
Master Of Science in Informatics at Grenoble
Parallel, Distributed, and Embedded Systems

Parallel Systems
(1st Session)

Vincent Danjean, Arnaud Legrand

January 26th, 2015

Important information.
Read this before anything else!

. Any printed or hand-written document is authorized during the exam, even dictionaries.
Books are not allowed though.

. Please write your answers to each problem on separate sheet of papers.

. The different problems are completely independent. You are thus strongly encouraged to start
by reading the whole exam. You may answer problems and questions in any order but they
have to be written in the order on your papers.

. All problems are independent and the total number of points for all problems exceeds 20. You
can thus somehow choose the problems for which you have more interest.

. The number of points alloted to each question gives you an indication on the expected level
of details and on the time you should spend answering.

. Question during the exam: if you think there is an error in a question or if something is
unclear, you should write it on your paper and explain the choice you made to adapt.

. The quality of your writing and the clarity of your explanations will be taken into account in
your final score. The use of drawings to illustrate your ideas is strongly encouraged.

1

M2R MOSIG: Parallel Systems 2 / 13

I. Parallel Quick Sort (≈ 1h00)

Question I.1. Preliminary question
We consider n independent tasks t1, . . . , tn , with n very large. For 1 ≤ i ≤ n, the task ti
performs wi operations. The values wi are unknown, but are assumed to be bounded by two
constants c and c′ : c ≤ wi ≤ c′ .
We consider a multicore machine with p identical cores.
a) We first assign n

p tasks to each core. Prove that the execution time Tp verifies n
p c ≤ Tp ≤ n

p c
′.

Exhibit a worst case for the wi together with an assignment such that the execution time Tp

is close to c′

c

∑n
i=1 wi

p .
b) Write a implementation of a Parallel For Loop (in a language like Cilk, Athapascan/Kaapi,

OpenMP, MPI. . .) such that the execution time Tp verifies Tp ≤
∑n

i=1 wi

p +O(log n) with high
probability: note that this time should be achieved whatever the values of the constants c, c′

and the wi are. Analyze the work and depth of this algorithm (justify very briefly).

Algorithm 1 Par-Partition(A[q : r], x)

Input: An array A[q : r] of distinct elements and an element x from A[q : r]
Output: Rearrange the elements of A[q : r], and return an index k ∈ [q, r], such that all elements in

A[q : k − 1] are smaller than x, all elements in A[k + 1 : r] are larger than x, and A[k] = x.
1: n← r − q + 1
2: if n = 1 then
3: return q
4: end if
5: Array B[0 : n− 1], lt[0 : n− 1], gt[0 : n− 1]
6: parallel for i← 0 to n− 1 do
7: B[i]← A[q + i]
8: if B[i] < x then lt[i]← 1 else lt[i]← 0
9: if B[i] > x then gt[i]← 1 else gt[i]← 0

10: end parallel for
11: lt[0 : n− 1]← Par-Prefix-Sum(lt[0 : n− 1],+)
12: gt[0 : n− 1]← Par-Prefix-Sum(gt[0 : n− 1],+)
13: k ← q + lt[n− 1]
14: A[k]← x
15: parallel for i← 0 to n− 1 do
16: if B[i] < x then
17: A[q + lt[i]− 1]← B[i]
18: else if B[i] > x then
19: A[k + gt[i]]← B[i]
20: end if
21: end parallel for
22: return k

Question I.2. “Par-Partition” Algorithm Analysis
a) Using the following entry A = [9, 5, 7, 11, 1, 3, 8, 14, 4, 21] and k = 8, explain with schema

how this program works
b) We recall that Par-Prefix-Sum can be implemented with a parallel algorithm with O(n)

operations and a depth of O(log2n). We also consider that memory allocations without
initialization are done in constant time.
Analyze the complexity of each part of the provided algorithm, both in term of number of
operations and depth

c) Conclude about the global complexity of the algorithm (still both in term of number of
operations and depth)

Question I.3. Randomized Parallel QuickSort

2

M2R MOSIG: Parallel Systems 3 / 13

Algorithm 2 Par-Randomized-quickSort(A[q : r])

Input: An array A[q : r] of distinct elements
Output: Elements of A[q : r] sorted in ascending order

1: n← r − q + 1
2: if n ≤ 30 then
3: sort A[q : r] using any sorting algorithm
4: else
5: select a random element x from A[q : r]
6: k ← Par-Partition(A[q : r], x)
7: spawn Par-Randomized-QuickSort(A[q : k − 1])
8: Par-Randomized-QuickSort(A[k + 1 : r])
9: sync

10: end if

Give the complexity, both in term of number of operations and depth, of the “Par-Randomized-
QuickSort” algorithm in the best case. Remark: you need to explain what is the best case but
you do not need to prove this fact.

Question I.4. Data movements
a) What is the pattern of memory allocations if these algorithms?
b) Propose some ideas to improve performance of these algorithms in term of memory alloca-

tion and memory access

II. Building spanning trees (≈ 40 min)

In this problem, we consider a connected weighted undirected graph represented as a symmetric
matrix A. If i and j are connected then A[i, j] > 0 and A[i, j] denotes the weight of the connection
between i and j. If i is not connected to j, then we assume that A[i, j] = ∞. The following figure
depicts a simple but typical graph and its matrix representation.

1

2

6

55

6 4
3

63
0

3

2

4 5

1

A =



0 3 1 6 ∞ ∞
3 0 5 ∞ 3 ∞
1 5 0 5 6 4
6 ∞ 5 0 ∞ 2
∞ 3 6 ∞ 0 6
∞ ∞ 4 2 6 0



We propose to study how to parallelize Prim’s algorithm that build a minimum spanning tree
(MST) of a graph, i.e., a subset of the edges that forms a tree that includes every vertex, where the
total weight of all the edges in the tree is minimized.

Prim’s algorithm is a greedy algorithm that starts with an empty spanning tree. Intuitively, there
are two sets of vertices. The first set contains the vertices already included in the MST, the other set
contains the vertices not yet included. At every step, it considers all the edges that connect the two
sets, and picks the minimum weight edge from these edges. After picking the edge, it moves the
other endpoint of the edge to the set containing MST.

Here is a pseudo code (in C style) of a sequential version of this algorithm.

3

M2R MOSIG: Parallel Systems 4 / 13

1| list prim_MST(int n , double A[][]) {
2| list_t MST = {}; /* an empty list */
3| double d[n] = [inf, inf, .., inf]; /* inf means infinite */
4| int v[n] = [-1, -1, ..., -1]; /* v[j] is s.t A[v[j],j] = d[j] */
5| int r = 0;
6| for(step=0; step<n-1, step++) {
7| for(j=0; j<n; j++) { /* d[j] <- min(d[j],A[r,j]) */
8| if(A[r,j]<d[j]) {
9| d[j]=A[r,j];

10| v[j]=r;
11| }
12| }
13| r = index such that d[r] is minimal and non-zero;
14| Add (r,v[r]) in MST;
15| }
16| return MST;
17| }

Question II.1. Apply the previous algorithm to build a minimum spanning tree of the simple graph
given earlier. You will detail the state of d, v, r, and MST at every step.
(The goal of this question is to make sure you understand how the algorithm works so that you
can answer the next question.)

Question II.2. Propose a way to parallelize this algorithm on a ring of processors. You will detail
how the different variables should be distributed among the processors and you will give a
performance model for your algorithm.

III. Efficient Sorting on a Recent Accelerator (≈ 1h15)

The article that can be found in the appendix is an article published in a workshop of the Super-
Computing conference in 2013. Some parts have been removed for clarity. This document reports
investigations on efficiently implementing the sorting operation on the recently released Intel Xeon
Phi. Unlike classical accelerators like GPU, this accelerator does not require major code rewriting.
However, obtaining good performances can be challenging.

The goal of this section is to evaluate both your ability to quickly comment articles, figures and
experimental protocol (question III.2) and to connect some of the fundamentals presented during the
lecture with a recent research article (question III.1).

You should thus not try to understand all the details of this article. It
is not a problem if some parts remain unclear. You should rather try to
understand the most important parts.

You should thus first carefully read the following questions before engag-
ing yourself into the reading of the whole article.

Question III.1. After reading through the article explain:
1. Why do the authors focus on register sort (in a few lines)?
2. Comment and interpret the results given in Table 4 (at most 15 lines).
3. What are the main issues the authors have to face? (20 lines plus drawings if needed)
4. What is the general architecture of the whole algorithm and what do you think about it?

(15 lines plus drawing)
If you consider that some parts are unclear, do not hesitate to mention them and formulate
hypothesis on what you understand or on how you think things may actually work.

Question III.2. List all the aspects of the performance evaluation of Section 4 that you think should
or could be improved.

4

M2R MOSIG: Parallel Systems 5 / 13

Appendix

Here is a short description of the Xeon Phi accelerator in addition to the article.

The Intel Xeon Phi coprocessor is a many-core system based on the Intel MIC (Many
Integrated Core) architecture. The current commercial Xeon Phi (5110P) has 60 simplified
Intel CPU cores running at 1056 MHz and supports 4 threads per core with hyperthread-
ing (thus, 240 threads in the die). Each core has a vector unit with 64 byte registers
featuring a new vector instruction set known as Intel Initial Many Core Instructions
(IMCI), also known as AVX-512, and which is described in the following article. The
cache memory in each core is arranged in a 32 kb L1 data cache, 32 kb L1 instruction
cache, and a private 512 kb L2 unified cache which is kept coherent by a distributed tag
directory system (DTDs). Cores are arranged on a bidirectional ring bus that provides
high scalability to which other components like memory controllers or tag directories are
also connected.

The previous figure represents the basic architecture of the Xeon Phi including cores, bus,
memory controllers and tag directories. There are 64 tag directories (TD) connected to the
ring and the address-mapping to the tag directories is based on hash functions over mem-
ory addresses, leading to an even distribution around the ring. The memory controllers,
also connected to the ring, provide access to the GDDR5 memory (8 GB of global mem-
ory). The coprocessor runs a simplified Linux-based OS in one of the cores. The main
advantage of the Xeon Phi over other accelerators or coprocessors is that it provides the
well-known x86 ISA and memory model, hence the programming effort is just focused
on how to better exploit performance, but it can be done with known techniques and lan-
guages such as OpenMP or MPI. The Xeon Phi can also be used as a mere coprocessor
in which the host offloads code to be accelerated, or as an independent unit that runs a
whole application or that communicates in a symmetric manner with the host.

5

M2R MOSIG: Parallel Systems 6 / 13

6

M2R MOSIG: Parallel Systems 7 / 13

7

M2R MOSIG: Parallel Systems 8 / 13

8

M2R MOSIG: Parallel Systems 9 / 13

9

M2R MOSIG: Parallel Systems 10 / 13

10

M2R MOSIG: Parallel Systems 11 / 13

11

M2R MOSIG: Parallel Systems 12 / 13

12

M2R MOSIG: Parallel Systems 13 / 13

13

