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Introduction to Queuing Networks

Single queues have simple results

They are quite robust to slight model variations

We may have multiple contention resources to model:
I servers
I communication links
I databases

with various routing structures.

Queuing networks are direct results for interaction of classical single
queues with probabilistic or static routing.
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Refresher: M/M/1
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M/M/1 queue

Infinite capacity

Poisson(λ) arrivals

Exp(µ) service times

FIFO discipline

Definition

ρ = λ
µ is the traffic intensity of the queueing system.

. . .0 1 . ..i−1 i i+1

µ

λ

µ µ µ µ µ

λ λλ λλ

Number of clients X (t) in the system follows a birth and death process.
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Results for M/M/1 queue

1 Stable if and only if ρ < 1

2 Clients follow a geometric distribution ∀i ∈ N, πi = (1− ρ)ρi

3 Mean number of clients E [X ] = ρ
(1−ρ)

4 Average response time E [T ] = 1
µ−λ
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M/M/1/K
In reality, buffers are finite: M/M/1/K is a queueing system with blocking.
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Results for M/M/1/K queue

Geometric distribution with finite state space

π(i) =
(1− ρ)ρi

1− ρK+1
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M/M/c
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Results for M/M/c queue

Stability condition λ < cµ.

π(i) =

{
Cρ,c

ρi

i! if i ≤ c

Cρ,c
1
c!

(ρ
c

)i
if i > c

where ρ = λ
µ and with

Cρ,c =
1∑c−1

i=0
ρi

i! + ρc

c!
1

1−ρ/c
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Burke’s theorem

Theorem

The output process of an M/M/s queue is a Poisson process that is
independent of the number of customers in the queue.

Sketch of Proof.

i i+1

λ

µ

X (t) increases by 1 at rate λπi (Poisson process λ). Reverse process
increases by 1 at rate µπi+1= λπi by reversibility.
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Tandem queues

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

µ2µ1
λ

Let X1 and X2 denote the number of clients in queues 1 and 2 respectively.

Lemma

X1 and X2 are independent rv’s.

Proof

Arrival process at queue 1 is Poisson(λ) so future arrivals are independent
of X1(t).
By time reversibility X1(t) is independent of past departures.
Since these departures are the arrival process of queue 2, X1(t) and X2(t)
are independent.
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Tandem queues

Theorem

The number of clients at server 1 and 2 are independent and

P(n1, n2) =

(
λ

µ1

)n1 (
1− λ

µ1

)(
λ

µ2

)n2 (
1− λ

µ2

)

Proof

By independence of X1 and X2 the joint probability is the product of
M/M/1 distributions.

This result is called a product-form result for the tandem queue.
This product form also appears in more general networks of queues.
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Acyclic networks

Example of a feed-forward network:
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pjl

pk0

pl0

µl

µkµi

µj

pj0

pi0

p jk

λ0
i

λ0
j

λ0
k

λ0
l

p
il

pik

Exponential service times

output of i is routed to j with
probability pij

external traffic arrives at i with rate λ0i
packets exiting queue i leave the system
with probability pi0.

Routing matrix:

R =


0 pij pik pil
pji 0 pjk pjl
pki pkj 0 pjl
pli plj plk 0


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Decomposition of a Poisson Process

Problem

N(t) Poisson process with rate λ

Z (n) sequence of iid rv’s ∼ Bernoulli(p) independent of N.

Suppose the nth trial is performed at the nth arrival of the Poisson process.

Result

Resulting process M(t)
of successes is
Poisson(λp).

Process of failures L(t)
is Poisson

(
λ(1− p)

)
and

is independent of M(t).

Bernoulli
p

1−p

Poisson(λ)
Poisson(λp)

Poisson(λ(1− p))
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Acyclic networks

Total arrival rate at node i : λi
(1 ≤ i ≤ K ).
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No feedback: using Burke theorem, all internal flows are Poisson!
Thus we can consider K independent M/M/1 queues with Poisson arrivals
with rate λi , where

λi = λ0i +
K∑
j=0

λjpji i.e. ~Λ = ~Λ0 + ~ΛR in matrix notation.

Stability condition

All queues must be stable independently: λi < µi , ∀i = 1, 2, . . . ,K .
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Backfeeding

Example

Switch transmitting frames with random errors. A NACK is sent
instantaneously if the frame is incorrect.

Frame success probability is p.

Arrivals ∼ Poisson(λ0)

Frame transmission times ∼ Exp (µ)
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Backfeeding
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Remark

Arrivals are not Poisson anymore!

Result

The departure process is still Poisson with rate λp.

Proof in [Walrand, An Introduction to Queueing Networks, 1988].
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Backfeeding: steady-state
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1−p

µλ0

Balance equations:

π(0)λ0 = µpπ(1)

π(n)(λ0 + pµ) = λ0π(n − 1) + µpπ(n + 1), n > 0

Actual arrival rate λ = λ0 + (1− p)λ, so λ0 = λp which gives

π(0)λ = µπ(1)

π(n)(λ+ µ) = λπ(n − 1) + µπ(n + 1), n > 0 M/M/1!

The unique solution is:

π(n) =

(
1− λ

µ

)(
λ

µ

)n

=

(
1− λ0

pµ

)(
λ0

pµ

)n
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Jackson networks: example
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i

λ0
j

λ0
k

pi0
pii

pik
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Backfeeding allowed.

System state (CTMC): X (t) = (n1(t), n2(t), . . . , nK (t)) where K is the
number of queues and ni (t) the number of clients at queue i .
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Jackson networks

Theorem (Jackson, 1957)

If λi < µi (stability condition), ∀i = 1, 2, . . .K then

π(~n) =
K∏
i=1

(
1− λi

µi

)(
λi
µi

)ni

∀~n = (n1, . . . , nK ) ∈ NK .

where λ1, . . . , λK are the unique solution of the system

λi = λ0i +
K∑
j=0

λjpji

Product form even with backfeeding!
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Jackson networks: sketch of proof

Derive balance equations:

π(~n)

(
K∑
i=1

λ0i +
K∑
i=1

1[ni>0]µi

)
=

K∑
i=1

1[ni>0]λ
0
i π(~n − ~ei )

+
K∑
i=1

pi0µiπ(~n + ~ei )

+
K∑
i=1

K∑
j=1

1[nj>0]pijµiπ(~n + ~ei − ~ej)

Then check that π(~n) =
K∏
i=1

(
1− λi

µi

)(
λi
µi

)ni

satisfies the balance

equations with λi = λ0i +
∑K

j=0 λjpji .
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Jackson networks: example

Example

Switches transmitting frames with random errors.
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1−p

server 1 server 2 server K

pµ µλ0
µ

Traffic equations give λi = λi−1 for i ≥ 2 and λ1 = λ0 + (1− p)λK .The

unique solution is clearly λi = λ0

p for 1 ≤ i ≤ K . Apply Jackson’s theorem:

π(~n) =

(
1− λ0

pµ

)K (
λ0

pµ

)n1+...+nK

∀~n = (n1, . . . , nK ) ∈ NK .
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Jackson networks: example (Continued)

Example

Switches transmitting frames with random errors.
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1−p

server 1 server 2 server K

pµ µλ0
µ

Using M/M/1 results for each queue we get the mean number of frames

at each queue E [Xi ] = λ0

pµ−λ0
The expected transmission time of a frame is therefore (Little)

E [T ] =
1

λ0
E [X ] =

1

λ0

K∑
i=1

E [Xi ] =
K

pµ− λ0
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Networks of M/M/c queues

Theorem

Consider an open network of K M/M/ci queues. Let µi (n) = µi min(n, ci )
and ρi = µi

λi
.

Then if ρi < ci for all 1 ≤ i ≤ K then

π(~n) =
K∏
i=1

Ci

(
λnii∏ni

m=1 µi (m)

)
∀~n = (n1, . . . , nK ) ∈ NK

where (λ1, . . . , λK ) is the unique positive solution of the traffic equations

λi = λ0i +
K∑
j=0

λjpji , and where Ci =

(
ci−1∑
m=1

ρi
i !

+
ρcii

ci !(1− ρi/ci )

)−1
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Closed Queueing Networks

Definition

A closed system is a system in which the number of clients is a constant
variable.

Example
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The traffic equations are linearly dependent!

λi =
K∑
j=0

λjpji , 1 ≤ i ≤ K

Therefore the previous Jackson theorem cannot be applied and does not
yield the correct result.
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Jackson theorem for closed networks

Consider a closed queueing system with K queues and N clients.
Define by S(N,K ) the set of vectors ~n = (n1, . . . nk) ∈ NK such that
n1 + . . .+ nK = N.

Theorem (Closed Jackson networks)

Let (λ1, . . . , λK ) be an arbitrary non-zero solution of the traffic equation
λi =

∑K
j=0 λjpji , 1 ≤ i ≤ K. Then for all ~n ∈ S(N,K ),

π(~n) =
1

C (N,K )

K∏
i=1

(
λi
µi

)ni

, C (N,K ) =
∑

~n∈S(N,K)

K∏
i=1

(
λi
µi

)ni

Not a product-form!
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Performance indexes

A typical performance metric is the expected queue length E [Xi ] at node i .

Expected queue length

E [Xi ] =
N∑

k=1

(
λi
µi

)k C (N − k,K )

C (N,K )

Sketch of Proof:
For a N−valued r.v we have: E [Xi ] =

∑
k≥1 P(Xi ≥ k)

P(Xi ≥ k) =
∑

~n∈S(N,K),ni≥k

π(~n) =
∑

~n∈S(N,K),ni≥k

. . .

=

(
λi
µi

)k C (N − k,K )

C (N,K )
(1)
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Performance indexes

One may also be interested in the utilization at node i , i.e. the probability
that node i is non-empty.

Utilization

Ui = 1− P(Xi = 0) =
λi
µi

C (N − K ,K )

C (N,K )

Proof

Note that P(Xi = k) = P(Xi ≥ k)− P(Xi ≥ k − 1) and apply (1) with
k = 0.
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Convolution algorithm

Computing the normalization factor C (N,K ) is a heavy task!

C (n, k) =
∑

~n∈S(n,k)

k∏
i=1

(
λi
µi

)ni

=
n∑

m=0

∑
~n ∈ S(n, k)
nk = m

k∏
i=1

(
λi
µi

)ni

=
n∑

m=0

(
λk
µk

)m ∑
~n∈S(n−m,k−1)

k−1∏
i=1

(
λi
µi

)ni

Convolution algorithm (Buzen,1973)

C (n, k) =
n∑

m=0

(
λk
µk

)m

C (k−m, k−1) and

{
C (n, 1) =

(
λ1
µ1

)n
C (0, k) = 1, ∀1 ≤ i ≤ K
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Multiclass Networks
Definition
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µl

µkµi

µj

λ0
i ,1 p(i ,1)→0

p(k ,1)→0

λ0
j ,1

p(i ,1)→(k ,1)

p(l ,2)→0
p(j ,2)→(l ,2)

p(l ,2)→(j ,2)

p(j ,1)→(l ,2)

p(i ,1)→(l ,2)p(j ,2)→(i ,1)
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Multiclass Networks
Definition

K <∞ nodes and R <∞ classes

Customer at node i in class r will go to node j with class s with
probability p(i ,r);(j ,s)

(i , r) and (j , s) belong to the same subchain if p(i ,r);(j ,s) > 0

FIFO discipline and exponential service times

Definition

A subchain is open iff there exist one pair (i , r) for which λ0(i ,r) > 0.

Definition

A mixed system contains at least one open subchain and one closed
subchain.
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Multiclass Networks
Definition

The state of a multiclass network may be characterized by the number of
customers of each class at each node

~Q(t) = ( ~Q1(t), ~Q2(t), . . . , ~QK (t)) with ~Qi (t) = (Qi1(t)), . . . ,QiR(t))

Problem

~Q(t) is not a CMTC!

To see why, consider the FIFO discipline: how do you know the class of
the next customer?
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Multiclass Networks
Definition

Define ~Xi (t) = (Ii1(t), . . . , IiQi (t)(t)) with Iij(t) the class of the jth
customer at node i .

Proposition

~X (t) is a CMTC!

Solving the balance equations for X gives a product-form solution. The
steady-state distribution of ~X (t) also gives the distribution of ~Q(t) by
aggregation of states.
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Other queueing networks
Limitations of Jackson networks

Jackson networks imply

FIFO discipline

probabilistic routing

These assumptions can be relaxed using BCMP and Kelly networks.
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BCMP networks
[Baskett, Chandy, Muntz and Palacios 1975]

Definition

BCMP networks are multiclass networks with exponential service times
and ci servers at node i .

Service disciplines may be:

FCFS

Processor Sharing

Infinite Server

LCFS

BCMP networks also have product-form solution!
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BCMP networks
Definitions

Consider an open/closed/mixed BCMP network with K nodes and R
classes in which each node is either FIFO,PS,LIFO or IS. Define

ρir = λir
µir

for LIFO, IS and PS nodes

ρir = λir
µi

for FIFO nodes

λir = λ0ir +
∑

(j ,s)∈Ek

λjsp(i ,r);(j ,s) for any (i , r) of each open subchain Ek

λir =
∑

(j ,s)∈Em

λjsp(i ,r);(j ,s) for any (i , r) of each closed subchain Em
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BCMP networks
Main result

Theorem

The steady-state distribution is given by: for all ~n in state space S,

π(~n) =
1

G

K∏
i=1

fi (~ni ) with G =
∑
~n∈S

K∏
i=1

fi (~ni )

with ~n = (~n1, . . . , ~nK ) ∈ S and ~ni = (ni1, . . . , niR), if and only if (stability

condition for open subchains)
∑

r :(i ,r)∈ any open Ek

ρir < 1, ∀1 ≤ i ≤ K.

Moreover, fi (~ni ) has an explicit expression for each service discipline.
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BCMP networks
Main result

FIFO fi (~ni ) = |ni |!
|ni |∏
j=1

1

αi (j)

R∏
r=1

ρnirir

nir !
with αj(j) = min(ci , j).

PS or LIFO fi (~ni ) = |ni |!
R∏

r=1

ρnirir

nir !

IS fi (~ni ) =
R∏

r=1

ρnirir

nir !
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Extensions

the BCMP product form result may be extended to the following cases:

state-dependent routing probabilities

arrivals depending on the number of customers in the corresponding
subchain
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