DIGITAL INTRASTRUCTURE CHALLENGES

Arnaud Legrand

WHAT DO ... HAVE IN COMMON ?

Clean water, solar cells, new drugs against Ebola/AIDS/Cancer, climate evolution, weather forecast for paragliding, searching for Extra-1/7 Terrestrial Intelligence, pulsars, ...

VOLUNTEER COMPUTING

Today the computer is just as important a tool for chemists as the test tube. Simulations are so realistic that they predict the outcome of traditional experiments

– Nobel committee (chemistry), 2013

2/7

SUPERCOMPUTERS

- 100,000 to 10,000,000 of cores, accelerators (GPU, KNL), a high throughput/low latency interconnection network
- A race between countries (Top500)

CLOUD COMPUTING

A BREATHTAKING EVOLUTION

Hybrid and very large scale parallel architectures to answer computation needs in restricted power envelopes.

1996

2015

ASCI Red 1 Teraflop 9298 Pentium II 1 000 Flops/W ATI Radeon 2.4 Teraflop 1600 Stream Processors 1600 000 Flops/W Nvidia Tegra X1 1 Teraflop 8-core ARM CPU 667 000 000 Flops/W

My smartphone is as powerful as a 20 years old supercomputer Wait! Millions of threads exchanging data!?!

Embedded Systems, Sensor Networks, Internet of Things...

Embedded Systems, Sensor Networks, Internet of Things...

DIGITAL INFRASTRUCTURES

Our society (citizens, companies, science, ...) relies (often obliviously) on gigantic digital infrastructures

How to design/use/optimize/understand such infrastructures?

Scalability

• Capacity planning

• Fair sharing

Energy consumption

• Fault tolerance

Modeling/performance evaluation

Similar issues with any large distributed infrastructure

• HPC/cloud/...

• Smart grids

Wireless networks

Transportation systems

Open Science Supercompute

