

X

X

X

Zi

Zj

Z−τ∗ = {X0}

Z0 = X

collapse
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Perfect Sampling : Convergence Theorem

Theorem

Provided some condition on the events the sequence of sets

{Zn}n∈N

is decreasing to a single state, stationary distributed.

τ∗ = inf{n ∈ N; Card(Zn) = 1}.

backward coupling time

The set of possible states at time 0 is decreasing with regards to n
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Perfect Sampling : Coupling Condition

Theorem

Suppose that the set of events is finite. Then the two conditions are
equivalent:

τ∗ < +∞ almost surely;

There exist a finite sequence of events with positive probability
S = {e1, · · · , eM} such that

|Φ(X , e1→M)| = 1.

The sequence S is called a synchronizing pattern
(synchronizing word, renovating event,...)
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Perfect sampling : Coupling Condition (proof)

Proof

⇒ If τ∗ < +∞ almost surely there is a trajectory that couples in a finite
time. This finite trajectory is a synchronizing pattern.

⇐ Suppose there is a synchronizing pattern with length M. Because the
sequence of events is iid, it occurs almost surely on every trajectory.
Applying Borel-Cantelli lemma gives the result.

The forward and backward coupling time have the same distribution
τ∗ has an exponentially dominated distribution tail

P(τ∗ > M.n) 6 (1− P(e1→M))n.

Practically efficient
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Perfect sampling : convergence theorem
(proof 1)

Proof based on the shift property

First, because τ < +∞ and the ergodicity of the chain there exists N0 s.t.

|P(Φ(X , e1→n) = {x})− πx | 6 ε.

But the sequence of events is iid (stationary) then

P(Φ(X , e1→n) = {x}) = P(Φ(X , e−n+1→0) = {x})

τ∗ < +∞ then there exists N1 such that P(τ∗ > N1) 6 ε ; then

P(Φ(X , e−n+1→0) = {x})

= P(Φ(X , e−n+1→0) = {x}, τ∗ < N1) + P(Φ(X , e−n+1→0) = {x}, τ∗ > N1),

= P(Φ(X , e−τ∗→0) = {x}, τ∗ < N1) + ε′,

= P(X0 = x , τ∗ < N1) + ε′ = P(X0 = x) + ε′′.
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Perfect Sampling : Convergence Theorem
(proof 2)

Proof based on the coupling property [Haggstrom]

Consider N such that P(τ∗ > N) 6 ε
then consider a process {X n} with the same events e−N+1→0 but with
X−N+1 generated according π. The process {X n} is stationary.
On the event (τ∗ < N) we have X0 = X 0 and

P(X0 6= X 0) 6 P(τ∗ > N) 6 ε (coupling inequality).

Finally

P(X0 = x)− πx = P(X0 = x)− P(X 0 = x) 6 P(X0 6= X 0) 6 ε;

πx − P(X0 = x) = P(X 0 = x)− P(X0 = x) 6 P(X 0 6= X0) 6 ε;

and the result follows.
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Perfect Sampling : Algorithm

Backward algorithm
Representation : transition fonction

Xn+1 = Φ(Xn, en+1).

for all x ∈ X do
y(x) ← x

end for
repeat

e ← Random event();
for all x ∈ X do

z(x) ← y(Φ(x, e));
end for
y ← z

until All y(x) are equal
return y(x)

Convergence : If the algorithm stops, the returned
value is steady state distributed
Coupling time: τ < +∞, properties of Φ

Trajectories

Time

States

0000

0001

0010

0011

0100

0101

0110

1000

1001

1010

1100

−4 −3 −2 −1−5−6−7−8−9−10 0
U1U2U3U4U5U6U7U8

τ∗

Mean time complexity

cΦ mean computation cost of Φ(x , e)

C 6 Card(X ).Eτ.cΦ.
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Perfect Reward Sampling

Backward reward
Representation : transition fonction

Xn+1 = Φ(Xn, en+1).

Arbitrary reward function

for all x ∈ X do
y(x) ← x

end for
repeat

e ← Random event();
for all x ∈ X do

y(x) ← y(Φ(x, e));
end for

until All Reward(y(x)) are equal
return Reward(y(x))

Convergence : If the algorithm stops, the returned
value is steady state reward distributed
Coupling time: τ r 6 τ < +∞

Trajectories

Time

States

0000

0001

0010

0011

0100

0101

0110

1000

1001

1010

1100

−4 −3 −2 −1−5−6−7−8−9−10 0
U1U2U3U4U5U6U7U8

1

0

Cost

Mean time complexity

CReward 6 Card(X ).Eτ.cΦDepends on the reward function.
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Inverse of PDF
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x

p1

p2

p3

· · ·

Generation

Divide [0, 1[ in intervals with length pk

Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX ) steps
Memory cost : O(1)

Inverse function algorithm

s=0; k=0;
u=random()
while u >s do

k=k+1
s=s+pk

end while
return k
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Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K ) could be huge
-
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Generation : Visual representation

[0, 1] partitionning

103
12

1
12

6
12

2
12

7
12

1
12

4
12

3
12

7
12

3
12

11
12

f1 f3 f4 f5 f6 f7 f8f2

4 3

21

Random iterated system of functions

Function f1 f2 f3 f4 f5 f6 f7 f8
Probability 1

12
1
12

1
12

1
12

1
12

4
12

2
12

1
12

Stochastic matrix P =⇒ simulation algorithm = RIFS

34 / 115Perfect Sampling of Queuing Networks with Complex Routing



System Simulation Perfect Sampling Discrete Time Markov Chain Event Driven Simulation Case Studies Advanced Topics Synthesis

The coupling problem

τ estimation

Eτ = 2

0 1

Couples with probability 1
2

0 1

Never couples

τ =∞

10 1

Couples with probability 1

τ = 1

0

1
2

1
2

1
2

1
2
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General problem

Objective

Given a stochastic matrix P = ((pi,j)) build a system of function (fθ, θ ∈ Θ)
and a probability distribution (pθ, θ ∈ Θ) such that :

1 the RIFS implements the transition matrix P,

2 ensures coupling in finite time

3 achieve the “best” mean coupling time : tradeoff between
- choice of the transition function according to ((pθ)),
- computation of the transition

Remarks

Usual method

|Θ| = number of non-negative elements of P = O(n2)

choice in O(log n)
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Non sparse matrices

Rearranging the system

0 1

”Synchronizing” transformation

0 1

3
12

1
12

4
12

7
12

3
12

3
12

11
12

1
12

6
12

2
12

7
12

f1 f3 f4 f5 f6 f7 f8f2

4 3

21
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Non sparse matrices

Convergence rate

When at least one column is non-negative ⇒ one step coupling.
The RIFS ensures coupling and the coupling time τ is upper bounded by
a geometric distribution with rate∑

j

min
i

pi,j

number of transition functions : could be more than the number of
non-negative elements
at most n2
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Aliasing technique

Initialization

K objects

list L=∅,U=∅;
for k=1; k6 K; k++ do

P[k]=pk

if P[k] > 1
K then

U=U+{k};
else

L=L+{k};
end if

end for

Alias and threshold tables

while L 6= ∅ do
Extract k ∈ L
Extract i ∈ U
S[k]=P[k]
A[k]=i
P[i] = P[i] - ( 1

K -P[k])
if P[i] > 1

K then
U=U+{i};

else
L=L+{i};

end if
end while

Combine uniform and alias value when rejection
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Aliasing technique : generation

1/8
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Aliasing technique : generation

Generation

k=alea(K)
if Random . 1

K 6 S[k] then
return k

else
return A[k]

end if

Complexity

Computation time :
- O(K ) for pre-computation
- O(1) for generation
Memory :
- threshold O(K ) (real numbers as probability)
- alias O(K ) (integers indexes in a tables)
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Sparse matrices

Rearranging the system

10

Aliasing transformation

10

6
12

11
12

3
12

3
12

7
12

4
12

1
12

3
12

7
12

2
12

1
12

f1 f3 f4 f5 f6 f7 f8f2

4 3

21

Complexity
M = maximum out degree of states
pθ uniform on {1, · · · , M}, threshold comparison
O(1) to compute one transition
Combination with “Synchronizing” techniques
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Uniform-binary decomposition

Uniform superposition
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A1

A1

0 1

Aliasing transformation

3
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4
12

1
12

7
12

2
12

6
12

1
12

3
12

11
12

3
12

7
12

1 2

34

Decomposition

P =
1

M

MX
i=1

Pi , Pi : stochastic matrix with at most 2 non negative elements per row
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Coupling property

Exchange of columns or thresholds give an equivalent representative

representation
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Equivalent 

Spanning tree

Irreducibility =⇒ there is a spanning tree going to a single state where
coupling occurs.

P(τ∗ < +∞) = 1.

τ is geometrically bounded,
so τ∗ and τ∗C .
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Ψ software
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Example

Random transition coefficients:

Number of states 10 100 500 1000 3000
Mean coupling time 3.1 4.5 5.3 5.7 6.1
Mean execution time µs 3 17 170 360 1100

Pentium III 700MHz and 256Mb memory. Sample size 10000.
Remarks:
- very small coupling time
- Coefficients : same order of magnitude, aliasing enforces coupling

Comparison with birth and death process :

Number of states 10 100 500 1000 3000
Mean coupling time 41 557 2850 5680 17000
Mean execution time µs 28 1800 88177 366000 3.5s

Remarks:
- large coupling time
- sparse matrix, large graph diameter
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Overflow model

Model

K

Overflow

rejection

λ µ1

µ2

µ3

µ

Coupling time distribution

Coupling time (iterations)

D
en

si
ty

 

Sample size : 10000

 0

 0.05

 0.1

 0.15

 0.2

 0  100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Parameters

K servers,
priority on overflows
input rate λ,
different service rate
state (x1, · · · , xK ), xi ∈ {0, 1},
size ∼ 130000
low diameter
non product-form structure,

Statistics

Parameter Value
minimum 113
maximum 1794
median 465
mean 498
Std 180

exponential tail, low mean value
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Overflow model (2)

Marginal distribution

Index of the server
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Sample size 10000
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Marginal probability estimation

P(Xi = 1)

Occupied servers

Sample size = 10000

Number of occupied servers
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Marginal distribution of the occupied
servers
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Overflow model (3)

Reward coupling

mean value

C
ou

pl
in

g 
tim

e 
(i

te
ra

tio
ns

)

Marginal law (server number)

Sample size 10000 Maximum

Quartile 3
Median

Minimum

Quartile 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
 0

 500

 1000

 1500

 2000

 2500
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adoc

cu
pa

tio
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Reward coupling time
- gain 20% for the first marginals
- utilization : best reduction
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Monotonicity and perfect sampling : idea

(X ,≺) partially ordered set (lattice)

Typically componentwise ordering on products of intervals

min = (0, · · · , 0) and Max = (C1, · · · ,Cn).

An event e is monotone if Φ(., e) is monotone on X
If all events are monotone then

X0 ∈ Zn ⊂ [Φ(min, e−n→0),Φ(Max , e−n→0)]

⇒ 2 trajectories
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The Doubling Scheme

Complexity

Need to store the backward sequence of events

Consider 2 trajectories issued from {min, Max} at time −n and test if
coupling

One step backward ⇒

2.(1 + 2 + · · ·+ τ∗) = τ∗(τ∗ + 1) = O(τ∗
2
)

calls to the transition function.

Consider 2 trajectories issued from {min, Max} at time −2k and test if
coupling

Doubling step backward ⇒

2.(1 + 2 + · · ·+ 2k) = 2k+2 − 2

calls to the transition function, with k such that 2k−1 < τ∗ 6 2k ,

Number of calls : O(τ∗)
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Monotonicity and Perfect Sampling

Monotone PS
Doubling scheme

n=1;R[1]=Random event;
repeat

n=2.n;
y(min) ← min
y(Max) ← Max
for i=n downto n/2+1 do

R[i]=Random event;
end for
for i=n downto 1 do

y(min) ← Φ(y(min), R[i ])
y(Max) ← Φ(y(Max), R[i ])

end for
until y(min) = y(Max)
return y(min)

Trajectories

State

2

1

M

−1−2−4−8−16−32 0

States

 :  : Maximum

  : minimum

Generated

0

Mean time complexity

Cm 6 2.(2.Eτ).cΦ. Reduction factor : 4
Card(X ) .
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Event Modelling

Multidimensional state space : X = X1 × · · · × XK with
Xi = {0, · · · ,Ci}. Event e :
; transition function Φ(., e); (skip rule)
; Poisson process λe

Time

States

Events

e1

e2

e3

e4

1781-1840
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Event modelling

Uniformization

Λ =
∑

e

λe and P(event e) =
λe

Λ
;

Trajectory : {en}n∈Z i.i.d. sequence.
⇒ Homogeneous Discrete Time Markov Chain [Bremaud 99]
Xn+1 = Φ(Xn, en+1).

Generation among a small finite space E : O(1)
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Index Routing in Queuing Networks

Index functions for event e

For queue i I e
i : {0, · · · ,Ci} −→ O (totally ordered set).

Property : ∀xi , xj I e
i (xi ) 6= I e

j (xj).

ex: inverse of a priority,...

Routing algorithm:

if xorigin >0 then
{ a client is available in the origin queue}
xorigin = xorigin − 1; { the client is removed from the origin queue}
j = argmini I e

i (xi ); { computation of the destination}
if j 6= -1 then

xj = xj+1; { arrival of the client in queue j }
{ in the other case, the client goes out of the network}

end if
end if
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Monotonicity of Index Routing Policies

Proposition

If all index functions I e
i are monotone then event e is monotone.

Proof :

Let x ≺ y two states and let be an index routing event. Let i be the
origin queue for the event.

jx = argminj I
e
j (xj) and jy = argminj I

e
j (yj)

Case 1 xi = yi = 0 nothing happens and
Φ(x , e) = x ≺ y = Φ(y , e)

Case 2 xi = 0, yi > 0 then Φ(x , e) = x ≺ y − ei + ejy = Φ(y , e)

Case 3 xi > 0, yi > 0 then

I e
jx (xjx ) < I e

jy (xjy ) 6 I e
jy (yjy ) < I e

jx (yjx );

then xjx < yjx and

Φ(x , e) = x − ei + ejx 6 y − ei 6 y − ei + ejy = Φ(y , e)
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Monotonicity of Routing

Examples [Glasserman and Yao]

All of these events could be expressed as index based routing policies :
- external arrival with overflow and rejection
- routing with overflow and rejection or blocking
- routing to the shortest available queue
- routing to the shortest mean available response time
- general index policies [Palmer-Mitrani]
- rerouting inside queues
...
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Monotonicity of Routing : Examples

Stateless routing

Overflow routing

I e
j (xj) =

{
prio(j) if xj < Cj ;
+∞ elsewhere

I e
−1 = max

j
Cj .

Routing with blocking

I e
j (xj) =

{
prio(j) if xj < Cj ;
+∞ elsewhere

I e
i = max

j
Cj .

State dependent routing

Join the shortest queue

I e
j (xj) =

{
xj if xj < Cj ;
+∞ elsewhere;

I e
−1 = max

j
Cj .

Join the shortest response time

I e
j (xj) =

{
xj+1
µj

if xj < Cj ;

+∞ elsewhere;

I e
−1 = max

i
Ci .
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Coupling Experiment

Feed-forward queuing model

5

C

C

C

C0

1

2

3
λ

λ

λ

λ

λ
λ

0
1

2

3

4

Estimation of Eτ :

 0

 50

 100

 150

 200

 250

 300

 350

 400

 τ

 0  1  2  3  4  λ
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Main Result

Bound on coupling time

Eτ 6
K∑

i=1

Λ

Λi

Ci + C 2
i

2
,

- Λ : global event rate in the network,

- Λi the rate of events affecting Qi

- Ci is the capacity of Queue i .

Sketch of the proof

- Explicit computation for the M/M/1/C

- Computable bounds for the M/M/1/C

- Bound with isolated queues
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Explicit Computation for the M/M/1/C

Eτb = E min(h0→C , hC→0)
Absorbing time in a finite Markov chain; p = λ

λ+µ = 1− q

1,C

1,C−10,C−2

1,C−2 2,C−1

2,C

3,C

C−2,C−1 C−1,C

C,C0,0

0,1 1,2

0,C

0,C−1

0,C−3

p

p

p

p

p

p
p p p p

ppp

p p

p
q

q

q

q

q

q q q q q

qqq

q q

q
Level 3

Level 4

Level 5

Level C+1

Level C+2

Level 2  

Explicit recurrence equations

Case λ = µ Eτb = C+C 2

2 .
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Computable bounds for M/M/1/C

If the stationary distribution is concentrated on 0 (λ < µ),

Eτb 6 Eh0→C is an accurate bound.

Theorem

The mean coupling time Eτb of a M/M/1/C queue with arrival rate λ
and service rate µ is bounded using p = λ/(λ + µ) = 1− q.

Critical bound: ∀p ∈ [0, 1], Eτb 6 C 2+C
2 .

Heavy traffic Bound: if p > 1
2 , Eτb 6 C

p−q −
q(1−( q

p )
C
)

(p−q)2 .

Light traffic bound: if p < 1
2 , Eτb 6 C

q−p −
p(1−( p

q )
C
)

(q−p)2 .
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Computable Bounds for M/M/1/C

Example with C = 10

 0

 20

 40

 60

 80

 100

 120

 0  0.2  0.4  0.6  0.8  1

Eτb

p

heavy trafficLight traffic
bound

C+C 2

2

C + C 2

bound
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Example for tandem queues

Coupling of Queue 0

Time

0

X 0
0 = 55

4

2

1

3 = C1

6 = C0

0

−τ b
0

Coupling of queue 1 conditionned by state of queue 0

4

3 = C1

1

0

−τ b
1 (s0 = 2) 0

Time

X 1
1 = 2

X 1
0 = 3

5 = X 0
0

6

2

X 1
1 = 2

5

4

2

1

3 = C1

6 = C0

0

−τ b
0 − τ b

1 (s0 = 5)

X 0
0 = 5

τ b
1 (s0 = 5) 0

Time

X 1
0 = 3

Then τb 6st
∞τb

1 + τb
0 , normalized
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Bound with Isolated Queues

Theorem

In an acyclic stable network of K M/M/1/Ci queues with Bernoulli
routing and loss if overflow, the coupling time from the past satisfies in
expectation,

E[τb] 6
K−1∑
i=0

Λ

`i + µi

 Ci

qi − pi
−

pi (1−
(

pi

qi

)Ci

)

(qi − pi )2


6

K−1∑
i=0

Λ

`i + µi
(Ci + C 2

i ).
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Conjecture for General Networks

 0

 700

 800

 0  0.5  1  1.5  2  2.5  3  3.5  4

 500

 400

 300

 200

 100

 600

λ5

Eτb

B1 (proven)

B1 ∧ B2 ∧ B3

B3 (conjecture)

B2 (conjecture)

Extension to cyclic networks,
Generalization to several types of events
Application : Grid and call centers
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Software architecture

Aim of the software

finite capacity queuing network
simulator

rare events estimation
(rejection, blocking,...)

statistical guarantees
(independence of samples)

⇒ Simulation kernel

open source (C, GPL licence)

extensible library of events

multiplatforms (Linux
(Debian), mac OSX,...)

General architecture

Action of the event

Predifined routing

JSQ, JSWT

overflow, blocking

Index routing

Queues description
servercs, capacities

Event description

Table of index functions
Dest = argminIi(xi)

Compilation of the model
Simulation run

Rate

Activation condition

Sample of rewards
Coupling time

Max backward simulation run
Sample size, random seed
Stopping criteria

(reward function)
Number of variates

Statistical analyzer
R, S-plus,...
User defined scripts

Model description Simulation control

Ψ2 simulation kernel

Routing strategy

Steady state sample
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Queueing Network Description

Constrained communications

Capacity C

λ

ν

µ2

µ1

Overflow

Events types
type action

1 Server departure
2 External arrival to the first empty room in the list DQ
3 Multi-server departure to DQ
4 Join the shortest queue in DQ
5 Index routing according an index table
6 Routing to the first empty room in the list DQ and overflow
7 Routing to the first empty room in the list DQ and

blocking in the origin queue

Description file

# Number of queues

3

# Queues capacities

1 1 50

# queues minimal initial state

0 0 0

# queues maximal initial state

1 1 50

# Number of events

4

# Index file - N for No index file

File: N

# table of events

# id type rate nbq origin d1 d2 d3 d4

0 2 0.8 5 -1 : 0 1 2 -1

1 1 0.6 2 0 : -1

2 1 0.4 2 1 : -1

3 7 2.0 5 2 : 0 1 2 -1
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Simulation control and output

Control parameters

# Sample number

10000

# Number of Antithetic variable

1

# Size of maximal trajectory

3000000

# Random generator seed

5

# Coupling file name

File: No file

 0

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0  10  20  30  40  50

 0.01

 0.02

Statistical analysis

Probability distribution in the buffer

Output

# P.S.I.2 version 4.4.4

# Data Network model

# Number of queues

...

# Parameters

# Sample number

# 10000

# Number of Antithetic variates

...

# =============

0 [ [ 0 1 10 ] ]

1 [ [ 1 1 13 ] ]

2 [ [ 1 1 2 ] ]

3 [ [ 1 1 33 ] ]

...

9999 [ [ 1 1 2 ] ]

# Size 10000 Sampling time :

3809.202000 micro-seconds

# Seed Value 5
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Example

Delta interconnection network, C = 10 ρ = 0.9
8

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

10

9

9999 [ [ 0 2 5 7 2 8 7 4 0 7 10 3 3 2 1 5 0 0 6 3 3 6 0 3
9 1 2 4 3 1 3 6 ] ]
# Size 10000 Sampling time : 4302.413600 micro-seconds
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Monotonous reward sample

First server analysis

92 [ [ 0 ] ]
93 [ [ 1 ] ]
94 [ [ 1 ] ]
95 [ [ 1 ] ]
96 [ [ 1 ] ]
97 [ [ 1 ] ]
98 [ [ 1 ] ]
99 [ [ 1 ] ]
# Size 100 Sampling time : 36.230000 micro-seconds

Time reduction

99 [ [ 1 1 1 ] ]
# Size 100 Sampling time : 308.100000 micro-seconds
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Coupling time study (doubling scheme)

Coupling time for each queue

Perfect Simulation (with doubling period) started
0 6 2 1 6 [ 1 0 9 ]
1 7 5 1 7 [ 1 0 8 ]
2 8 2 6 8 [ 1 1 7 ]
3 8 1 2 8 [ 1 0 8 ]
4 8 1 1 8 [ 1 1 9 ]
5 7 7 4 7 [ 0 1 0 ]
6 6 1 2 6 [ 1 0 10 ]
7 8 1 1 8 [ 1 1 1 ]
Carefull : number of steps to couple ( τ = 2nb steps)

Last queue have the largest coupling time.
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Coupling Time Study (one step scheme)

Coupling time for each queue

Perfect Simulation started 0 26 1 1 26 [ 1 0 10 ]
1 58 1 1 58 [ 0 0 10 ]
2 100 2 1 100 [ 1 0 8 ]
3 91 1 51 91 [ 1 1 2 ]
4 114 1 1 114 [ 1 1 6 ]
5 210 1 1 210 [ 1 1 9 ]

Distribution of the rewards coupling time
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Download : http://gforge.inria.fr/projects/psi
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Synthesis

The psi2 unix command

USAGE : psi2 unix [-ipo] argument [-hdtv]
-i : input file in ext directory
-p : parameter file in ext directory
-o : output file in ext directory
By default, output file has outputtest.txt name in ext
directory
-h : help.
-d : With details on output file
-t : Without doubling period, show coupling time of each
queue
-v : version

Enjoy !
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Priority Servers

Erlang model

Output

Arrivals
Servers

Overflow 

on next free server

Rejection if all servers 

are buzy

X = {0, 1}3
E = {e0, e1, e2, e3}

Card(X ) = 2K

Events

Event type Rate Origin Destination list
Arrival λ −1 Q1 ; Q2 ; Q3 ; −1
Departure µ1 Q1 −1
Departure µ2 Q2 −1
Departure µ3 Q3 −1

Results

Validation χ2 test

K = 30 µi decreasing

Saturation probability 0.0579± 4.710−4

Simulation time 0.4ms

τ = 577
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Priority servers

Erlang model

Output

Arrivals
Servers

Overflow 

on next free server

Rejection if all servers 

are buzy

X = {0, 1}40
µ1 = 1,
µ2 = 0.8,
µ3 = 0.5
Sample size 5.106

Card(X ) = 2K

Saturation probability

Prob

 0.1
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 0  10  20  30  40  50  60  70 λ
 0

Proba

 1e−06

 1e−04
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 1e−05

Coupling time

s

Reward coupling time

Coupling time
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Line of Servers

Tandem queues

reject

µ2C2

C3 µ3

C4 µ4

C5 µ5

C1 µ1

λ

X = {0, · · · , 100}5
E = {e0, · · · , e5}

Card(X ) = CK

Events

Event type Rate Origin Dest. list
Arrival λ −1 Q1 ; −1
Routing/block µ1 Q1 Q2 ; Q1

Routing/block µ2 Q2 Q3 ; Q2

· · · · · · · · · · · ·
Departure µ5 Q5 −1

Results

C = 100 λ = 0.9; µ = 1 p = 1
2

Blocking probability b1 = 0.34, b2 = 0.02 b3 = 0.02,
b4, = 0.02.

Simulation time < 1ms
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Multistage network

Delta network
8
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X = {0, · · · , 100}32
E = {e0, · · · , e64}

Card(X ) = CK

Events

Event type Rate Origin Dest. list
Arrival λ −1 Qi ; −1
Routing/rejection 1

2µ Qi Qj ; −1
· · · · · · · · · · · ·
Departure µ Qk −1

Results

C = 100 λ = 0.9; µ = 1

Loss rate

Simulation time 135ms

τ ' 400000
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Multistage network

Delta network
8
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X = {0, · · · , 100}32
E = {e0, · · · , e64}

Card(X ) = CK

Sample size 100000

Queue length and saturation proba at level 3
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Coupling time

s
Global coupling

Reward  at least 1 queue saturated (3rd level)

Reward queue 31 saturated
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Resource Broker

Grid model

Q9

Resource
   Broker

λ

µ2

µ1

µ3

µ4

µ5

µ6

µ7

µ8

µ9

Overflow

Q2

Q3

Q1

Q10

Q11

Q12

Q4

Q6

Q5

Q7

Q8

Input rates
Allocation strategy
State dependent allocation
Index based routing : destination
minimize a criteria

Problem

Optimization of throughput, response time,...
Comparison of policies, analysis of heuristics
...
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Routing Customers in Parallel Queues

The problem:

Find a routing policy maximizing the expected (discounted) throughput of
the system.

Several variations on this problem depend on the information available to
the controller: current size of all queues (and size of the arriving batch).

The applications:

improve batch schedulers for cluster and grid infrastructures.

Assert the value of information in such cases.
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Index policies for routing

Optimal routing policy problem is still open for n different M/M/1
Heuristic : index policy inspired from the Multi-Armed Bandit
⇒ free parameter and compute an equilibrium point.
[Mitrani 2005] for routing and repair problems.

µ

S servers

Capacity C

λ

W

b

µ

µ

W is the rejection cost (free parameter).

Theorem

There is an optimal policy of threshold type:
there exists θ such that :Reject if x > θ and accept otherwise.
- θ does not depend on C as long as C > θ (including if C is infinite).
- θ is a non-decreasing function of W .
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Index policies for Routing(II)

Computation of θ(W ) linear system of corresponding to Bellman’s
equation, after uniformization.
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)

W

’TW.txt’

Index function I (x) = inf{W | θ(W ) = x}.
Indifference case : when queue size is x , rejecting or accepting the next
batch are both optimal choices if the rejection cost is I (x).
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Some numerical experiments(I)
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Several cases with two queues with respective parameters (µ = 9, 1),
C = 100
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Some numerical experiments(III)
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Several cases with two queues with respective parameters (µ = 8, 2),
C = 100.
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Some numerical experiments(IV)
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Some other cases
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Some numerical experiments(V)
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Three queues. Respectively, µ = 8, 1, 1 and µ = 7, 2, 1.

90 / 115Perfect Sampling of Queuing Networks with Complex Routing



System Simulation Perfect Sampling Discrete Time Markov Chain Event Driven Simulation Case Studies Advanced Topics Synthesis

Numerical experiments(VI)
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Now, µ = 6, 3, 1 and µ = 6, 2, 2.

91 / 115Perfect Sampling of Queuing Networks with Complex Routing



System Simulation Perfect Sampling Discrete Time Markov Chain Event Driven Simulation Case Studies Advanced Topics Synthesis

Numerical experiments(VII)
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Now, µ = 5, 4, 1 and µ = 5, 3, 2.
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Robustness of Index policies

The index policy was computed for λ = 5 or 9 and used over the whole
range λ = 1 to 10.
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Adaptation to Structured Models

Model Parameters

set of uniformized events E = {e1, .., ep}
global states are tuples of local states s̃ = (s1, . . . , sK )

transition function: Φ(s̃, ei ) = r̃

* each s̃ ∈ X has a set of enabled events and its firing conditions and
consequences

Constraints

Well-formed SAN models needed

* exploring the subset XR (Reachable state space)

State space explosion still a problem
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Analysis of Complex Discrete Systems

GRAPHICAL MODEL
(STATES + TRANSITIONS)

0(1)

1(1)

e1e2

A(1)

e3

A(2)

0(2)

2(2) 1(2)

e4

e5

e2

e5

s̃ ∈ XR r̃ = Φ(s̃, ep), ep ∈ ξ
Φ(s̃, e1) Φ(s̃, e2) Φ(s̃, e3) Φ(s̃, e4) Φ(s̃, e5)

{0;0} {1;0} {0;0} {0;0} {0;0} {0;0}
{0;1} {1;1} {0;1} {0;2} {0;1} {0;1}
{0;2} {1;2} {0;2} {0;2} {0;0} {0;2}
{1;0} {1;0} {0,2} {1;0} {1;0} {0;1}
{1;1} {1;1} {1;1} {1;2} {1;1} {1;1}
{1;2} {1;2} {1;2} {1;2} {1;0} {1;2}

ep ∈ ξ Rates Uniformized Rates

e1 λ1 λ1/(λ1 + λ2 + λ3 + λ4 + λ5)
e2 λ2 λ2/(λ1 + λ2 + λ3 + λ4 + λ5)
e3 λ3 λ3/(λ1 + λ2 + λ3 + λ4 + λ5)
e4 λ4 λ4/(λ1 + λ2 + λ3 + λ4 + λ5)
e5 λ5 λ5/(λ1 + λ2 + λ3 + λ4 + λ5)
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New solutions for huge SAN models

Monotonicity and Perfect Simulation Idea

Monotonicity property for SAN related to the analysis of structural
conditions

* component-wise state space formation

Families of SAN models

SAN models with a natural partial order (canonical)

* e.g. derived from Queueing systems models [Vincent 2005]

SAN models with a given component-wise partial order (non-lattice)
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Partially Ordered State Spaces

Canonical component-wise ordering

Equivalent MC

Queueing Network Model

00

λ µ

K1

...

Equivalent SAN Model

K1

A(1)

K2

...

A(2)

K2

e2

e2e12

e12

e1

e1

e12

e12

e12e1

ν

Type Event Rate
loc e1 λ
syn e12 µ
loc e2 ν

00

20

10

01

11

21 02

12

22 03

13

23

Event e12

Event e2

Event e1
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Partially Ordered State Spaces

Non-lattice component-wise ordering

Find a partial order of X demands a high c.c.

Possible to find extremal global states in the underlying chain

* |XM| states: more than two extremal states

Complexity: related to τ , but also |XM|

Extremal states

Component-wise formation has ordered state indexes

* consider an initial state composing XM

* add to XM the states without transitions to states with greater indexes
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Non-lattice component-wise ordering

Resource sharing model with reservation (Dining Philosophers)

Type Event Rate
loc lti µ
syn tri λ
syn rli λ
loc rtK µ
syn tlK λ
syn lrK λ

lrK T (0)

R (0) L(0)

P (1)

rl2

tr1 lt1

rl1

lrK

lrK

rl0

tlKrtK

T (K )

trK−1
rl0

P (K ) P (K−1)

T (K−1)

L(K−1)R (K−1)

ltK−1

rlK−1

trK−2
tlK

trK−1

trK−2

P (i)

tri−1

tri

rli

rli+1 T (i)

L(i)R (i)

i = 2 . . . (K − 2)

tri−1R (K ) L(K )

lti
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Non-lattice component-wise ordering

e.g. three philosophers with resources reservation, graphical model of the
underlying transition chain, extremal states identification

201

101011002 200

001 010 100

000

020

012 102
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SAN Perfect Simulation

Resource sharing model with reservation- K Philosophers

K X XR XM PEPS* (iteration) Perfect PEPS* (sample)
8 6,561 985 43 0.003185 sec. 0.032354 sec.
10 59,049 5,741 111 0.038100 sec. 0.111365 sec.
12 531,441 33,461 289 0.551290 sec. 0.689674 sec.
14 4,782,969 195,025 755 5.712210 sec. 2.686925 sec.
16 43,046,721 1,136,689 1,975 68.704325 sec. 15.793501 sec.
18 387,420,489 6,625,109 5,169 —- 83.287321 sec.

Numerical results

3.2 GHz Intel Xeon processor under Linux, 1 GByte RAM

times: for one iteration on PEPS and for one sample generation on
Perfect PEPS

Remarks: X contraction in |XM|
X limitation 6× 107 onPEPS overcame
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Non Monotonic Systems

Classic non monotonous events

Batch arrivals

Batch services

Join procedures

Negative customers

· · ·

Almost monotonous events

Monotonicity is not verified at the frontier

Batch arrivals : batch rejection (queue full)

Batch services : system almost empty

Join procedures : system almost empty

Negative customers : system almost empty
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Envelopes

Aim : Build a monotonous upper and lower process
Hypothesis : X is lattice, T = maxX and B = minX

U(M,m, e) = sup
m6s6M

Φ(s, e);

L(M,m, e) = inf
m6s6M

Φ(s, e).

Remark : if e is monotonous U(M,m, e) = Φ(M, e) and
L(M,m, e) = Φ(m, e)
Bounding process :

Y0 = T and Z0 = B;

Yn = U(Yn−1,Zn−1, e1→n) and Zn = L(Yn−1,Zn−1, e1→n).

Remark : Yn and Zn are not Markov chains but the couple is Markov.

Yn > Xn > Zn.
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Envelopes (2)

Theorem (Convergence)

Either the process (Yn,Zn) hits the diagonal in finite time with
probability 1 or nether hits the diagonal. When the process hits the
diagonal the value is stationary distributed.

Problems

(P1) The assumption that Sn hits the diagonal may not be verified.

(P2) Even if convergence theorem, the coupling time could become
prohibitively large.

(P3) The time needed to compute U(M, m, e) and L(M, m, e) might depend
on the number of states between m and M
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Variance Reduction

Coupled trajectories

0

StatesReward

RA/A

R2/A

0

StatesReward

U4U5· · ·Un

0

StatesReward

R1/A

U0U1U2U3

Coupled samples hope : negatively correlated

106 / 115Perfect Sampling of Queuing Networks with Complex Routing



System Simulation Perfect Sampling Discrete Time Markov Chain Event Driven Simulation Case Studies Advanced Topics Synthesis

Variance Reduction
3 coupled trajectories

Perfect Simulation (with doubling period) -= Antithetic
with 3 variables =- started
0 [ [ 1 0 10 ] [ 1 1 0 ] [ 1 1 7 ] ]
1 [ [ 1 1 10 ] [ 1 1 3 ] [ 1 0 0 ] ]
2 [ [ 1 0 9 ] [ 1 1 0 ] [ 1 1 10 ] ]
3 [ [ 1 1 0 ] [ 1 1 7 ] [ 1 1 0 ] ]
4 [ [ 1 1 9 ] [ 1 0 0 ] [ 0 1 3 ] ]
5 [ [ 1 0 6 ] [ 1 1 7 ] [ 0 1 2 ] ]
6 [ [ 1 1 4 ] [ 1 1 1 ] [ 0 0 10 ] ]
7 [ [ 1 1 4 ] [ 1 0 6 ] [ 1 1 6 ] ]
8 [ [ 1 0 8 ] [ 0 1 10 ] [ 1 1 9 ] ]
9 [ [ 1 1 0 ] [ 1 1 0 ] [ 1 1 8 ] ]
10 [ [ 1 1 6 ] [ 1 1 6 ] [ 1 1 8 ] ]
11 [ [ 0 1 3 ] [ 1 1 6 ] [ 1 1 5 ] ]

Correlation analysis ⇒ variance reduction
example VarX0 > Var(X0 + X ′0 + X ′′0 )/3
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Synthesis

Exact sampling

Poisson systems (uniformization) independence of events (SRS)

Reversed process ⇒ exact criteria (convergence proof)

Polynomial coupling time in the size of the models

Monotonicity and contraction on sets ⇒ RIFS and fractals

⇒ model structure

Perfect samplers

General DTMC : O(Eτ∗.|X |)
Monotone DTMC : O(Eτ∗.|Ext|)
Monotone DTMC lattice : O(Eτ∗)

⇒ numerically tractable
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Other approaches in perfect sampling

Algorithms

Forward/backward algorithm [Fill et al]

Horizontal sampling [Foss et al]

Read once samplers

· · ·

Application contexts

Interacting particle systems (statistical physics)

Stochastic geometry

Networking [Le Boudec et al]

Samplers of complex distributions

· · ·
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Open problems

Method

Optimal coupling problem (general case : event decomposition)

Infinite state space : coupling condition

Non-monotone systems

Transformation of generators

Models

Structured models : partial order construction

Structured models : from description to efficient event decomposition

(Max , +) dynamical systems (Petri nets)

· · ·

Software

Integration in general modeling framework
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