
Message Passing

 Bruno Raffin
-

M2R Parallel Systems

UGA



1

History 

Message Passing Programming first became popular through PVM (Parallel 
virtual machine), a library initially developed in 1989 by Oak Ridge 
National Laboratory (USA). 
 
PVM emerged with PC clusters. PVM was easy to understand,  portable 
(TCP/IP in particular)  and enabled to run parallel programs on the 
machines of any lab as long as interconnected through an Ethernet network 
(no need for an expensive parallel machine).  
 
The Message Passing Interface (MPI) is a standard API, an initiative started 
in 1992. Since,  we when through 3 major releases: 

 MPI-1.0 (1994) MPI-2.0 (1997) MPI-3.0 (2012) 
MPI standardizes the API, not the implementation. Many different 
implementation exist, open source ones (MPICH, OpenMPI, MPC) as well 
as  closed source ones (from Cray, IBM, Intel) 
 



1

MPI Success 
 

More than 90% of parallel applications are developed with MPI 
 
MPI is a standard API,  implementations are libraries (no specific compiler 
required) 
 
MPI concepts are easy to understand 
 
MPI contains many functions, but classical applications usually only need a 
few of them only.  
 
MPI programs  are portable across a very large range of machines (from 
DIY clusters of commodity components up to the #1 top500 
supercomputer).  
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MPI 
(Message Passing Interface) 

Standard: http://www.mpi-forum.org 
 
Open Source Implementations:  

•  OpenMPI (https://www.open-mpi.org/): probably the most popular 
•  MPC (http://mpc.hpcframework.paratools.com/) 

 
Discrepancies between the standard and the implementations: 

•  A given implementation may not implement the full standard 
•  Some features may be implemented but not necessarily efficiently 
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The MPI Model 

The MPI (simple) Machine Model:  
•  Distributed memory 
•  Single processor/core nodes 
•  Uniform nodes all fully 

available at 100% 
•  Fully interconnected network. 

MPI Program: MIMD in SPMD 
(single program multiple data) mode  
 
We will see that this model is over-
simplified and that the programmer 
actually needs to better take into 
consideration the architecture of the 
target machine to get performance. 

CPU

Mem

CPU

CPUCPU

Mem

Mem Mem

Network

 Distributed  memory machine
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 MPI Hello Word

#include "mpi.h" 
#include <stdio.h> 
 
int main( int argc, char *argv[] ) 
{ 
    MPI_Init( &argc, &argv ); 
    printf( "Hello, world!\n" ); 
    MPI_Finalize(); 
    return 0; 
}



1

Compile + Exec 

To compile MPI : mpicc  prog.c
 
To execute locally with 2 processes:    

mpirun -np 2  -machinefile fichier_machine  a.out

 
To execute 4 processes on  distant machines:   

mpirun –machinefile hostfile  a.out

 
Remarks:  

•  mpirun/mpicc are not part of the standard (options may change 
between implementations) 
(standardized in MPI-2, mpiexec and not mpirun, but not  always adopted) 

•  Parallel machine use a batch scheduler. Some provide an integrated 
mpi launcher (by the way what is a batch scheduler ?)  
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Process  Identification 

MPI rank its processes from 0 to N-1.   

Rank = 0 

Size = 4 

Rank = 1 

Size = 4 

Rank = 2 

Size = 4 

Rank = 3 

Size = 4 

Process 0 

Process 3 Process 2 

Process 1 

Remark: all variables are always local to each process (distributed address space) 
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 MPI Hello Word 2

#include "mpi.h" 
#include <stdio.h> 
 
int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
}

Question: how to order outputs using MPI_Barrier (global sync) ? 
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Point-to-Point Message Exchange  

•  Send: explicitly send a  message (buffer of data) to a given process 
•  Receive: explicitly receive a message from a given process 

 

if (myrank == 2){ 
 X = 1; 
 Send X to 1;  
} 
if myrank == 1){ 
 Receive X from 2 into Y; 
} 

Blocking instructions: 
•  Send call ends when it as 

the guarantee the message  
will be properly delivered. 

•  Receive call ends when 
message received.  
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MPI_Send(&mess_env,3,MPI_INT,2,tag,MPI_COMM_WORLD)  

MPI_Recv(&mess_rec,3,MPI_INT,1,tag,MPI_COMM_WORLD,&stat) 

Message to receive: 3 integers to be 
stored at address &mess_rec  

sender Rank 

Destination rank 

Communicator 
(MPI defined) 

Info about the 
received message 

Message to send: 3 integers 
starting at address &mess_env  Message tag 

(user defined) 

MPI_Send MPI_Recv 
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Tags and Communicators 

Tag :  An integer to define a message class (a matching send/receive require 
matching tags)  
   How to make sure than the tag I use is not used in a library (that I also use) – could lead to 
unexpected communication match  ?   
 
Communicator :  a set of processes. When starting an MPI application always 
include all processes in a default communicator called 
MPI_COMM_WORLD.  From this communicator new ones can be created.  

•  A communicator can be seen as a system  defined tag (MPI ensures each 
communicator is unique) 

•  Collective communications rely on communicators (ex: broadcast) 
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Datatypes

MPI comes with several base data types, as well as the possibility to build 
descriptions of complex data structures. 
•  Relying on MPI types rather than  the host language ones, enables MPI 

to properly handle communications between processes on machines with 
very different memory representations and lengths of elementary 
datatypes.

•  Specifying application-oriented layout of data in memory open the way 
to implementation optimization 

•  Serialization/deserialization only when and where “necessary” (less memory 
copies) 

•  Use of special hardware (scatter/gather) when available

Again, MPI is only a standard API,  actual implementations may show different degree of efficiency 
 when dealing with  complex data structures (sometimes more efficient to serialize/deserialize by hand) 
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 MPI Hello Word 3
… 
if (rank == 0 ) { 
 
    MPI_Send(&buf, 1, MPI_INT,1,0,MPI_COMM_WORLD); 

     printf(”%d sent message to%d\n”,rank,1);  
 
else if (rank == 1) { 
 
      MPI_Recv(&buf, 1, MPI_INT,0,0,MPI_COMM_WORLD, 
              MPI_STATUS_IGNORE); 

      printf(”%d received message from %d\n”,rank,0);  
  } 
… 
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MPI_Send(&m1,3,MPI_INT,2,tag_0,MPI_COMM_WORLD); 
MPI_Send(&m2,3,MPI_INT,2,tag_1,MPI_COMM_WORLD); 
MPI_Send(&m3,3,MPI_INT,2,tag_1,MPI_COMM_WORLD); 
MPI_Send(&m4,1,MPI_CHAR,2,tag_0,MPI_COMM_WORLD);  

MPI_Recv(&mess_recu,3,MPI_INT,1,tag_1,MPI_COMM_WORLD,&stat) 

Process 1 :

Process 2 look for the oldest message with the signature 
3*MPI_INT,tag_1,MPI_COMM_WORLD 

3*MPI_INT,tag_0,MPI_COMM_WORLD 

3*MPI_INT,tag_1,MPI_COMM_WORLD 

3*MPI_INT,tag_1,MPI_COMM_WORLD 

1*MPI_CHAR,tag_0,MPI_COMM_WORLD Signature of 
messages sent to 
process2

Process 2 :

Communication Matching 

Does this program deadlock ? 
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Signature + Data 

MPI_Send can finish 
once the message is 
safely stored

Buffer Management 
(implementation dependent)

Message to send

Space to store the received message

MPI_Recv block as long as 
expected data are not stored 
in the reception space

Buffer

Where is this buffer actually located ? 
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Signature + address 
of the message 

MPI_Send blocks as 
long as the message is 
not stored at its 
destination

Message to send

Space to store the received message

Buffer

Buffer Management 
(implementation dependent)

MPI_Recv block as long as 
expected data are not stored 
in the reception space

When does this implementation make 
more sense than the previous one ? 
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Strategy 1 is usually used for small messages  
+  Send unlocks sooner 
-     Need a message copy 

Strategy 2 is usually used for large messages  
+  No message copy 
-  Send locks more time. 

For some implementations the tilting point between the two strategies can be 
adjusted.  
 
In the 90’s CRAY, shipped his machines with MPI configured to use the strategy 1 
for all message sizes. Why ?  
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 MPI Hello Word 4
… 
if (rank == 0 ) { 
 
    MPI_Send(&buf, 10000, MPI_INT,1,0,MPI_COMM_WORLD); 

     MPI_Recv(&buf2, 10000, MPI_INT,1,0,MPI_COMM_WORLD, 
              MPI_STATUS_IGNORE); 

 
else if (rank == 1) { 
 
    MPI_Send(&buf, 10000, MPI_INT,0,0,MPI_COMM_WORLD); 

      MPI_Recv(&buf2, 10000, MPI_INT,0,0,MPI_COMM_WORLD, 
              MPI_STATUS_IGNORE); 

} 
… 

What do you think about this program ?  
How would you improve it ?  
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Asynchronous Send/Receive
… 
    MPI_Send(&buf, 10000, MPI_INT,(rank+1)%size, 
         0,MPI_COMM_WORLD); 

     MPI_Recv(&buf2, 10000, MPI_INT, (rank+size-1)%size, 
                       0,MPI_COMM_WORLD, MPI_STATUS_IGNORE); 
… 

And this one ?  
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Asynchronous Send/Receive
… 
    MPI_ISend(&buf, 10000, MPI_INT,(rank+1)%size, 
         0,MPI_COMM_WORLD,&request); 

     MPI_Recv(&buf2, 10000, MPI_INT, (rank+size-1)%size, 
                       0,MPI_COMM_WORLD, MPI_STATUS_IGNORE); 
… 

MPI comes with non blocking send and receive instructions:  
 
•  MPI_ISEND and MPI_IRECV 

and blocking or not instructions for querying a reception status.  
 
•  MPI_PROBE, MPI_WAIT,  MPI_WAITANY, MPI_TESTANY, MPI_TESTALL, MPI_WAITALL 
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Asynchronous Send/Receive
… 
   MPI_Status status; 
   MPI_Request request,request2; 
   MPI_IRecv(&buf, 10000, MPI_INT, (rank+size-1)%size, 

                       0,MPI_COMM_WORLD, &request); 
    MPI_ISend(&buf2, 10000, MPI_INT,(rank+1)%size, 
         0,MPI_COMM_WORLD,&request2); 
   MPI_WAIT(&request,&status); 
   MPI_WAIT(&request2,&status); 

… 

Why did I put the reception before the send (immediate does not 
necessarily mean asynchronous)  ? 
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Communication/Computation Overlapping

… 
   MPI_Status status; 
   MPI_Request request,request2; 
   MPI_IRecv(&buf, 10000, MPI_INT, (rank+size-1)%size, 

                       0,MPI_COMM_WORLD, &request); 
    MPI_ISend(&buf2, 10000, MPI_INT,(rank+1)%size, 
         0,MPI_COMM_WORLD,&request2); 
    // Do some useful computations here …. 
   something_useful(); 
   MPI_WAIT(&request,&status); 
   MPI_WAIT(&request2,&status); 

… 
What is the max performance increase I could reach using this kind 
of idea ?    

Try to play with these small programs on your laptop and/or 
simgrid: 
-  Put a loop around to repeat the pattern several times 
-  Use MPI_WTIME  to time it (how do you measure the exec 

time of a parallel program ?) 
-  Play with the message size, …. 
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(Non-)Determinism

•  What is non-determinism ?  

•  Are MPI programs deterministic ?  
•  On reception, instead of specifying a given message 

source, MPI provide the wildcard MPI_ANY_SOURCE 
•  Clock or random numbers usage ?  
•  Other ?  
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Cost Model for Point-to-point Com. �
The “Hockney” Model

Hockney [Hoc94] proposed the following model for performance eval-  uation 
of the Paragon.  A message of size m from Pi  to Pj   requires:

ti,j (m) = Li, j  + m/Bi, j 

The homogeneous version is often used for  comparing the cost of 
communication patterns:

   t (m) = L+ m/B 

 
 

Ti
m

e

Size

How would you measure L and B with MPI ?  
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Parallel  
Algorithm
s 

Bandwidth as a Function of Message  Size
With the Hockney model: L+m/B 
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Parallel  
Algorithm
s 

Bandwidth as a Function of Message  Size
With the Hockney model: L+m/B 
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More measures …
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LogP
The LogP model [CKP+96] is defined by 4  parameters:

•  L is the network latency (time to communicate a packet of size w)
•  o  is the middleware overhead  (message splitting and packing,  
          buffer  management, connection, . . . )  for a packet of size w
•  g  is the gap (the minimum) between two packets of size  w 
•  P is the number of processors 
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LogP

The LogP model [CKP+96] is defined by 4  parameters: 
•  L is the network latency (time to communicate a packet of size w) 
•  o  is the middleware overhead (message splitting and packing, buffer 

management, connection, . . . )  for a packet of size w 
•  g  is the gap (the minimum) between two packets of size  w 
•  P is the number of processors 

o 

L 

o 

g 

L 

g 
o 

Sending a one packet message:  2o+L 
Sending a size m message:     2o+L+ (ceiling(m/w) – 1). max (o,g) 
Occupation of sender or receiver: o+ L +(ceiling(m/w) – 1). max (o,g) 
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Parallel  
Algorithm
s 

LogGP & pLogP

The previous model works fine for short messages. However, many par-  allel 
machines have special support for long messages, hence a higher  bandwidth.  
LogGP [AISS97] is an extension of LogP: 

short messages  2o + L + m  
w · max(o, g ) 

long messages  2o + L + (m —  1)G  

There is no fundamental difference. . . 

OK, it works for small and large messages. Does it work for average-  size 
messages ? pLogP [KBV00] is an extension of LogP when L, o  and g  
depends on the message  size m.  They distinguish os and or.  

This is more  and more  precise but  still don’t account for concurrency 
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Some Network Topologies

Fat-tree (Infiniband) 

3D Torus (CRAY T3E)  

P2P 

Hypercube 
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MPI for Scalable Computing

Bill	Gropp,	University	of	Illinoisat	Urbana-Champaign		

Rusty	Lusk,	Argonne	Na@onal	Laboratory	

Rajeev	Thakur,	Argonne	Na@onal	Laboratory	

Slides from the Argonne Training Program On Extreme Scale Computing 2016:  
https://extremecomputingtraining.anl.gov/agenda-2016/ 

Topology Mapping
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Collective Communications

A collective communication:  specific communication instructions for some common 
communication patterns.  

•  Write simpler code (single MPI_Bcast call rather than multiple  MPI-Send/MPI_Recv) 
•  MPI implementations can provide efficient arrangement of these communication patterns.  

MPI collectives are:  
 

MPI_Bcast() – Broadcast (one to all) 
MPI_Reduce() – Reduction (all to one) 
MPI_Allreduce() – Reduction (all to all) 
MPI_Scatter() – Distribute data (one to all) 
MPI_Gather() – Collect data (all to one) 
MPI_Alltoall() – Distribute data (all to all) 
MPI_Allgather() – Collect data (all to all) 
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Collective Communication: Broadcast
Broadcast : source process send a message M to all other process of the 
communicator

P0 P1 P2 P3

M

MPI_Bcast(&mess,3,MPI_INT,0,MPI_COMM_WORLD) 

Message source 

Communicator: set of processes that 
receive the message (minus the 
source that already  has it).  
! All processes of the communicator 
must call this instruction (deadlock 
otherwise)! 
 

Buffer where to read or write the message 
to broadcast (depend on the rank) 

t(m) = (p-1)*(α+1/β*m)  for a naïve implementation and simple cost model m
t(m) = α+m/βTI

m
e
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Example (PI decimals) 1/2

#include "mpi.h" 
#include <math.h> 
int main(int argc, char *argv[]) 
{ 
int done = 0, n, myrank, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double myrank, pi, h, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
while (!done)  { 
  if (myid == 0) { 
    printf("Enter the number of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 
  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 
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Example (PI decimals) 2/2

    h   = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myrank + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is %.16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

  return 0; 
} 
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Communications

We basically covered MPI-1 functionalities so far, based on the message passing 
concept. 
 
Ethernet networks are  based on the TCP/IP protocol +  the socket API  

  
 By the way, what is the difference between the socket model and the MPI model ? 
  

Beside PC clusters, supercomputers tend to rely on dedicated high performance 
networks (Myrinet, Infiniband) relying on specific hardware and protocols.  Their goal 
is performance:  

•  Short distance cables ensure more reliable communications (no need to enforce 
safety like with TPC/IP) 

•  OS bypass  - memory pinning – interrupt versus pooling (improve latency) 
•  Zero copy protocols (improve bandwidth) 
•  Direct Memory Access (DMA): no need to “bother” the remote CPU. 
•  Support for some collective operations (barrier, broadcast)  
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MPI for Scalable Computing

Bill	Gropp,	University	of	Illinoisat	Urbana-Champaign		

Rusty	Lusk,	Argonne	Na@onal	Laboratory	

Rajeev	Thakur,	Argonne	Na@onal	Laboratory	

Slides from the Argonne Training Program On Extreme Scale Computing 2016:  
https://extremecomputingtraining.anl.gov/agenda-2016/ 

One-Sided Communication
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One-Sided Communication
§  The	basic	idea	of	one-sided	communica@on	models	is	to		

decouple	data	movement	with	process	synchroniza@on	
–  Should	be	able	to	move	data	without	requiring	that	the	remote		

process	synchronize	

–  Each	process	exposes	a	part	of	its	memory	to	other	processes	

–  Other	processes	can	directly	read	from	or	write	to	this	memory	

Process 1 Process 2 Process 3 Process 0 

 
Public  

Memory  
Region 

 

Private  
Memory  
Region 

 
Public  

Memory  
Region 

 

Private  
Memory  
Region 

 
Public  

Memory  
Region 

 

Private  
Memory  
Region 

 
Public  

Memory  
Region 

 

Private  
Memory  
Region 

Global		

Address		

Space	
Private  
Memory  
Region 

Private  
Memory  
Region 

Private  
Memory  
Region 

Private  
Memory  
Region 
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Comparing One-sided and Two-sided Programming 

Process	1	

D		

E		

L	
A		
Y	

Process	0	

SEND(data)	

Even	 the		
s e n d i n g		
process	 is		
delayed	

RECV(data)	
 
 
Process	1	Process	0	

PUT(data)	 D		

E		

L	
A		
Y	

Delay	in		
process	1		
does	not	
affect		

process	0	

GET(data)	

41	
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Advantages of RMA Operations
§  Can	do	mul@ple	data	transfers	with	a	single	synchroniza@on		

opera@on	
–  like	BSP	model	

§  Bypass	tag	matching	
–  effec@vely	precomputed	as	part	of	remote	offset	

§  Some	irregular	communica@on	paRerns	can	be	more		
economically	expressed	

§  Can	 be	 significantly	 faster	 than	 send/receive	 on	 systems	with		
hardware	 support	 for	 remote	memory	 access,	 such	 as	 shared		
memory	systems	
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Irregular Communication Patterns 
with RMA

§  If	communica@on	paRern	is	not	known	a	priori,	the	send-		
recv	model	requires	an	extra	step	to	determine	how	many		
sends-recvs	to	issue	

§  RMA,	however,	can	handle	it	easily	because	only	the	origin		
or	target	process	needs	to	issue	the	put	or	get	call	

§  This	makes	dynamic	communica@on	easier	to	code	in	RMA	
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What we need to know in MPI RMA
§  How	to	create	remote	accessible	memory?	

§  Reading,	Wri@ng	and	Upda@ng	remote	memory	

§  Data	Synchroniza@on	
§  Memory	Model	



1

Creating Public Memory
§  Any	memory	created	by	a	process	is,	by	default,	only	locally		

accessible	
–  X	=	malloc(100);	

§  Once	the	memory	is	created,	the	user	has	to	make	an	explicit		
MPI	call	to	declare	a	memory	region	as	remotely	accessible	
–  MPI	terminology	for	remotely	accessible	memory	is	a	“window”	

–  A	group	of	processes	collec@vely	create	a	“window”	

§  Once	 a	memory	 region	 is	 declared	 as	 remotely	 accessible,	 all		
processes	 in	 the	window	 can	 read/write	data	 to	 this	memory		
without	explicitly	synchronizing	with	the	target	process	
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Remote Memory Access Windows and Window  
Objects 

Get 

Put 

Process 2 

Process 1 

Process 3 

Process 0 

=		address	spaces	 =		window	object	

window	

64	46	
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Basic RMA Functions for Communication

§  MPI_Win_create exposes	local	memory	to	RMA	opera@on	by	other		
processes	in	a	communicator	
–  Collec@ve	opera@on	
–  Creates	window	object	

§  MPI_Win_free deallocates	window	object	

§  MPI_Put moves	data	from	local	memory	to	remote	memory	
§  MPI_Get	retrieves	data	from	remote	memory	into	local	memory	
§  MPI_Accumulate updates	remote	memory	using	local	values	
§  Data	movement	opera@ons	are	non-blocking	
§  Subsequent	synchronizaDon	on	window	object	needed	to	ensure		

operaDon	is	complete	
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Window creation models
§  Four	models	exist	

–  MPI_WIN_CREATE	
•  You	already	have	an	allocated	buffer	that	you	would	like	to	make		
remotely	accessible	

–  MPI_WIN_ALLOCATE	
•  You	want	to	create	a	buffer		and	directly	make	it	remotely	accessible	

–  MPI_WIN_CREATE_DYNAMIC	
•  You	don’t		have	a	buffer		yet,	but	will	have	one	in	the	 future	

–  MPI_WIN_ALLOCATE_SHARED	
•  You	want	mul@ple		processes	on	the	same	node	share	a		buffer	

•  We	will	not	cover	this	model		today	



1

MPI_WIN_CREATE

- pointer	to	local	data	to	expose	
- size	of	local	data	in	bytes	(nonnega@ve	integer)	

–  base	
–  size	
–  disp_unit	-	local	unit	size	for	displacements,	in	bytes	(posi@ve	integer)	

–	

–	

info		

comm	
-  info	argument	(handle)	

- communicator	(handle)	

int MPI_Win_create(void *base, MPI_Aint size,  
int disp_unit, MPI_Info info,  
MPI_Comm comm, MPI_Win *win) 

 
 
§  Expose	a	region	of	memory	in	an	RMA	window	

– 	Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.	

§  Arguments:	
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Example with MPI_WIN_CREATE
int main(int argc, char ** argv) 
{ 

int *a;  MPI_Win win; 
 

MPI_Init(&argc, &argv); 
 

/* create private memory */ 
a = (void *) malloc(1000 * sizeof(int)); 
/* use private memory like you normally would */  
a[0] = 1;  a[1] = 2; 

 
/* collectively declare memory as remotely accessible */  
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), MPI_INFO_NULL, 

MPI_COMM_WORLD, &win); 
 

/* Array ‘a’ is now accessibly by all processes in 
* MPI_COMM_WORLD */ 

MPI_Win_free(&win);  

MPI_Finalize(); return 0; 
} 
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MPI_WIN_ALLOCATE

–  size 	-	size	of	local	data	in	bytes	(nonnega@ve	integer)	

–  disp_unit	-	local	unit	size	for	displacements,	in	bytes	(posi@ve	integer)	

–	

–	

–	

info		

comm		

baseptr	

-  info	argument	(handle)	

- communicator	(handle)	

- pointer	to	exposed	local	data	

int MPI_Win_allocate(MPI_Aint size, int 
disp_unit,  MPI_Info info,MPI_Comm comm, 
void *baseptr, MPI_Win *win)
Allocate	a	remotely	accessible	memory	region	in	an	RMA	window	
– 	Oy	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.	

	

Arguments:	
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Example with MPI_WIN_ALLOCATE
int main(int argc, char ** argv) 
{ 

int *a;  MPI_Win win; 
 

MPI_Init(&argc, &argv); 

in the /* collectively create remotely accessible memory  
window */ 
MPI_Win_allocate(1000*sizeof(int), sizeof(int),  

MPI_INFO_NULL, 
MPI_COMM_WORLD, &a, &win); 

/* Array ‘a’ is now accessibly by all processes in 
* MPI_COMM_WORLD */ 

MPI_Win_free(&win);  

MPI_Finalize(); return 0; 
} 
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MPI_WIN_CREATE_DYNAMIC

§  Create	an	RMA	window,	to	which	data	can	later	be	aRached	
– 	Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops	

§  Applica@on	can	dynamically	aRach	memory	to	this	window	

§  Applica@on	can	access	data	on	this	window	only	aier	a		
memory	region	has	been	aRached	

int MPI_Win_create_dynamic(…, MPI_Comm comm, MPI_Win *win) 
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Example with 
MPI_WIN_CREATE_DYNAMIC

int main(int argc, char ** argv) 
{ 

int *a;  MPI_Win win; 
 

MPI_Init(&argc, &argv);  MPI_Win_create_dynamic(MPI_INFO_NULL, 
MPI_COMM_WORLD, &win); 

 
/* create private memory */ 
a = (void *) malloc(1000 * sizeof(int)); 
/* use private memory like you normally would */  
a[0] = 1;  a[1] = 2; 

 
/* locally declare memory as remotely accessible */  
MPI_Win_attach(win, a, 1000*sizeof(int)); 

 
/*Array ‘a’ is now accessibly by all processes in MPI_COMM_WORLD*/ 

 
/* undeclare public memory */  
MPI_Win_detach(win, a);  
MPI_Win_free(&win); 

 
MPI_Finalize(); return 0; 

} 
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Data movement
§  MPI	provides	ability	to	read,	write	and	atomically	modify	data		

in	remotely	accessible	memory	regions	
–  MPI_GET	

–  MPI_PUT	

–  MPI_ACCUMULATE	

–  MPI_GET_ACCUMULATE	

–  MPI_COMPARE_AND_SWAP	

–  MPI_FETCH_AND_OP	
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Data movement: Get 

MPI_Get(origin_addr, origin_count, origin_datatype,  
target_rank, target_disp, target_count, 

target_datatype, 
win) 

 
 
§  Move	data	to	origin,	from	target	

§  Separate	data	descrip@on	triples	for	origin	and	target	
Target	Process	

 

RMA	
Window	

 
 

Local		
Buffer	

Origin	Process	
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Data movement: Put 

MPI_Put(origin_addr, origin_count, origin_datatype,  
target_rank, target_disp, target_count, 

target_datatype, 
win) 

 
 

§  Move	data	from	origin,	to	target	

§  Same	arguments	as	MPI_Get	
Target	Process	

 

RMA	
Window	

 
 

Local		
Buffer	

Origin	Process	
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Data aggregation: Accumulate 

§  Like	MPI_Put,	but	applies	an	MPI_Op	instead	
– 	Predefined	ops	only,	no	user-defined!	

§  Result	ends	up	at	target	buffer	
§  Different	data	layouts	between	target/origin	OK,	basic	type		

elements	must	match	

§  Put-like	behavior	with	MPI_REPLACE	(implements	f(a,b)=b)	
– 	Per	element	atomic	PUT	 Target	Process	

RMA	
Window	+=	

Local		
Buffer	

Origin	Process	
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Data aggregation: Get Accumulate 

§  Like	MPI_Get,	but	applies	an	MPI_Op	instead	
– 	Predefined	ops	only,	no	user-defined!	

§  Result	at	target	buffer;	original	data	comes	to	the	source	

§  Different	data	layouts	between	target/origin	OK,	basic	type		
elements	must	match	

§  Get-like	behavior	with	MPI_NO_OP	
– 	Per	element	atomic	GET	 Target	Process	

RMA	
Window	+=	

Local		
Buffer	

Origin	Process	
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Ordering of Operations in MPI RMA
§  For	Put/Get	opera@ons,	ordering	does	not	maRer	

–  If	you	do	two	concurrent	PUTs	to	the	same	loca@on,	the	result	can	be		
garbage	

§  Two	accumulate	opera@ons	to	the	same	loca@on	are	valid	
–  If	you	want	“atomic	PUTs”,	you	can	do	accumulates	with		

MPI_REPLACE	

§  All	accumulate	opera@ons	are	ordered	by	default	
–  User	can	tell	the	MPI	implementa@on	that	(s)he	does	not	require		

ordering	as	op@miza@on	hints	

–  You	can	ask	for	“read-aier-write”	ordering,	“write-aier-write”		
ordering,	or	“read-aier-read”	ordering	
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Additional Atomic Operations
§  Compare-and-swap	

–  Compare	the	target	value	with	an	input	value;	if	they	are	the	same,		
replace	the	target	with	some	other	value	

–  Useful	for	linked	list	crea@ons	–	if	next	pointer	is	NULL,	do	something	

§  Fetch-and-Op	
–  Special	case	of	Get	accumulate	for	predefined	datatypes	–	(probably)		

faster	for	the	hardware	to	implement	
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RMA Synchronization Models
§  RMA	data	visibility	

–  When	is	a	process	allowed	to	read/write	from	remotely	accessible		
memory?	

–  How	do	I	know	when	data	wriRen	by	process	X	is	available	for	process	Y		
to	read?	

–  RMA	synchroniza@on	models	provide	these	capabili@es	

§  MPI	RMA	model	allows	data	to	be	accessed	only	within	an		
“epoch”	
–  Three	types	of	epochs	possible:	

•  Fence	(ac@ve	target)	
•  Post-start-complete-wait	(ac@ve	target)	
•  Lock/Unlock	(passive	target)	

§  Data	visibility	is	managed	using	RMA	synchroniza@on	primi@ves	
–  MPI_WIN_FLUSH,	MPI_WIN_FLUSH_ALL	
–  Epochs	also	perform	synchroniza@on	



1

Fence Synchronization
§  MPI_Win_fence(assert, win) 

§  Collec@ve	synchroniza@on	model	--	assume	it		
synchronizes	like	a	barrier	

§  Starts	and	ends	access	&	exposure	epochs		
(usually)	

§  Everyone	does	an	MPI_WIN_FENCE	to	open	an		
epoch	

§  Everyone	issues	PUT/GET	opera@ons	to		
read/write	data	

§  Everyone	does	an	MPI_WIN_FENCE	to	close		
the	epoch	

Fence	Fence	

Get	

Target	 Origin	

Fence	Fence	
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PSCW (Post-Start-Complete-Wait) Synchronization 

§  Target:	Exposure	epoch	
–  Opened	with	MPI_Win_post	

–  Closed	by	MPI_Win_wait	

§  Origin:	Access	epoch	
–  Opened	by	MPI_Win_start	

–  Closed	by	MPI_Win_compete	

§  All	may	block,	to	enforce	P-S/C-W	
ordering	
– 	Processes	can	be	both	origins	and		

targets	

§  Like	FENCE,	but	the	target	may	allow		
a	smaller	group	of	processes	to	access		
its	data	

Complete	

Post	

Wait	

Start		

Get	

Target	 Origin	

64	
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Lock/Unlock Synchronization

§  Passive	mode:	One-sided,	asynchronous	communica@on	

– 	Target	does	not	par@cipate	in	communica@on	opera@on	

§  Shared	memory	like	model	

Ac@ve	Target	Mode	 Passive	Target	Mode	

Unlock	

Lock		
Get	

Complete	

Post	

Wait	

Start		

Get	
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Passive Target Synchronization
int MPI_Win_lock(int lock_type, int rank, int assert,  

MPI_Win win) 

int MPI_Win_unlock(int rank, MPI_Win win) 
 
 
§  Begin/end	passive	mode	epoch	

–  Doesn’t	func@on	like	a	mutex,	name	can	be	confusing	

–  Communica@on	opera@ons	within	epoch	are	all	nonblocking	

§  Lock	type	
–  SHARED:	Other	processes	using	shared	can	access	concurrently	
–  EXCLUSIVE:	No	other	processes	can	access	concurrently	
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When should I use passive mode?
§  RMA	performance	advantages	from	low	protocol	overheads	

–  Two-sided:	Matching,	queuing,	buffering,	unexpected	receives,	etc…	

–  Direct	support	from	high-speed	interconnects	(e.g.	InfiniBand)	

§  Passive	mode:	asynchronous	one-sided	communica@on	
–  Data	characteris@cs:	

•  Big	data	analysis	requiring		memory	aggrega@on	

•  Asynchronous		data	exchange	
•  Data-dependent	access	paRern	

–  Computa@on	characteris@cs:	

•  Adap@ve	methods		(e.g.	AMR,	MADNESS)	

•  Asynchronous		dynamic	load	balancing	

§  Common	structure:	shared	arrays	
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Dynamicity in MPI(-2) 

MPI_COMM_SPAWN 
1 int rank, err[4];
2 MPI_Comm children;
3 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
4 MPI_Comm_spawn("child", NULL, 4, MPI_INFO_NULL, 0,

 MPI_COMM_WORLD, &children, err);
5 if (0 == rank) {
6     MPI_Send(&rank, 1, MPI_INT, 0, 0, children);
7 }
 

 1 #include "mpi.h"
 2 int main(int argc, &argv) {
 3     int rank, msg;
 4     MPI_Comm parent;
 5     MPI_Init(&argc, &argv);
 6     MPI_Comm_get_parent(&parent);
 7     MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 8     if (0 == rank) {
 9         MPI_Recv(&msg, 1, MPI_INT, 0, 0, parent, MPI_STATUS_IGNORE);
10     }

Each  process from 
MPI_COMM_WORLD 
spawn one new process 
that each starts the 
“child” exec. 

Rank 0  of initial 
processes  sends a 
message to rank 0 of the 
spawned processes   

Child program 
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Dynamicity in MPI(-2) 

Server side:  
    char myport[MPI_MAX_PORT_NAME]; 
    MPI_Comm intercomm; 
    /* ... */ 
    MPI_Open_port(MPI_INFO_NULL, myport); 
    printf("port name is: %s\n", myport); 
 
    MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm); 
    /* do something with intercomm */ 
 
On the client side:  
    MPI_Comm intercomm; 
    char name[MPI_MAX_PORT_NAME]; 
    printf("enter port name: ");  
    gets(name); 
    MPI_Comm_connect(name, MPI_INFO_NULL, 0, MPI_COMM_SELF,&intercomm); 

Client/server mode for MPI 
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Programming with MPI 
A simple example, but representative of many numerical simulations 
(FEM, DEM) 

The simulation domain is  
split in cells.   
 At each iteration ti, each cell 
state is updated according to 
the states of its neighbours 
at ti-1. 

What about the MPI parallelization ? 
(We have much more cells than processors) 
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Programming with MPI 

•  1D or 2D domain partitioning ? 

•  Communication and data structure 
organisation (phantom cells) ?   
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Send/Receive Considered Harmful ? 

After Dijkstra paper: “Go To Statement Considered Harmful”, 1968 

 
What about the: 

•  Send/recv constructs as the MPI ones ? 
•  Collectives operations ?  
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Qualities and Limits of the MPI model 

The MPI model assumes the machine  is homogeneous: 
•  one processor per MPI process each available at 100%   
•  communication time  is about the same between any pair of 
processors  
 
Pro: This model makes it “easy” to reason about the parallelization 
of a program. 

 
MPI is based on a distributed memory model with explicit communications 

 
Pro: The programmer is forced to think globally parallel and not 
just parallelize some parts (case with OpenMP) 

But today processors are multi-core, nodes multi-sockets! 
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Qualities and Limits of the MPI model 

The MPI model assumes the machine  is homogeneous: 
•  one processor per MPI process each available at 100%   
•  communication time  is about the same between any pair of 
processors  
 
Cons: Perturbations that can prevent processes to progress evenly 
can have a catastrophic effect on performance 

-  Avoid more than one process per core 
-  Disable Hyperthreading  
-  Process pining to avoid OS perturbations 
-  If you want dynamics load balancing you have to program it 

by yourself. 
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Qualities and Limits of the MPI model 

MPI is based on a distributed memory model with explicit communications: 
 

Cons: Communication performance is very different for intra-node 
or inter-node communications  
 
Cons: Data are duplicated (phantom cells) even for processes 
running on the same node (shared memory) 

 

How to take benefit of multi-cores: hybrid programming ? 
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Hybrid Programming 

Hybrid programming  = MPI + X (X=openMP, Intel TBB, Cilk, Pthreads) 
 
MPI supports (depend on the implementation) two modes:   
 
MPI_THREAD_FUNNELED: only one thread (master thread) can 
make MPI calls  
 
MPI_THREAD_MULTIPLE: all threads can make  MPI calls. 
This is the more flexible mode, but current implementation often 
show important performance issues.  
 
 
 
 

By the way, what does thread-safe mean ? 
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