Performance measurements of computer systems:

tools and analysis
M2R PDES

Jean-Marc Vincent and Arnaud Legrand

Laboratory LIG
MESCAL Project
Universities of Grenoble
{Jean-Marc.Vincent,Arnaud.Legrand }Q@imag.fr

December 16, 2015

J.-M. Vincent and A. Legrand Performance measurements 1/59

0 Introduction, Definitions, Classifications
@ Performance Metric
@ Finding Bottlenecks
@ Monitors & Measurements

© Monitoring Examples
@ Measuring Time: Practical Considerations
@ Sequential Program Execution Monitoring: Profiling
@ “API-based” Monitoring Examples
@ Indirect Metrics

J.-M. Vincent and A. Legrand Performance measurements 2 /59

0 Introduction, Definitions, Classifications
@ Performance Metric
@ Finding Bottlenecks
@ Monitors & Measurements

J.-M. Vincent and A. Legrand Performance measurements Definitions 3 / 59

0 Introduction, Definitions, Classifications
@ Performance Metric

J.-M. Vincent and A. Legrand Performance measurements Definitions 4 / 59

Performance Metric

Metrics are criteria to compare the performances of a system.

In general, the metrics are related to speed, accuracy, reliability and
availability of services.

The basic characteristics of a computer system that we typically
need to measure are:

> a count of how many times an event occurs,
» the duration of some time interval, and
> the size of some parameter.

From these types of measured values, we can derive the actual value
that we wish to use to describe the system: the performance metric.

J.-M. Vincent and A. Legrand Performance measurements Definitions 5 / 59

Performance Metric Characterization

Reliability A system A always outperforms a system B < the performance
metric indicates that A always outperforms B.

Repeatability The same value of the metric is measured each time the
same experiments is performed.

Consistency Units of the metrics and its precise definition are the same
across different systems and different configurations of the same system.

Linearity The value of the metric should be linearly proportional to the
actual performance of the machine.

Easiness of measurement If a metric is hard to measure, it is unlikely any-
one will actually use it. Moreover it is more likely to be incorrectly
determined.

Independence Metrics should not be defined to favor particular systems.

Many metrics do not fulfill these requirements. J

J.-M. Vincent and A. Legrand Performance measurements Definitions 6 / 59

Performance as Time

» Time between the start and the end of an operation

> Also called running time, elapsed time, wall-clock time, response
time, latency, execution time, ...

» Most straightforward measure: “my program takes 12.5s on a
Pentium 3.5GHz"

» Can be normalized to some reference time

» Must be measured on a “dedicated” machine

J.-M. Vincent and A. Legrand

Performance measurements

Definitions 7 / 59

Performance as Rate

Used often so that performance can be independent on the ‘“size”
of the application (e.g., compressing a 1MB file takes 1 minute.
compressing a 2MB file takes 2 minutes ~ the performance is the

same).

G : E ___instruction count __ clock rate
MIPS Millions of instructions / sec = _2° telen S0y = Chi 106 -

But Instructions Set Architectures are not equivalent

»> 1 CISC instruction = many RISC instructions
» Programs use different instruction mixes
» May be ok for same program on same architectures

MFlops Millions of floating point operations /sec

» Very popular, but often misleading
> e.g., A high MFlops rate in a stupid algorithm could have poor application
performance

Application-specific
» Millions of frames rendered per second
» Millions of amino-acid compared per second
» Millions of HTTP requests served per seconds

Application-specific metrics are often preferable and others may
be misleading

J.-M. Vincent and A. Legrand Performance measurements

“Peak’” Performance?

Resource vendors always talk about peak performance rate

» Computed based on specifications of the machine
» For instance:

v

| build a machine with 2 floating point units

» Each unit can do an operation in 2 cycles

» My CPU is at 1GHz

» Therefore | have a 1¥2/2 =1GFlops Machine
> Problem:

> In real code you will never be able to use the two floating point
units constantly

» Data needs to come from memory and cause the floating point
units to be idle

Typically, real codes achieve only an (often small) fraction of the
peak performance

J.-M. Vincent and A. Legrand Performance measurements Definitions 9 / 59

» Since many performance metrics turn out to be misleading,
people have designed benchmarks
» Example: SPEC Benchmark
> Integer benchmark
» Floating point benchmark
» These benchmarks are typically a collection of several codes
that come from “real-world software”
» The question “what is a good benchmark” is difficult
» A benchmark is representative of a given workload.
» If the benchmarks do not correspond to what you'll do with the
computer, then the benchmark results are not relevant to you
» Other typical benchmarks

» Livermore loops, NAS kernels, LINPACK, stream, ...
» SPEC SFS, SPECWeb, ...

J.-M. Vincent and A. Legrand Performance measurements Definitions 10 / 59

How About GHz?

v

This is often the way in which people say that a computer is
better than another

» More instruction per seconds for higher clock rate

» Faces the same problems as MIPS
Processor Clock Rate | SPEC FP2000 Benchmark
IBM Power3 450 MHz 434
Intel PIII 1.4 GHz 456
Intel P4 2.4GHz 833
Itanium-2 1.0GHz 1356

v

But somehow usable within a specific architecture

v

Remember that if multi-cores, cache size, frequency scaling
come into the picture...

J.-M. Vincent and A. Legrand Performance measurements Definitions 11 / 59

0 Introduction, Definitions, Classifications

@ Finding Bottlenecks

J.-M. Vincent and A. Legrand Performance measurements itions 12 / 59

Why is Performance Poor?

Performance is poor because the code suffers from a performance
bottleneck

Definition:

» An application runs on a platform that has many components
(CPU, Memory, Operating System, Network, Hard Drive, Video
Card, etc.)

> Pick a component and make it faster

> If the application performance increases, that component was
the bottleneck!

J.-M. Vincent and A. Legrand Performance measurements Definitions 13 / 59

Removing a Bottleneck

There are two may approaches to remove a bottleneck:

Brute force Hardware Upgrade
> Is sometimes necessary
» But can only get you so far and may be very costly (e.g.,
memory technology)
Modify the code
> The bottleneck is there because the code uses a “resource”
heavily or in non-intelligent manner
» We will learn techniques to alleviate bottlenecks at the soft-
ware level

J.-M. Vincent and A. Legrand Performance measurements Definitions 14 / 59

Identifying a Bottleneck

» It can be difficult

» You're not going to change the memory bus just to see what
happens to the application

» But you can run the code on a different machine and see what
happens

» One Approach

Know/discover the characteristics of the machine
Instrument the code with time measurements everywhere
Observe the application execution on the machine
Tinker with the code

Run the application again

Repeat

Reason about what the bottleneck is

vV VvV vy VY VY VY

J.-M. Vincent and A. Legrand Performance measurements Definitions 15 / 59

0 Introduction, Definitions, Classifications

@ Monitors & Measurements

J.-M. Vincent and A. Legrand Performance measurements itions 16 / 59

A Monitor is a tool to observe the activities on a system. In general,
a monitor:

@ makes measurements on the system (Observation)
@ collects performance statistics (Collection),

© analyzes the data (Analysis),

Q displays results (Presentation).

Why do we want a monitor ?

» A programmer wants to find frequently used segments of a program
to optimize them.

> A system administrator wants to measure resource utilization to find
performance bottlenecks.

> A system administrator wants to tune the system and measure the im-
pact of system parameters modifications on the system performance.

> An analyst wants to characterize the workload. Results may be used
for capacity planning and for creating test workloads.

> An analyst wants to find model parameters, to validate models or to
develop inputs for models.

J.-M. Vincent and A. Legrand Performance measurements Definitions 17 / 59

Monitor Terminology

Event A change in the system state (context switch, seek on a disk,
packet arrival, ...).

Trace Log of events usually including the time of the events, their
type and other important parameters.

Overhead Measurement generally induce slight perturbations and
consume system resources (CPU, storage,. ..).

Domain The set of activities observable by the monitor (CPU time,
number of bytes sent on a network card,. ..).

Input Rate The maximum frequency of events that a monitor can
correctly observe. One generally distinguishes between burst rate
and sustained rate.

Resolution Coarseness of the information observed.

Input Width The number of bits of information recorded on an
event.

Portability Amount of system modifications required to implement
the monitor.

J.-M. Vincent and A. Legrand Performance measurements Definitions 18 / 59

Events and metrics

The different types of metrics that an analyst may wish to measure
can be classified into the following categories:

Event-count metrics Simply count the number of times a specific
event occurs (e.g., number of page faults, number of disk I/O
made by a program).

Secondary-event metrics These types of metrics record the values of
some secondary parameters whenever a given event occurs (e.g.,
the message size, the time spent in a given function).

Profiles A profile is an aggregate metric used to characterize the
overall behavior of an application program or of an entire system.

J.-M. Vincent and A. Legrand Performance measurements Definitions 19 / 59

Observation mechanisms

Observation is commonly performed with three mechanisms:

Implicit spying it is sometimes possible to spy the system without
really interfering with it (listening on a local Ethernet bus or in
wireless environments). Thus, there is almost no impact on the
performance of the system being monitored. Implicit-spying is
generally used with filters because many observed data are not
interesting.

Explicit Instrumenting By incorporating trace points, probe points,
hooks or counters, additional information to implicit-spying can
be obtained. Some systems offer an API to incorporate such
hooks or exports the values of internal counters.

Probing Making requests on the system to estimate its current per-
formance.

Some activities can be observed by only one of the three mecha-

nisms.

J.-M. Vincent and A. Legrand Performance measurements Definitions 20 / 59

Activation Mechanisms

Event-driven Record the information whenever a given event occurs. Gen-
erally done with counters. The overhead is thus proportional to the
frequency of events.

Tracing Similar to event-driven strategies, except that parts of the system
state are also recorded. This is thus even more time-consuming and
also also requires much more storage.

Sampling Recording of information occurs periodically. The overhead and
the resolution of the sampling can thus be adjusted. This strategies
produces a statistical summary of the overall behavior of the system.
Events that occurs infrequently may be completely missed. Results may
also be different from one run to the other.

Indirect An indirect measurement must be used been the metric that is
to be determined is not directly accessible (e.g., for portability reasons
or for practical reasons). In this case, one must find another metric
that can be measured directly, from which one can deduce or derive
the desired performance metric.

Generally, a model of the system is underlying the deduced metric and
the quality of this model is fundamental.

J.-M. Vincent and A. Legrand Performance measurements Definitions 21 / 59

Collection

The collection mechanism highly depends on whether we are working
on a on-line monitor (system state is displayed during monitoring)
or on a batch monitor (system state is stored for later analysis).
Most data need to be recorded in buffers, hence buffer management
issues:

» buffer size is a function of input rate, input width and emptying
rate,

> larger number of buffers allows to cope with variations in filling
and emptying rates,

» buffer overflow management and tracking,
» data compression, on-line analysis,

Abnormal events should also be monitored and even handled at
higher priority (low probability ~ low overhead, possibility to take
preventive action before the system becomes unavailable).

J.-M. Vincent and A. Legrand Performance measurements Definitions 22 / 59

Distributed Monitoring Issues

» The problem of communication between m collectors and n
observers often arises.

» We generally resort to hierarchy of collectors/observers for a
better scalability. This intensifies all previous buffer manage-
ment issues.

» When collecting data from several observers, clock synchro-
nization often becomes an important issue. The tolerance or
maximum allowed clock skew is often related to the round-trip
delay. The larger the system, the more problematic clock skews.

J.-M. Vincent and A. Legrand Performance measurements Definitions 23 / 59

This layer is closely tied to the applications for which the moni-
tor is used (performance monitoring, configuration monitoring, fault
monitoring,. . .).

» Presentation frequency (for on-line monitors).
» Hierarchical representation/aggregation (space/time/states/values).

» Alarm mode (thresholds, abnormal events).

J.-M. Vincent and A. Legrand Performance measurements Definitions 24 / 59

Measurement Induces Perturbations

» The system resources consumed by the measurement tool itself
as it collects data will strongly affect how much perturbation
the tool will cause in the system.

» Tracing produces the highest level of perturbation (both CPU
and disk are used), in particular on time measurements, spa-
tial and temporal memory access (cache flush, different pag-
ing,...), or on system response time (and thus on workload
characterization).

» The largest the overhead, the more likely the system behavior
will be modified.

Measuring a system alters it

Remain alert to how these perturbations may bias your measure-
ments and, ultimately, the conclusions you are able to draw from
your experiments.

J.-M. Vincent and A. Legrand Performance measurements Definitions 25 / 59

© Monitoring Examples
@ Measuring Time: Practical Considerations
@ Sequential Program Execution Monitoring: Profiling
@ “API-based” Monitoring Examples
@ Indirect Metrics

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 26 / 59

Exercise

Try to find the main characteristics, advantages and drawbacks of
the following monitors.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 27 / 59

© Monitoring Examples
@ Measuring Time: Practical Considerations

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 28 / 59

Measuring time by hand?

» One possibility would be to do this by just “looking” at a clock,
launching the program, “looking” at the clock again when the
program terminates

» This of course has some drawbacks

» Poor resolution
> Requires the user's attention

» Therefore operating systems provide ways to time programs

automatically

» UNIX provide the time command

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 29 / 59

The UNIX time Command

> You can put time in front of any UNIX command you invoke

» When the invoked command completes, time prints out timing
(and other) information

surf:~$ /usr/bin/X11/time 1ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 47%CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

4.17 seconds of user time

4.34 seconds of system time

2 minutes and 55.85 seconds of wall-clock time
4% of CPU was used

0+0k memory used (text + data)

0 input, 0 output output (file system 1/0)
1344 minor pagefaults and 0 swaps

vV vV vV vV VY VY

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 30 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/X11/time 1ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

» User Time: time that the code spends executing user code (i.e.,
non system calls)

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 31 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/X11/time 1ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

» User Time: time that the code spends executing user code (i.e.,
non system calls)

» System Time: time that the code spends executing system calls

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 31 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/X11/time 1ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

» User Time: time that the code spends executing user code (i.e.,
non system calls)

» System Time: time that the code spends executing system calls

» Wall-Clock Time: time from start to end

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 31 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/X11/time 1ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

» User Time: time that the code spends executing user code (i.e.,
non system calls)

» System Time: time that the code spends executing system calls

» Wall-Clock Time: time from start to end
» Wall-Clock > User + System. Why?

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 31 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/X11/time 1ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

» User Time: time that the code spends executing user code (i.e.,
non system calls)

» System Time: time that the code spends executing system calls

» Wall-Clock Time: time from start to end

» Wall-Clock > User + System. Why?

» because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 31 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/X11/time 1ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(Oavgtext+Oavgdata Omaxresident)k

Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps

» User Time: time that the code spends executing user code (i.e.,
non system calls)
» System Time: time that the code spends executing system calls
» Wall-Clock Time: time from start to end
» Wall-Clock > User + System. Why?
» because the process can be suspended by the O/S due to con-

tention for the CPU by other processes
» because the process can be blocked waiting for 1/0

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 31 / 59

> It's interesting to know what the user time and the system time
are
» for instance, if the system time is really high, it may be that the
code does too many calls to malloc(), for instance
» But one would really need more information to fix the code (not
always clear which system calls may be responsible for the high
system time)
» Wall-clock - system - user ~ 1/O + suspended
» If the system is dedicated, suspended ~ 0
» Therefore one can estimate the cost of I/O
» If 1/0 is really high, one may want to look at reducing 1/0 or
doing 1/0 better

» Therefore, time can give us insight into bottlenecks and gives
us wall-clock time

» Measurements should be done on dedicated systems

» time relies on times(2), getrusage(2) and clock(3).

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 32 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/time ./parallelQuicksort2

9.76user 10.51system 0:06.11elapsed 331%CPU
(Oavgtext+Oavgdata 158268maxresident)k
Oinputs+Ooutputs (Omajor+7599minor)pagefaults Oswaps

» Wall-Clock <« User + System. Why?

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 33 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/time ./parallelQuicksort2

9.76user 10.51system 0:06.11elapsed 331%CPU
(Oavgtext+Oavgdata 158268maxresident)k
Oinputs+Ooutputs (Omajor+7599minor)pagefaults Oswaps

» Wall-Clock <« User + System. Why?

> because there are several processors... the %CPU is simply (User
+ System)/Wall-Clock

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 33 / 59

User, System, Wall-Clock?

surf:~$ /usr/bin/time ./parallelQuicksort2

9.76user 10.51system 0:06.11elapsed 331%CPU
(Oavgtext+Oavgdata 158268maxresident)k
Oinputs+Ooutputs (Omajor+7599minor)pagefaults Oswaps

» Wall-Clock <« User + System. Why?

> because there are several processors... the %CPU is simply (User
+ System)/Wall-Clock

Beware: The resolution of getrusage is very low (a few ms) so
you can eventually use it to time very large regions of code but no
more.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 33 / 59

Dedicated Systems

» Measuring the performance of a code must be done on a “quies-
cent”, “unloaded” machine (the machine only runs the standard
O/S processes)

» The machine must be dedicated

> No other user can start a process
» The user measuring the performance only runs the minimum
amount of processes (basically, a shell)

> Nevertheless, one should always present measurement results
as averages over several experiments (because the (small) load
imposed by the O/S is not deterministic)

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 34 / 59

Drawbacks of UNIX

» The time command has poor resolution

» “Only” milliseconds

» Sometimes we want a higher precision, especially if our perfor-
mance improvements are in the 1-2% range

» time times the whole code

» Sometimes we're only interested in timing some part of the code,
for instance the one that we are trying to optimize

» Sometimes we want to compare the execution time of different
sections of the code

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 35 / 59

> gettimeofday from the standard C library

> Measures the number of microseconds since midnight, Jan 1st
1970, expressed in seconds and microseconds

struct timeval start;

gettimeofday (&tv,NULL) ;
printf ("%1d,%1ld\n",start.tv_sec, start.tv_usec);

» Can be used to time sections of code

» Call gettimeofday at beginning of section

» Call gettimeofday at end of section

» Compute the time elapsed in microseconds:
(end.tv_sec*1000000.0 + end.tv_usec -
start.tv_sec*1000000.0 - start.tv_usec) / 1000000.0)

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 36 / 59

» clock _gettime (POSIX, linux)

> Measures the number of nanoseconds since midnight, Jan 1st
1970, expressed in seconds and microseconds

» Obviously not precise at the nanosecond level but much better
than gettimeofday

struct timespec tv;

clock gettime (CLOCK REALTIME,&tv) ;) ;

» Should be used to time sections of code

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 37 / 59

Other Ways to Time Code

ntp_gettime () (Internet RFC 1589)
» Sort of like gettimeofday, but reports estimated error on time
measurement
» Not available for all systems
» Part of the GNU C Library

Java: System.currentTimeMillis()

v

v

» Known to have resolution problems, with resolution higher than
1 millisecond!
» Solution: use a native interface to a better timer

v

Java: System.nanoTime ()

» Added in J2SE 5.0
» Probably not accurate at the nanosecond level

v

Tons of “high precision timing in Java” on the Web

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 38 / 59

© Monitoring Examples

@ Sequential Program Execution Monitoring: Profiling

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 39 / 59

> A profiler is a tool that monitors the execution of a program
and that reports the amount of time spent in different functions
» Useful to identify the expensive functions
» Profiling cycle
» Compile the code with the profiler
Run the code
Identify the most expensive function
Optimize that function (i.e. call it less often if possible or make
it faster)
» Repeat until you can’t think of any ways to further optimize the
most expensive function

v

v

v

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 40 / 59

Using gprof

» Compile your code using gcc with the -pg option

» Run your code until completion

» Then run gprof with your program'’s name as single command-
line argument

> Example:
gcc —pg prog.c —o prog; ./prog
gprof prog

» The output file contains all profiling information (amount and
fraction of time spent in which function)

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 41 / 59

Using gprof

[e R KO [et SRR
File Help
r Hat Profile | Hierarchical Profile r Object Profile |
Furction/Method % | €8 | court | Tata) |2 [et sy [otal mascan | Seif mesean [«
: CProfile Info:: CProfilenfodwoid) =tz 002 o 0 u] a
CProfileview ltem:: CProfileViewterm{ QList\iew *, CProfilelnfo *) 157 .02 o 0 0.03 a 3
CProfileview ltem:: CProfileViewtem QList\iewltern ®, CProfilelnfo *) 224 002 o 0 u] a
E&bout Data:~ KAbout Datadvoid) 1 002 o 0 u] a
KProfTopLevel:KProfTopLevel(ing, OW%idaet *, char const *) 1 .02 o 0 5587 a
KProfTopLevel: setupdctions{void) 1 002 o 0 u] a
KProfibicoet:: KProf¥idoet] OWidaet *, char const *) 1 .02 o o 45.94 a
; K Profwidget apply Settings{woid) 2 002 o 0 FALE a
K Proflidoet :load Settings{woid) 1 o o 1]
= QS tring(voicd) 0l 1.
QShared: deref{void) 28621 002 o 0 u] a
Qvfector ¢ CProfilelnfos OWector{void} 1 0.02 o o n] a
- K ProfTopLevel setupActions{void) 1 0.0z o 0 u] a
- K ProfTop Level :static MetaObject{void) 107 0.02 o o n] a
[KProfdidget:KProfividget QWidget *, char const *) 1 0.02 o o 45.94 a
[kPrafdidget: apply Settings{waidy 2 0.02 o0 7.18 o
[H- k. Profidget: fil Flat Profile List{void) 1 o002 oo 1849 a
[H- KProftidget : fill Hier Profile Listivoid) 1 o002 o0 1.89 1]
[K Prafsidget: fill Hierarchy(C Profileyiew tern *, CProfilelnfa *, Qar... @ B9 0.02 o0 u] a
| R KD
L

M. Vincent and A. Legrand Performance measu Monitoring Examples 42 / 59

Callgrind

» Callgrind is a tool that uses runtime code instrumentation frame-
work of Valgrind for call-graph generation
» Valgrind is a kind of emulator or virtual machine.

> It uses JIT (just-in-time) compilation techniques to translate
x86 instructions to simpler form called ucode on which various

tools can be executed.
» The ucode processed by the tools is then translated back to the

x86 instructions and executed on the host CPU.

» This way even shared libraries and dynamically loaded plugins
can be analyzed but this kind of approach results with huge slow
down (about 50 times for callgrind tool) of analyzed application
and big memory consumption.

Monitoring Examples 43 / 59

J.-M. Vincent and A. Legrand Performance measurements

Callgrind /Kcachegrind

Data produced by callgrind can be loaded into KCacheGrind tool for
browsing the performance results.

3 /cachegrind.out.24457 [kcachegrind] - KCachegrind Lol
Eile View Go Settings Help

| 1o @€ >) M%< & [insruion 1[N Groung) 5]
e —

QFontPrivate::lo:

| Typos | Callers | Sauree | Cal Graph

-

B=134,07C30.00
1285003000
=3 17402001
E13.8500.01
B=66,660.00
£ 42207004
£ 75803001
51541000
E135103001 Lim= Hmr + Dime + Dimy_|
EI11.140002 L2m= 12mr + D2mr + D

cachegrind out 24457 (1] - Total Instruction Cost: 458 122 708

M. Vincent and A. Legrand Performance measurements Monitoring Examples 44 / 59

Callgrind /Kcachegrind

Data produced by callgrind can be loaded into KCacheGrind tool for
browsing the performance results.

Valgrind actually includes several tools:
» Memcheck (check the validity of every memory access)

» Cachegrind (memory access profiler/simulator)

v

Callgrind (instruction profiler)

v

Massif (heap profiler)

v

Helgrind (a thread error detector)

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 44 / 59

Using perf (Linux profiling with performance counters)

Requires a recent version of linux (> 2.6.31...)
> Uses special purpose registers on the CPU to count the number
of “events”:
» Hardware event: cache miss, branch missprediction

» Software event: page miss
» Tracepoints, kprobes, and uprobes (trace user-level functions,

which allows for dynamic tracing. . .)
» Low overhead, no need to recompile
» sudo perf 4.3 list
» Output can be converted to the callgrind format for visualiza-
tion with kcachegrind. Or use custom visualizations (flamegraphs)

. Flame Graph

Monitoring Examples 45 / 59

J.-M. Vincent and A. Legrand Performance measurements

http://www.brendangregg.com/blog/2015-06-28/linux-ftrace-uprobe.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Beware of benchmarks...

sama:~$ perf_ 4.3 bench mem all

Running mem/memcpy benchmark. ..
Routine default (Default memcpy() provided by glibc)
Copying 1MB Bytes ...

1.821945 GB/Sec

12.849507 GB/Sec (with prefault)
Running mem/memset benchmark...
Routine default (Default memset() provided by glibc)
Copying 1MB Bytes ...

3.170657 GB/Sec

13.377568 GB/Sec (with prefault)

sama:~$ perf 4.3 bench mem all

Running mem/memcpy benchmark. ..
Routine default (Default memcpy() provided by glibc)
Copying 1MB Bytes ...

2.782229 GB/Sec

21.229620 GB/Sec (with prefault)
Running mem/memset benchmark...
Routine default (Default memset() provided by glibc)
Copying 1MB Bytes ...

5.548651 GB/Sec

20.345052 GB/Sec (with prefault)

LY, SR, e
J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 46 / 59

© Monitoring Examples

@ “API-based” Monitoring Examples

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 47 / 59

top

top - 11:05:41 up 3 days. 1:01., 1 user. load average: 0,22, 0.23. 0.38 |
Tasks: 177 total, 2 running, 166 sleeping. 0 stopped, 9 zomhie
Cputsd: 5,8xus, 1.7%sy. 0.0¥ni. B89,9%id., 0.0%wa. 0,0%hi, 2.7xsi,. 0,0X%st |
Mem: 1035156k total. 98354dk used. 51612k free. 30320k buffers
Swap: 1984016k total,. 67020k used. 1916996k free. 365876k cached
) LISER L il TIME+ COMMA
4571 alegrand 18 0 328m 178m 30m R 7 17.7 162:10,23 firefox-bin
3794 gkrellmd 18 0 11844 1152 936 5 5 0.1 104:26.48 gkrellmd
4228 alegrand 16 0 73936 1lm 3344 5 4 1,2 54:02,17 xmms2d
4210 alegrand 16 0 42732 1dm 10m S 2 1.5 20:26,84 gkrellm
3792 root 15 0 236m 176m B372 5 1 17,5 141:55,30 Xorg
4211 alegrand 15 0 47424 2¢¥m 1dm S Q: S2 3:59,48 esperanza
16982 alegrand 15 0 2360 1200 860 R 0 0,1 0:00,12 top
1 root 15 0 1944 B52 585 5 o 0.1 0:01.55 init
2 root RT 0 0 0 05 0 0,0 0:00,02 migration /0
3 root 34 19 o] 0 05 0 0,0 0:00,03 kesoftirgd 0
G root 1n: =5 o] 0 05 0 0,0 0:04,12 eventss0
g root L5 xE 0 4] 035 o 0.0 0:00,00 khelper
9 root 10 -5 0 0 05 o 0.0 0:00.00 kthread
13 root 10 -5 o] 0 05 0 0,0 0:00,04 kblockd/O
15 root 10: =5 o] 4] 05 o 0,0 0;05,86 kacpid
155 root b T, 0 0 05 o 0.0 0:00,04 kseriod
201 root 15; =5 0 0 05 o 0.0 0:07.06 kswapdd
202 root 13 “=h o] 0 05 0 0,0 0:00,00 aios/D
358 root 15 0 o] 0 05 0 0,0 0;00,01 kirgd
704 root L0 0 0 05 o 0.0 0:13.58 atas’D
706 root 10 -5 0 0 05 o 0.0 0:00.00 ata_aux
709 root 10 -85 o] 0 05 0 0,0 0:00,04 scsi_eh 0
758 root 10k =5 0 4] 05 o 0.0 0:00,04 khubd
773 root 10 -5 0 0 0715 o0 0,0 0:26,36 scsi_eh_1
1068 root I0: =5 Q Q Qs a 0.0 0:05,91 kjouwrnald
1256 root 15 -4 2¥20 1276 464 S 0 0,1 0:00,80 udevd
1720 root 16 -5 0 0 05 0 0,0 000,00 kpsmoused
1756 root LT o 0 0 05 o 0.0 0:00,00 pccardd
1837 root 10 -5 o] 0 05 o 0.0 0:00.00 hda_codec
1840 root 10: &5 o] 0 05 0 0,0 0:06,39 ipw3945-0
1842 root 0% =5 0 4] 05 o 0.0 0:00,.2d4 ipw39d5-0

M. Vincent and A. Legrand Performance Examples 48 / 59

How does top get all these information?

It uses /proc!

kanza: $ 1dd ‘which top®
linux-gate.so.1 libproc-3.2.7.s0.5
libncurses.so libc.so.6
libdl.so.2 /lib/1ld-linux.so.2

/proc is a way for the kernel to provide information
about the status of entries in its process table.

On systems where /proc is available, there is no need
to instrument the kernel or the application to get these
information. Measures are always but it doesn't mean
that top does not induce perturbations. . ..

Other tools (e.g., gkrellm) rely on the same API.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 49 / 59

Getting finer information

TCPdump is based on 1ibpcap and enables to dump the traffic on a
network card.

File Edit View Go Capture Analyze Statistics Help

BEdged X0 AO0OO»O0

Q@ H

E]Ei\ter“ = dp Expression... = Clear « Apply

No.. Time Source Destination Protocol | Info E
15 4.664040 129,88.69.211 64.12,28.62 TCP 58896 > aol [ACK] Seq=66 Ack=790 Win=
16 4.664728 fest bf ICMPv6 Router solicitation I

22 8.152530 126.88.70.250 129.88.69.211 TCP xmpp-client > 39143 [ACK] Seq=0 Ack=:
23 8.164788 80.248.214.47 129.88.69.211 TCP xmpp-client > 49703 [ACK] Seq=0 Ack=:
24 8.354666 216.155.193.155 129.88.69.211 TCP mmce = 38337 [ACK] Seq=0 Ack=20 Win=:
25 8.540023 129.88.69.58 129.88.69.255 CUPS ipp://lpserv-id.imag.fr:631/printers;
|26 8652170 129,88 00,211 041224158 ALHKeep Alive]

27 8 QAA2M7 _ RA 19 24 158

0000 33 33 00 00 00 02 00 16 cb c9 ba 73 86 dd 60 0O
0010 00 00 00 10 3a ff fe 80 00 00 OO 00 00 OO 02 16
0020 cb ff fe co ba 73 ff 02 00 00 0D 0O 00 0O 00 QO
0030 00 00 00 00 00 02 85 00 6e 87 0D 00 00 00 0L 01 o

File: "ftmp/ether XXXX40QYMT" 415 KB 00:00:21 4 P: 842 D: 842 M: 0 Drops: 0

/proc is rather common but accessing such information requires
specific access permissions. Such library does not work on high

performance cards such as MyriNet, InfiniBand,
Examples 50 / 59

M. Vincent and A. Legrand Performance

SNMP-based tools

» The Simple Network Management Protocol (SNMP) is an ap-
plication layer protocol that facilitates the exchange of man-
agement information between network devices. It is part of
the Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol suite. SNMP enables network administrators to man-
age network performance, find and solve network problems, and
plan for network growth.

» Many tools build upon SNMP to gather information on routers
"

10.2 1

6.8

340 \

Bits per Second

0.0
10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16

» SNMP can even be used to build maps of the network. How-
ever, SNMP requires specific access permissions and is often
closed for network security reasons.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 51 / 59

A few HPC tools

PAP| Performance Application Programming Interface

PAPI is a tool developped by UTK that provides a portable access
to hardware performance counters available on most modern micro-
processors (AMD Opteron, CRAY XT Series, IBM POWER, IBM
Cell Intel Pentium, Core2, i7, Atom,..., recently CUDA).

Along the “same line" and more recent: likwid (Intel and AMD
processors on the Linux operating system)

> likwid-topology: print thread, cache and NUMA topology

> likwid-perfctr: configure and read out hardware performance coun-
ters on Intel and AMD processors

> likwid-powermeter: read out RAPL Energy information and get info
about Turbo mode steps

> likwid-pin: pin your threaded application (pthread, Intel and gcc
OpenMP to dedicated processors)...

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 52 / 59

A few HPC tools

PAP| Performance Application Programming Interface
mpiP MPI profiling

» mpiP is a link-time library (it gathers MPI information through
the MPI profiling layer)

> It only collects statistical information about MPI functions

> All the information captured by mpiP is task-local

sleeptime = 10;
MPI_Init (&argc, &argv);
MPI Comm_size (comm, &nprocs);

Task AppTime MPITime MPI%

1 .00024 .
MPI_Comm_rank (comm, &rank); L O e Ly
. 1 10 10 99.92
MPI_Barrier (comm) ;
. . 2 10 10 99.92
if (rank == 0) sleep (sleeptime);
MPI _ Barrier (comm); $ 10 - o
’ o 40 30 74.94

MPI_Finalize ();

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 52 / 59

A few HPC tools

PAP| Performance Application Programming Interface
mpiP MPI profiling
vaMPIr MPI tracing, but also Tau,
Extrae, ...

Jj' YAHPIR JJ

Application
Calculsfion

Setup
jcommunication

= Identified Hessage |

Hessage sentfiom Pracess 1 1o Process 2
communicator. o, fype: 2
length: 44580

> These traces can then be vi-
sualized and used in different
ways.

» generate traces (i.e. not just
collect statistics) of MPI calls

VAPIR

ssar(3:20%)
exschange_3(3485%)

MPL 5end(10.708%)
ha12.27%]

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 52 / 59

> An API to access monitoring information is often available but
not always. ..

» Even when these monitors are “built-in", they are generally low-
level and building a usable high-level monitoring tool requires
a lots of work on:
» Sampling
» Collection
» Analysis and Presentation

» When such an API is not available you can:

» either design a low-level monitor if possible,
> to try to evaluate the metric you are interested in an other way.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 53 / 59

© Monitoring Examples

@ Indirect Metrics

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 54 / 59

CPU probing

» ATLAS (Automatically Tuned Linear Algebra Software) is an
approach for the automatic generation and optimization of nu-
merical software (BLAS and a subset of the linear algebra rou-
tines in the LAPACK library).

» To produce such kernels, ATLAS needs to know the number of
cache levels, their respective sizes, whether the processor has
the ability to perform additions and multiplications at the same
time, whether it can make use of vector registers or specific
instruction sets (e.g., 3dnow, SSE1, or SSE2 extensions). ..

» There is no portable APl providing such information, therefore
ATLAS runs some probes to guess these values.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 55 / 59

Network probing

NWS The Network Weather Service is the de facto standard of the
emerging Grid community to monitor the system availability. It
provides high-level metrics to help applications and schedulers. It
also provides trends thanks to a set of statistical forecasters.

> Available CPU share for a new process ((system+user)/(total)):
due to the process priorities and other scheduling tricks, this
value is hard to guess from the /proc values without ac-
tually probing. As probes are intrusive, NWS uses /proc
values and uses a correcting factor based on regular probes.

» Available bandwidth between two hosts: how much band-
width would get an application using a single standard socket
7 Active probes are performed.

Pathchar What about the capacity of network links between two
hosts? Pathchar infers the characteristics of links along an Inter-
net path by sending series of probes with varying values of TTL
and of size and using statistical analysis.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 56 / 59

A last example

Peer-to-peer systems:

» Having good evaluations of the current number of peers is a
crucial problem and an active research domain.

> “Probabilistic games” give good results.

All the previous approach rely on a model of the system and on pa-
rameters estimation based on the expected model prediction. When
the model is incorrect, the estimation is likely to be incorrect as well.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 57 / 59

Take-away message

» Do not reinvent the wheel: do not build your own monitoring
infrastructure unless you are absolutely certain there is no other
choice.

Instead learn to use already existing tools.

» Make sure that you understand how such tools work to be
aware of their limitations and impact on the measurements you
want to perform.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 58 / 59

References

& R. K. Jain.
The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and
Modeling.
John Wiley & Sons Canada, Ltd., 1 edition, 1991.

@ David J. Lilja.
Measuring Computer Performance: A Practitioner’s Guide -
David J. Lilja - Hardcover.
Cambridge University Press, 2000.

J.-M. Vincent and A. Legrand Performance measurements Monitoring Examples 59 / 59

	Introduction, Definitions, Classifications
	Performance Metric
	Finding Bottlenecks
	Monitors & Measurements

	Monitoring Examples
	Measuring Time: Practical Considerations
	Sequential Program Execution Monitoring: Profiling
	``API-based'' Monitoring Examples
	Indirect Metrics

