Master Of Science in Informatics at Grenoble
Parallel, Distributed, and Embedded Systems

Parallel Systems

(1st Session)

Vincent Danjean, Arnaud Legrand

January 26th, 2015

Important information.
Read this before anything else!

> Any printed or hand-written document is authorized during the exam, even dictionaries.
Books are not allowed though.

> Please write your answers to each problem on separate sheet of papers.

> The different problems are completely independent. You are thus strongly encouraged to start
by reading the whole exam. You may answer problems and questions in any order but they
have to be written in the order on your papers.

> All problems are independent and the total number of points for all problems exceeds 20. You
can thus somehow choose the problems for which you have more interest.

> The number of points alloted to each question gives you an indication on the expected level
of details and on the time you should spend answering.

> Question during the exam: if you think there is an error in a question or if something is
unclear, you should write it on your paper and explain the choice you made to adapt.

> The quality of your writing and the clarity of your explanations will be taken into account in
your final score. The use of drawings to illustrate your ideas is strongly encouraged.

M2R MOSIG: Parallel Systems 2/13

I. Parallel Quick Sort (~ 1h00)

Question I.1. Preliminary question

We consider n independent tasks t1,...,t, , with n very large. For 1 < i < n, the task t;

performs w; operations. The values w; are unknown, but are assumed to be bounded by two

constantscandc :c <w; <.

We consider a multicore machine with p identical cores.

a) We first assign “ tasks to each core. Prove that the execution time T}, verifies “c < T, < %c’ .
Exhibit a worst case for the w; together with an assignment such that the execution time T),
is close to %722;1 i

b) Write a implementation of a Parallel For Loop (in a language like Cilk, Athapascan/Kaapi,

OpenMP, MPI...) such that the execution time T), verifies T), < # + O(logn) with high
probability: note that this time should be achieved whatever the values of the constants c, ¢

and the w; are. Analyze the work and depth of this algorithm (justify very briefly).

Algorithm 1 Par-Partition(A[q : |, z)

Input: An array A[q : r] of distinct elements and an element z from A[q : 7]
Output: Rearrange the elements of A[q: r], and return an index k € [g,], such that all elements in

e e e S

N NN
N = O

—_
N

Alq : k — 1] are smaller than z, all elements in A[k + 1 : r| are larger than =, and A[k] = z.
n<—r—q+1
ifn =1 then
return ¢
end if
Array B[0:n —1],1t[0 : n — 1], gt[0 : n — 1]
parallel fori < 0ton — 1 do
Bli] + Alg + 1]
if B[i] < x then [t[i] + 1 else it[i] < 0
if B[:] > x then gt[i] «+ 1 else gt[i] < 0
end parallel for

: 1t[0 : n — 1] + Par-Prefix-Sum(l¢[0 : n — 1], +)
: gt[0 : n — 1] « Par-Prefix-Sum(gt[0 : n — 1], +)
: k< q+ltn —1]

: A[k] — T

: parallel fori <~ 0ton — 1 do

if B[i] < x then

Algq + It[i] — 1] + BJi]
else if B[i] > = then

Alk + gt[i]] < Bli]
end if

: end parallel for
: return k

Question 1.2. “Par-Partition” Algorithm Analysis

a) Using the following entry A = [9,5,7,11,1,3,8,14,4,21] and k = 8, explain with schema
how this program works

b) We recall that Par-Prefix-Sum can be implemented with a parallel algorithm with O(n)
operations and a depth of O(log®n). We also consider that memory allocations without
initialization are done in constant time.
Analyze the complexity of each part of the provided algorithm, both in term of number of
operations and depth

c) Conclude about the global complexity of the algorithm (still both in term of number of
operations and depth)

Question 1.3. Randomized Parallel QuickSort

M2R MOSIG: Parallel Systems 3/13

Algorithm 2 Par-Randomized-quickSort(A[q : r])
Input: An array A[q : r] of distinct elements
Output: Elements of A[q : 7] sorted in ascending order
Ln<r—qg+1
2: if n < 30 then

3: sort A[q : r] using any sorting algorithm

4: else

5: select a random element x from Afq : 7]

6: k < Par-Partition(A[q : 7], x)

7: spawn Par-Randomized-QuickSort(A[q : k — 1])
8: Par-Randomized-QuickSort(A[k + 1 : r])

9. sync
10: end if

Give the complexity, both in term of number of operations and depth, of the “Par-Randomized-
QuickSort” algorithm in the best case. Remark: you need to explain what is the best case but
you do not need to prove this fact.

Question 1.4. Data movements
a) What is the pattern of memory allocations if these algorithms?
b) Propose some ideas to improve performance of these algorithms in term of memory alloca-
tion and memory access

Il. Building spanning trees (=~ 40 min)

In this problem, we consider a connected weighted undirected graph represented as a symmetric
matrix A. If i and j are connected then Ai, j] > 0 and A[i, j] denotes the weight of the connection
between i and j. If i is not connected to j, then we assume that A[i, j] = oo. The following figure
depicts a simple but typical graph and its matrix representation.

88 orwo
g wg oo w
= oYy OO Ot
w8 o w® o
508 oy
L TEE:

We propose to study how to parallelize Prim’s algorithm that build a minimum spanning tree
(MST) of a graph, i.e., a subset of the edges that forms a tree that includes every vertex, where the
total weight of all the edges in the tree is minimized.

Prim’s algorithm is a greedy algorithm that starts with an empty spanning tree. Intuitively, there
are two sets of vertices. The first set contains the vertices already included in the MST, the other set
contains the vertices not yet included. At every step, it considers all the edges that connect the two
sets, and picks the minimum weight edge from these edges. After picking the edge, it moves the
other endpoint of the edge to the set containing MST.

Here is a pseudo code (in C style) of a sequential version of this algorithm.

M2R MOSIG: Parallel Systems 4/13

1] list prim MST(int n , double A[][]) {

2 list_t MST = {}; /* an empty list x/
3 double d[n] = [inf, inf, .., 1inf]; /* inf means infinite %/
4 | int v[n] = [-1, -1, ..., —-11; /* v[]J] is s.t A[vI[Jl,]j] = dl[j] =/
5] int r = 0;

o | for (step=0; step<n-1, step++) {

71 for (j=0; j<n; J++) | / * dlj] <= min(d[3J],Alr,]]) */
8| if(Alr,JI<dljl) |

91 dljl=Alzr,]Jl;

10| vijl=r;

11| }

12 }

13] r = index such that d[r] is minimal and non-zero;
14| Add (r,v([r]) in MST;

15] }
16| return MST;

171 }

Question II.1. Apply the previous algorithm to build a minimum spanning tree of the simple graph
given earlier. You will detail the state of d, v, r, and MST at every step.
(The goal of this question is to make sure you understand how the algorithm works so that you
can answer the next question.)

Question I.2. Propose a way to parallelize this algorithm on a ring of processors. You will detail
how the different variables should be distributed among the processors and you will give a
performance model for your algorithm.

lll. Efficient Sorting on a Recent Accelerator (~ 1h15)

The article that can be found in the appendix is an article published in a workshop of the Super-
Computing conference in 2013. Some parts have been removed for clarity. This document reports
investigations on efficiently implementing the sorting operation on the recently released Intel Xeon
Phi. Unlike classical accelerators like GPU, this accelerator does not require major code rewriting.
However, obtaining good performances can be challenging.

The goal of this section is to evaluate both your ability to quickly comment articles, figures and
experimental protocol (question I11.2) and to connect some of the fundamentals presented during the
lecture with a recent research article (question III.1).

You should thus not try to understand all the details of this article. It
is not a problem if some parts remain unclear. You should rather try to
understand the most important parts.

You should thus first carefully read the following questions before engag-
ing yourself into the reading of the whole article.

Question lll.1. After reading through the article explain:
1. Why do the authors focus on register sort (in a few lines)?
2. Comment and interpret the results given in Table 4 (at most 15 lines).
3. What are the main issues the authors have to face? (20 lines plus drawings if needed)
4. What is the general architecture of the whole algorithm and what do you think about it?
(15 lines plus drawing)
If you consider that some parts are unclear, do not hesitate to mention them and formulate
hypothesis on what you understand or on how you think things may actually work.

Question lll.2. List all the aspects of the performance evaluation of Section 4 that you think should
or could be improved.

M2R MOSIG: Parallel Systems 5/13

Appendix
Here is a short description of the Xeon Phi accelerator in addition to the article.

The Intel Xeon Phi coprocessor is a many-core system based on the Intel MIC (Many
Integrated Core) architecture. The current commercial Xeon Phi (5110P) has 60 simplified
Intel CPU cores running at 1056 MHz and supports 4 threads per core with hyperthread-
ing (thus, 240 threads in the die). Each core has a vector unit with 64 byte registers
featuring a new vector instruction set known as Intel Initial Many Core Instructions
(IMCI), also known as AVX-512, and which is described in the following article. The
cache memory in each core is arranged in a 32 kb L1 data cache, 32 kb L1 instruction
cache, and a private 512 kb L2 unified cache which is kept coherent by a distributed tag
directory system (DTDs). Cores are arranged on a bidirectional ring bus that provides
high scalability to which other components like memory controllers or tag directories are
also connected.

[core | [core | eee [coRe | [core |
v < Y v
Y > 4 I \
[cooRs]«—>| | [] [T] ees [| [| > Goory
GDDR5 |«—» ™ ™
IIAI"'TIDIT‘DI (oo
v ‘ v /
A A > A A
[core | [coRe | eee [CORE | [coRE |

The previous figure represents the basic architecture of the Xeon Phi including cores, bus,
memory controllers and tag directories. There are 64 tag directories (TD) connected to the
ring and the address-mapping to the tag directories is based on hash functions over mem-
ory addresses, leading to an even distribution around the ring. The memory controllers,
also connected to the ring, provide access to the GDDR5 memory (8 GB of global mem-
ory). The coprocessor runs a simplified Linux-based OS in one of the cores. The main
advantage of the Xeon Phi over other accelerators or coprocessors is that it provides the
well-known x86 ISA and memory model, hence the programming effort is just focused
on how to better exploit performance, but it can be done with known techniques and lan-
guages such as OpenMP or MPI. The Xeon Phi can also be used as a mere coprocessor
in which the host offloads code to be accelerated, or as an independent unit that runs a
whole application or that communicates in a symmetric manner with the host.

M2R MOSIG: Parallel Systems

6/13

Register Level Sort Algorithm on Multi-Core SIMD
Processors

Tian Xiaochen, Kamil Rocki and Reiji Suda
Graduate School of Information Science and Technology
The University of Tokyo & CREST, JST
{xchen, kamil.rocki, reiji}@is.s.u-tokyo.ac.jp

ABSTRACT

State-of-the-art hardware increasingly utilizes SIMD paral-
lelism, where multiple processing elements execute the same
instruction on multiple data points simultaneously. How-
ever, irregular and data intensive algorithms are not well
suited for such architectures. Due to their importance, it
is crucial to obtain efficient implementations. One example
of such a task is sort, a fundamental problem in computer
science. In this paper we analyze distinct memory accessing
models and propose two methods to employ highly efficient
bitonic merge sort using SIMD instructions as register level
sort. We achieve nearly 270x speedup (525M integers/s) on
a 4M integer set using Xeon Phi coprocessor, where SIMD
level parallelism accelerates the algorithm over 3 times. Our
method can be applied to any device supporting similar
SIMD instructions.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: PROCESSOR

ARCHITECTURES—Single-instruction-stream, multiple-data-

stream processors (SIMD)

General Terms

Algorithms, Performance, Design

Keywords
SIMD, Parallel, Sort, Xeon Phi, Register, Irregular

1. INTRODUCTION

Multi-core architecture has been widely used in state-of-
art processors. For example, NVIDIA’s Tesla K20 GPU
has 14 Stream Multiprocessors(SMX) and Intel’s Xeon Phi
has 60 cores. Xeon Phi supports 512 bits SIMD instruc-
tion i.e. AVX-512 which can process 16 integers (4 bytes)

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SC13 November 17-21, 2013, Denver CO, USA

Copyright is held Copyright is held by the owner/author(s).

ACM 978-1-4503-2503-5/13/11
http://dx.doi.org/10.1145/2535753.2535762.

simultaneously. GPU employs a similar architecture: single-
instruction-multiple-threads(SIMT). On K20, each SMX has
192 CUDA cores which act as individual threads. Even a
desktop type multi-core x86 platform such as i7 Haswell
CPU family supports AVX2 instruction set (256 bits). De-
veloping algorithms that support multi-core SIMD architec-
ture is the precondition to unleash the performance of these
processors. Without exploiting this kind of parallelism, only
a small fraction of computational power can be utilized.

Parallel sort as well as sort in general is fundamental and
well studied problem in computer science. Algorithms such
as Bitonic-Merge Sort or Odd Even Merge Sort are widely
used in practice. However, implementing sort algorithm
on SIMD processors efficiently, especially on Xeon Phi or
x86 CPU remains a challenging job. Until now, many algo-
rithms have been proposed for GPU or CPU. GPU version
of the algorithm cannot be directly transplanted a proces-
sor supporting 512-bit wide vector instructions such as Xeon
Phi. Nvidia GPUs have fast, explicitly manageable on-chip
shared memory and their cores are more functional and ex-
ecute individual threads concurrently with SIMT synchro-
nization on hardware level. Programming Xeon Phi poses a
different challenge - the instruction restrictions of memory
accesses (discussed in Section 3.1) needed during SIMD sort
or merge.

In this paper, we tocus on developing parallel sort and
merge algorithms only in register, under the constraints of
memory accessing model within registers. We propose two
in-register sort/merge algorithms which only take a constant
number of registers (2 or 3) no matter how long SIMD in-
struction is. Then, we present theoretical and empirical
analysis of the execution time. We chose AVX-512 and Xeon
Phi as our main experiment environment as a extreme case
of SIMD parallelism combined with restricted access pat-
terns and limited bandwidth. We also implemented the al-
gorithm on Intel E5-2670 with AVX instructions. The same
algorithm can be derived for other SIMD processors.

2. RELATED WORK

M2R MOSIG: Parallel Systems 7 /13

Comparison based sort is a more general sort algorithm.
Q(nlog(n)) is the lower bound of its time complexity. Many
theoretical results have been published in the field of parallel
sorting. Bitonic-Merge Sort[3] or Odd-Even Merge Sort[8]
are just two algorithms usually used in practice. They are
also sorting networks traversed in O(log®(n)) steps. Though
log(n)-step algorithm has been invented[9], due to the large
overhead it is hardlv used in practice.

There is a large number of research papers which describe
implementing parallel sort. We classify the algorithms into
two types: Register Level Sort and Multi-Core Level Sort.
This classification is made by the way of synchronization in
processors. In register level, SIMD instructions play the role
of cores. Synchronization is not necessary(GPU may need
synchronization explicitly) since SIMD computation is natu-
rally synchronized after each instruction. In the situation of
Multi-Core level, communication happens in slow cache or
RAM. The cost of synchronization becomes more expensive.

le——

le——]
le——

le——]

__,
N
le——1
w O

EEEREEENE
> o e— e

o [[& [«

step:

1
:
1
T
!
T
i
T
\
1
j
|
\
i
stage: i

!
i
!
i
;
1

Figure 2: Bitonic-Merge sorting network of 8 element.

3. OUR APPROACH

First, let’s define K as the number of elements that one
vector instruction can handle and two available registers as
R1 and R2. Bitonic-Merge Sort is a often used as a parallel

M2R MOSIG: Parallel Systems

8/13

sort algorithm. Figure 2 shows the sorting network of 8
elements.

The number in the box represents the indices of element.
An arrow represents a comparison of a pair of elements,
storing the larger element where the arrow is pointing and
the smaller element on the opposite side. Figure 3 shows an
example of Bitonic-Merge Sort.

b 1= @@
oo | 1w+
DN
e R R D)
(53 1—3‘*71?” 1 53]
B = N
y
B G 21} —t—13)
step: 1 2 3 4 5 6

Figure 3: An example of Bitonic-Merge sort.

3.1 AVX-512 Capability of Comparison

To implement Bitonic-Merge Sorting network using recent
Intel’s vector extensions, it is necessary to ravel out what
AVX-512 can do in a sort problem. On GPU, CUDA core
seems to more flexible, since one core corresponds to one
real thread from the programming point of view (CUDA,
OpenCL and etc.). On the other hand, programming us-
ing AVX-512 is more like assembling instructions together
in a procedural way. From the hardware perspective, GPU
has on-chip shared memory which makes CUDA random ac-
cesses memory possible. Therefore memory accessing pat-
tern of CUDA core is PRAM. When we consider AVX-512,
vector register has to load data from main memory or cache
before calculation in a vector-manner, meaning chunks of
memory at once. Many operations have to be executed
between two registers. So memory access pattern is not
PRAM.

—

Figure 4: Capability of AVX-512 instruction set

Let’s assume that some data is loaded into registers R1
and R2. Figure 4 shows the capability of AVX-512. No-
tice that the second operation is invalid, because elements
in the same register can not be compared with each other.
With permutation operation (e.g. _mmb512_shuffle_epi32)
and mask operation (e.g. _mmb512_mask min epi32), it is
possible to do comparison like (3) and (4). Corresponding
pseudocode is shown in Table 1. We can conclude from the
discussion that: A comparison is valid on AVX-512 if each
pair of elements be is placed in two separate registers and
compare option is applied between them. Our goal is to gen-
erate the sorting network like in Figure 2 and at the same
time satisfy the memory access constraints. Then, the pro-
gram can be hard-coded from generated network with AVX-

512 instructions. Intuitively the fewer instructions the code
has, the faster the program becomes. We propose two meth-
ods to generate new sorting network from Bitonic-Merge
sorting network.

Table 1: Capability of AVX-512

Situation | Pseudocode
1) | RU = SIMD_min(R1,R2);
R2’ = SIMD_max(R1,R2);
(2) | (invalid)
(3) | R2” = permute(R2,<2,1,3,4>);
R1’ = SIMD_min(R1,R2);
R2’ = SIMD_max(R1,R2);
(4) | R’ = SIMD_mask min(R1,R2,0b1010);
R2’ = SIMD_mask_min(R1,R2,0b0101);
R1’ = SIMD_mask _max(R1,R2,0b0101);
R2’ = SIMD_mask max(R1,R2,0b1010);

3.2 1-Register Method

The 1-Register Method does not mean that we are only
using one register, but it means sorting such number of ele-
ments that can be stored in one register at the same time, i.e.
K elements. Let’s assume that the data is loaded into R1
initially. The target is to get elements which are stored in R1
to be compared with each other. The idea is to make a copy
of R1, for instance copy it to R2. In such a way, elements
can be compared with each other. The right-hand part of
Figure 5 shows the example of 4 elements sorting network-
ing using 1-register method. The left-hand part of the figure
represents the 4 elements sorting network of bitonic merge.
Obviously, the left-hand side and the right-hand side parts
follow the same logic. The difference is 1-Register Method
compares each pair of elements twice. The order of permu-
tation is generated from bitonic merge sorting network.

T
B
3 1 3
gl *tl g O f

I - 7
4 elements sorting |
network of bitonic E
merge sort ':

Step 1 2 3

4 elements sorting network of 1 Register Method
Figure 5: 1-Register Method Sorting Network

Let’s define = as the position of element and fi(z) as
the corresponding position should be compared to at ith
step. fi(z) can be calculated from normal bitonic merge
sort. Then we have code as in Algorithm 1 using AVX-512
instructions. There are 10 steps in total, and each step con-
tains 3 AVX-512 instructions.

Algorithm 1 1-Register Method Sorting Algorithm

1: _mb512i a,b;

2: b= _mmbl2_shuf fle_epi32(a, _MM_PERM_CDAB);
3: a = _mmb12_mask_min_epi32(a, 026996, a, b);
4
5

: a = _mmbl2_mask_max_epi32(a, 029669, a,b);
> 3 instructions in one step. The rest of the steps
are similar.

M2R MOSIG: Parallel Systems 9/13

3.3 2-Register Method Figure 8 shows an example how the invalid situation be

One disadvantage of the previous approach is that the el- Aavo%ded i.n tl{e first two steps. The whole sorting network
ements need to be compared twice. Therefore, we developed is given in Figure 9. IP this f.'lg.;ure, a dashed black arrow
the 2-Register Method to avoid it. The 2-Register Method corresponds to exchanging positions of the elements.

sorts 2K elements at once each time. At first, the data is

loaded into registers R1 and R2. However, this time, bitonic 1]
merge sorting network scheme is applied directly. Unfortu-
nately, bitonic merge cannot be simply applied even in the E i E E
first step (leftmost arrows in Figure 6). L L i
P s 2! ool o
— B
3
Step 1 2 3 4 5 6 additional step
Can be
considered
as Figure 9: Capability of AVX-512 instruction set
8 8}
Step 1 2(invalid)

First 2 steps of Bitonic merge sort

Figure 6: Invalid situation of first 2 steps

Since initially the dataset is unsorted at all, it can be
considered as being in any order. In the second step, in-
valid situation would occur again if the sorting network is
applied directly. To solve this problem, the position of the
elements should be prepared for the next step so that no in-
valid situation occurs. The idea is to look one step ahead.
Before introducing the one step ahead approach, it is bet-
ter to describe how to perform exchanging the elements at
the same time with comparing them. Doing comparison and
then exchange of a pair of elements is equivalent to doing
the comparison in the opposite direction. Figure 7 shows
this procedure.

N
n— equivalent
n to

e]
oo la]]

<«<—> :exchange @ = --—---- > :Changed direction compare

Figure 7: Exchange a pair of two elements

If the following step requires a pair of elements to be com-
pared, and they are in the same register in the current step,
they should be exchanged with one another, so that they are
in different registers in the next step.

1 .
L 0 o
- o o
2 B
gt |1 = B
l re b o g
o t | 8 7
Step: 1 2 3 1 2
—— :old direction -—--3 ‘actualdirection ----- > :exchange

Figure 8: Solution of invalid situation

M2R MOSIG: Parallel Systems

10 / 13

The essential sorting program code is similar to the 1-
Register Method, and it is presented as Algorithm 1.

Algorithm 3 2-Register Method

: _mb12¢ a,b, a2;

a2 = _mm512_mask_min_epi32(a, 026996, a, b);

a2 = _mmb512_mask_maz_epi32(a, 029669, a, b);

b = _mmb512_mask_maz_epi32(a, 026996, a, b);

b = _mmb512_mask_min_epi32(a, 029669, a, b);

b = _mmb512_shuf fle_epi32(b,_MM_PERM_CDAB);
> five instructions consist of one step. The rest of

the steps are similar.

8: ... > additional step:

9: a = _mmb512_min_epi32(a2, b)

: b=_mmb512_maz_epi32(a2,b)

: permute a and b to correct order.

Because the procedure is exactly the same as Bitonic-
merge sort, the theoretical time complexity has no difference
in these two methods. Since 2-Register Method only uses 1
permute instruction per step, it saves 1 instruction in each
given step. However, the 2-Register Method does not keep
the order of elements in registers, so it needs one more step
to rearrange the elements. Table 2 shows a comparison of
the two methods regarding instruction count.

Table 2: Comparison of 1-Register and 2-Register methods

Algorithm | 1-Register Method

2-Register Method

Set Length K 2K

log(K)(log(K)+1
Number of steps og()(;g()+1)

Intructions/step 3 5
86 77

Total instructions®

® When sorting 32 elements and K = 16
(Xeon Phi implementation)

3.4 Register Merge

Merging two sorted sequence is an essential part of the
merge sort algorithm. Sequential merge algorithm can be
done in O(n) time complexity, where n is defined as the
length of data. However, in the parallel case, it is very
hard to achieve linear speedups in practice, e.g. merging
K elements with K cores in O(1) time. Needless to say effi-
cient merging using SIMD Instructions is even harder. With
bitonic merge, O(Klog(K)) work complexity, it is possible
to merge K elements in O(log(K)) steps. The procedure of
merging in registers is exactly the same as bitonic merge,
which is also the last stage of bitonic merge sort. There
are two methods in this case too: 1-Register and 2-Register.
Since it is only the last stage of bitonic merge sort, it shares
some common code with register-level sort. Input is given a
two sorted sequences. One needs to be sorted in descending
and the other in ascending order. Applying SIMD paral-
lelism to merge longer sequence (e.g.longer than K) needs a
little bit more work.

log(2K)(log(2K)+1)+2
2

Thus all SIMD components of the algorithm are prepared.
The rest is to assemble them together.

3.5 Implementation

Figure 10 shows the overview of the whole algorithm. The
subroutines are divided according to the size of data. Gen-
erally the outer algorithm is merge sort algorithm. Firstly,
each core sorts a part of data recursively (the orange color
merge sort procedure in Figure 10). When the size of data
is small enough, register-level sort is employed. Alternately
sorted subsequence should be merged recursively with the
algorithm introduced in Section 3.4. When each core fin-
ishes sorting its own data, merge procedure becomes multi-
core-level merge (cyan color merge sort procedure in Figure
10). This subroutine is in charge of merging two sorted sub-
sequences in parallel using multiple cores. Synchronization
between multi-cores is required. Here our algorithm uses
Merge Path algorithm[4] to help dividing sequences, so that
each core can do merging independently. Merge Path algo-
rithm is a parallel merge algorithm which uses binary search
in order to divide two sequences into pairs of subsequences.
Then each core can merge such two short subsequence. It
is highly balanced algorithm because the partitioning guar-
antees that the total length of any pair of subsequences are
the same. Hence each core process the same mount of data.
Merge Path algorithm is used only for partitioning, but it

10

M2R MOSIG: Parallel Systems

11/13

Sorted sequence |

Core #1

Core #2

Synchronization is
required

Parallel merge sorted sequence
by 2 cores

Parallel merge sorted sequence by 4 cores

Core #3 \ ‘\/ 7 Core #4 \
\

Parallel merge sorted sequence
by 2 cores

Merge sort
algorithm, with

register level
merge

Bitonic-
). Merge sort
J algorithm

Recursive
Merge

Recursive
Merge

e
Recursive Recursive
Merge

Register Level Sort

Input sequence |

Figure 10: Algorithm Overview

contributes to extra computation which becomes the main
overhead of our algorithm. Recursive merging is being done
by multiple cores and whole data is finally sorted.

4. PERFORMANCE AND ANALYSIS

In Figure 10, Merge Sort (orange) and Register Sort (pur-
ple) are performed within a single core
Parallel Merge requires

synchronization between multiple cores

Im-
plementation and empirical experiments are done on Xeon
Phi 5100 series. Data for experiment is generated randomly,
distributed uniformly in range from 0 to 23! — 1. Table 4
shows speedup provided by SIMD and multi-core respec-
tively, when sorting 4 million integer elements.

Table 4: Performance of our sort algorithm using Xeon Phi

Configuration | Speed Up Time(sec)

Sequential merge sort 1.0 2.3

Sequential merge sort w/ SIMD 3.7 0.61
240-thread merge sort w/o SIMD 79 0.029
240-thread merge sort w/ SIMD 291 0.0079

The performance is measured by how much data (how
many elements) can be sorted per second conventionally.
Since comparison sort takes O(nlog(n)) time complexity,
the performance will drop with the growth of data length
n. Our algorithm achieves the peak performance when the
data size is 4 million, which is about 525M integer elements
per second. In our opinion, the architecture of Xeon Phi,
particularly it’s memory bandwidth and cache hierarchy are
responsible for this phenomenon. Further experiments and
optimization of the algorithm may be needed in order to fully
understand the performance peak occurring for a particular
number of elements. Figure 11 compares our result with
other platforms and algorithms. Compared to the fastest,
but limited radix-sort, our algorithm performs almost as
well. It is only 13% slower for that particular number of el-
ements with performance slightly dropping as we increased
the dataset size. To show the generality of the algorithm,

11

M2R MOSIG: Parallel Systems

12 /13

——— Xeon Phi Our Approach
====CPU i7 radix

——CPU i7 merge
-==--GPU GTXTITAN radix
——GPU GTXTITAN Merge
~==-Xeon Phi Radix

1,2000
°
2 10000
Q
Q
)
2 sooo
Q
a
8
D e000
} .
Q
(7]
L 400
c
[0)
5
L 2000
L
c
xe]
= 0.0
s 18 20 2 2 26

log of Input data size

Figure 11: Performance compare to other algorithms and platforms

we implement float data sorting program on Xeon Phi and
Intel E5-2670 with AVX, shown in Figure 12. Sorting float
takes about 2 times longer than integer on Xeon Phi, due to
difference in hardware. It proves the main advantage of our
algorithm, meaning its generality regarding the data type
(since it is based on comparison sort, as opposed to radix-
sort).

5. CONCLUSIONS

This paper explored the issue of parallel sort, a fundamen-
tal computer science problem, on a class of SIMD processors.
Main contribution is the proposed register level sort com-
bined with merge algorithm. The key idea of our approach
is changing the bitonic merge sorting network in order to sat-
isfy the constraint of memory accesses within registers. Our
algorithm uses constant number of registers to sort SIMD in-
struction length data, which exposes strong scalability. Gen-
eration of the sorting network has the same time complexity
as bitonic merge sort, which can handle long vector instruc-
tion situation. Furthermore this algorithm can be generally
employed in SSE, AVX or any similar instruction set.

We also implemented the algorithm on Xeon Phi combined
with merge sort algorithm. Empirical performance results
showed promising speed which is not far from the fastest
radix sort implementation, while maintaining the generality
of comparison sort. We achieve nearly 270x speedup (525M
integers/s) on a 4M integer set using Xeon Phi coprocessor,
where SIMD level parallelism accelerates the algorithm over
3 times. Our method can be applied to any device support-
ing similar SIMD instructions.

6. FUTURE WORK

Our algorithm is able to apply Bitonic-Merge sorting net-
work on SIMD instruction processor like AVX-512. Other
types of sorting network (e.g. Odd-Even or even less step
algorithm) should also be possible to be adapted to AVX-
512. To verify this, more work is required. Usually, not only
numbers need to be sorted. Sorting keys with values (e.g.

indices or address) is widely used. Efficient implementations
may need more work in order to apply SIMD instructions
like AVX-512. We would also like to perform experiments
using other hardware, such as AVX2 supporting CPUs and
run comparative benchmark on many machines using differ-
ent data types.

12

M2R MOSIG: Parallel Systems 13 /13

400
E 350
o]
0 300
i)
c
1) 250
€D
2 g
l_:l_'J 8 200 ——Xeon Phi Our Approach
8 2 1m0 ——E5-2670
g %_/\
B 100
™
- 50
9
= 0 ; ,
= 16 18 20 22 24 26
log of Input data size
Figure 12: Float elements sorting performance
7. REFERENCES Parallel Architecture and Compilation Techniques pp.
[1] Jatin Chhugan et al. Efficient Implementation of 189_19,8 . . .
Sorting on Multi-Core SIMD CPU Architecture [11] Bronislava Brejov Analyzing variants of Shellsort
Proceedings of the VLDB Endowment, Volume 1 Issue Information Processing Letters Volume 79, Issue 5, 15
2, August 2008, pp. 1313-1324 September 2001, pp. 223-227
[2] Nadathur Satish et al. Fast Sort on CPUs, GPUs and [12] Naga K. GOVlIldaI‘%i‘]u et al GPU:Teran)rt: High
Intel MIC Architectures Technical Report, 2010 Performance Graphics Co-processor Sorting for Large

Database Management SIGMOD 2006 Chicago, Illinois,
USA

[13] Michael Herf, Dec 2001 Radix Tricks: Retrieved Oct
13rd, 2013 from: http://stereopsis.com/radix.html

(3] K. E. Batcher Sorting Network and Their Applications
AFIPS ’68 (Spring) Proceedings of the April 30-May 2,
1968, spring joint computer pp. 307-314

[4] Saher Odeh et al. Merge Path - Parallel Merging Made . .
Simple Parallel and Distributed Processing Symposium [14] Andrew Davidson et al. Efficient Parallel Merge Sort
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th for Fixed and Variable Length Keys Innovative Parallel
International. pp. 1611 - 1618 Computing(InPar) ,2012 San Jose, USA

[5] Nadathur Satish et al. Designing Efficient Sorting [15] GEFflk Slnt.orn afld Ulthss.a(‘;ss;) 1 I,Pa}?t parallell ¢
Algorithms for Manycore GPUs Parallel & Distributed U-sorting using a fybrid a gor_lt m Jonrnal o
Processing, 2009. IPDPS 2009. IEEE International Parallel and Distributed Computing Volume. 68, Issue
Symposium on Parallel and Distributed Processing 10,.October 2098’ Pp- 1381-1388 . .

[6] Nadathur Satish et al. Fast sort on CPUs and GPUs: a [16] (.}1an.franco.Bllard1 and .Alexandru NICOIau_ Adaptive
case for bandwidth oblivious SIMD sort SIGMOD ’10 Bitonic Sorting: An O.ptlmal Parallel Algorithm for
Proceedings of the 2010 ACM SIGMOD International Shared-Memory Machines SIAM, Journal on

Conference on Management of data pp. 351-362 Computing, 1989, Volume 15 Issue 2, pp. 216-228

Timothy Furtak, Jose Nelson Amaral and Robert
Niewiadomski Using SIMD Registers and Instructions
to Enable Instruction-Level Parallelism in Sorting
Algorithms SPAA ’07 Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and
architectures pp. 348-357

D.E. Knuth The Art of Computer Programming,
Volume 3: Sorting and Searching, Third Edition.
Addison-Wesley, 1998. ISBN 0-201-89685-0. Section
5.3.4: Networks for Sorting, pp. 219-247

Miklos Ajtai et al. An nlog(n) sorting network STOC
’83 Proceedings of the fifteenth annual ACM
symposium on Theory of computing pp. 1-9

[10] Hiroshi Inoue et al. AA-Sort: A New Parallel Sorting
Algorithm for Multi-Core SIMD Processors PACT 07
Proceedings of the 16th International Conference on

(7

8

[0

13

