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Open network

Closed networks

Introduction to Queuing Networks

@ Single queues have simple results

@ They are quite robust to slight model variations
@ We may have multiple contention resources to model:
> servers

» communication links
» databases

with various routing structures.

Queuing networks are direct results for interaction of classical single
queues with probabilistic or static routing.
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Refresher: M/M/1

N T gl @ Infinite capacity
P
N QL @ Poisson()\) arrivals
e Exp(u) service times
M/M/1 queue e FIFO discipline
Definition
p= ﬁ is the traffic intensity of the queueing system. J
A /A\) A A A A
SOJOR0ON
1 14 o M 14 H

Number of clients X(t) in the system follows a birth and death process.
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Results for M/M/1 queue

© Stable if and only if p < 1
@ Clients follow a geometric distribution Vi € N, m; = (1 — p)p’

© Mean number of clients E [X] = ﬁ

© Average response time E [T] = 1
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M/M/1/K

In reality, buffers are finite: M/M/1/K is a queueing system with blocking.

(o))
K

A A A A
j\)
Iz w H Iz

Results for M/M/1/K queue

Geometric distribution with finite state space

w(i) = M

1— pK+1
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Results for M/M/c queue

Stability condition A < cp.
where p = T/\t and with

mw(r) = r _
DG @ e  Ge=veay
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Burke's theorem

Theorem

The output process of an M/M/s queue is a Poisson process that is
independent of the number of customers in the queue.

Sketch of Proof.

A
% N
w 0RO
I
X(t) increases by 1 at rate Am; (Poisson process A). Reverse process
increases by 1 at rate um; 1= Am; by reversibility.

Ol
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Outline

e Open Queueing Networks
@ Tandem queues
@ Acyclic networks
@ Backfeeding
@ Jackson networks
@ Open networks of M/M/c queues
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Tandem queues

S T @y [y -

Let X7 and X, denote the number of clients in queues 1 and 2 respectively.

Lemma
X1 and X are independent rv'’s.

Proof

Arrival process at queue 1 is Poisson(\) so future arrivals are independent
of Xl(t).

By time reversibility Xj(t) is independent of past departures.

Since these departures are the arrival process of queue 2, Xi(t) and Xx(t)
are independent. O

v
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Tandem queues

Theorem
The number of clients at server 1 and 2 are independent and

- ()62 (2)°C-2)
Proof

By independence of X7 and X5 the joint probability is the product of
M/M/1 distributions. O

v

This result is called a product-form result for the tandem queue.
This product form also appears in more general networks of queues.
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Acyclic networks

Example of a feed-forward network:

S o
Pl y .
(0

B — 6” \\,(\2/4 //// _ vPko
pio
30 Qg‘“ )\?\\7 .
ST @9 S 0] )
—_— | Pit poy
Pjo
@ Exponential service times Routing matrix:

@ output of / is routed to j with

probability pj; 0 pij Pk Pi

pi 0  pik Ppj

P«i Pk 0  pj

@ packets exiting queue i leave the system pi pj Pk O
with probability pjo.

@ external traffic arrives at i with rate )\? R=
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Decomposition of a Poisson Process

Problem
e N(t) Poisson process with rate A

e Z(n) sequence of iid rv's ~ Bernoulli(p) independent of N.

Suppose the nth trial is performed at the nth arrival of the Poisson process.

Result

@ Resulting process M(t) A e
. Poisson(\) ‘
of successes is —

Poisson(Ap).

Poisson(Ap)
@ Process of failures L(t)

is Poisson ()\(]. = p)) and Poisson(A(1 — p))

is independent of M(t).
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Acyclic networks

Total arrival rate at node i: \;
(1<i<K).

Pjo
No feedback: using Burke theorem, all internal flows are Poisson!
Thus we can consider K independent M/M/1 queues with Poisson arrivals

with rate \;, where
K

A=\ Z Ajpji ie. A=A+ AR in matrix notation.
j=0

Stability condition
All queues must be stable independently: \; < p;, Vi=1,2,..., K. J
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Backfeeding

Example
Switch transmitting frames with random errors. A NACK is sent
instantaneously if the frame is incorrect.

@ Frame success probability is p.

@ Arrivals ~ Poisson(\°)

e Frame transmission times ~ Exp (u)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Backfeeding
0 p
2 e (w )=
R i T J
Remark
Arrivals are not Poisson anymore! J

Result J

The departure process is still Poisson with rate Ap.

Proof in [Walrand, An Introduction to Queueing Networks, 1988].
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Balance equations:
70X = ppr(1)
a(n) (A 4 pu) = Nx(n—1)+pupr(n+1), n>0
Actual arrival rate A = A% + (1 — p)), so A\° = A\p which gives
m(0)A = pum(1)
r(n(A+u) = I(n—1)4ur(n+1), n>0 M/M/1!

The unique solution is:
n 0 o\ "
o= (3 G- 05 G
M H PH P
O
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Jackson networks: example

e X
LTI = TI[@
e :Pio T g —— .
P! v |

Pt m,,,,,,,,,,,,,,,,,,}ipkaO
AT E— i
N ][R = |1 ] YRS
o Pj |
v Pio v
e -

Backfeeding allowed.

System state (CTMC): X(t) = (ni(t), n2(t), ..., nk(t)) where K is the
number of queues and n;(t) the number of clients at queue /.
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Jackson networks

Theorem (Jackson, 1957)
If \; < p; (stability condition), Vi = 1,2,...K then

() = ﬁ (1 _ ﬁ) (A—) Wi = (ny, ..., nx) € NK.

i1 i L

where A1, ..., Ak are the unique solution of the system

K
)\,’ = )\? + Z)\jpj,'
Jj=0

Product form even with backfeeding!
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Jackson networks: sketch of proof

Derive balance equations:

K K K
" (Z gy 1["f>°1“"> = > YNl - &)
i=1 i=1 i=1
K
+ Z piopim (M + €)
i=1

K K
DD Uy Pinin(i+ & — &)

i=1 j=1

K n;
Then check that 7(n) = H (1 - %) (%) satisfies the balance
i=1 1 1

equations with \; = )\0 + Z o AjPji- O
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Jackson networks: example

Example

Switches transmitting frames with random errors.

server 1 server 2 server K

Traffic equations give \; = \; 1 for i > 2 and A\; = A\? + (1 — p)Ax.The
unique solution is clearly \; = )‘; for 1 <7 < K. Apply Jackson's theorem:

)\0 K )\0 ni—+...+nkg K
m(n)={(1—-— — Vii={(ny,...,ng) € N".
(7) ( PM) (PH) (m )
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Jackson networks: example (Continued)

Example
Switches transmitting frames with random errors.

server 1 server 2 server K

Using M/M/1 results for each queue we get the mean number of frames
>\0

at each queue E [Xj] = S0

The expected transmission time of a frame is therefore (Little)

BT = SEXI= 4> B = —
i=1
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Networks of M/M/c queues

Theorem

Consider an open network of K M/M/c; queues. Let p;(n) = p; min(n, ¢;)
and p; = )\;
Then if p; < ¢; forall 1 < i < K then

K n
A
7"'(ﬁ):l_ICi <H—'> Vﬁ:(nl,...,nK)eJNK
i=1

g:1 pi(m)

where (A1, ..., Ak) is the unique positive solution of the traffic equations

K ci—1 p oS =1
A=+ Npji, and where C; = S
o J;O o o\ G- i)
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Closed Queueing Networks

Definition
A closed system is a system in which the number of clients is a constant
variable. )

Example

@

The traffic equations are linearly dependent!

K
A=Y Npi, 1<i<K
j=0
Therefore the previous Jackson theorem cannot be applied and does not

yield the correct result.
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Jackson theorem for closed networks

Consider a closed queueing system with K queues and N clients.

Define by S(/V, K) the set of vectors = (ny,...nx) € N¥ such that
n1+...+nK:N.

Theorem (Closed Jackson networks)

Let (A1,...,Ak) be an arbitrary non-zero solution of the traffic equation
X =Ko Nipji, 1 < i < K. Then for all i € S(N, K),

K

=l () cwo= 5 M)’

Hi AES(N,K) i=1

Not a product-form!
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Performance indexes

A typical performance metric is the expected queue length IE [X;] at node i.

Expected queue length
N

3 A\ < C(N =k, K)
Bl=3 (%) “Cr

1 \Hi

Sketch of Proof:
For a N—valued r.v we have: E[X{] =} ,-; P(Xi > k)

P(X; > k) = oo owm= )]

AES(N,K),ni>k AES(N,K),ni>k
AN CIN =k, K) O
a Hi C(Nv K)
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Performance indexes

One may also be interested in the utilization at node /, i.e. the probability
that node 7 is non-empty.

Utilization
. AN CIN-K,K)
AT (I

Proof

Note that P(X; = k) = P(X; > k) — P(X; > k — 1) and apply (1) with
k = 0.
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Open networks

Intro Refresher

Convolution algorithm

Computing the normalization factor C(N, K) is a heavy task!

- S IE) -x x )

A€S(n,k) i=1 m=0 7 S(n k) i=1
ng=m

- S E HG)

Hk AeS(n—m,k—1) i=1
Convolution algorithm (Buzen,1973)
n
c(n1) = (2
1

= >\k m, an
C(n’k)_z(uk) Clk=m,k=1) and { C(0,k) =

m=0
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Multiclass networks

Multiclass Networks

Definition

PGty ip(i,l)—>(/‘2)

N R e ,
ST AT O
—_— PG.1)—(1.2)
E, POy ,:
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Multiclass Networks

Definition

K < 0o nodes and R < oo classes

Customer at node 7 in class r will go to node j with class s with
probability p; r).(j.s)
(i,r) and (j, s) belong to the same subchain if p(; y.j,s) > 0

e FIFO discipline and exponential service times

Definition

A subchain is open iff there exist one pair (i, r) for which )‘?i "> 0.

Definition
A mixed system contains at least one open subchain and one closed
subchain.
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Multiclass Networks

Definition

The state of a multiclass network may be characterized by the number of
customers of each class at each node

Q(t) = (Qu(t), Qa(t),- .., Gk (t)) with Qi(t) = (Q(t)); - ., Qir(t))

Problem
Q(t) is not a CMTC! J

To see why, consider the FIFO discipline: how do you know the class of
the next customer?
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Multiclass Networks

Definition

Define X;(t) = (I1(t),- ... ligt)(t)) with ;(t) the class of the jth
customer at node |.

Proposition
X(t)is a CMTC! J

Solving the balance equations for X gives a product-form solution. The
steady-state distribution of X(t) also gives the distribution of Q(t) by
aggregation of states.
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@ Other product-form networks
@ Other service disciplines
@ BCMP networks
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Other queueing networks

Limitations of Jackson networks

Jackson networks imply
e FIFO discipline
@ probabilistic routing

These assumptions can be relaxed using BCMP and Kelly networks.
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BCMP networks

[Baskett, Chandy, Muntz and Palacios 1975]

Definition
BCMP networks are multiclass networks with exponential service times
and ¢; servers at node .

Service disciplines may be:
e FCFS
@ Processor Sharing
@ Infinite Server
e LCFS

BCMP networks also have product-form solution!
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BCMP networks

Definitions

Consider an open/closed/mixed BCMP network with K nodes and R
classes in which each node is either FIFO,PS,LIFO or IS. Define

® pir = Aic for LIFO, IS and PS nodes

Hir
° pi = % for FIFO nodes
o Ny =20 + Z AjsP(i,r):(j,s) for any (i, r) of each open subchain Ej
(J.’S)GEk
o\, = Z AjsP(i,r):(j,s) for any (i, r) of each closed subchain Ep,
(:s)EEm
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BCMP networks

Main result

Theorem

The steady-state distribution is given by: for all i in state space S,

1 K
m(n) = < H fi(n;)  with G = ZH ()
=il

nesS i=1

with i = (ny,...,nk) € S and n; = (nj1,...,nir), if and only if (stability
condition for open subchains) Z pir <1, V1<i<K.
r:(i,r)€ any open E

Moreover, f;(;) has an explicit expression for each service discipline.
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BCMP networks

Main result

[ni] nj

FIFO () = |ni|! H@ oL H Birc with () = min(ci j).

PS or LIFO £(#; yn,|IH”'f
R nir
s fi(m) = [] 25,
=1 nir!
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Extensions

the BCMP product form result may be extended to the following cases:
@ state-dependent routing probabilities

@ arrivals depending on the number of customers in the corresponding
subchain
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