
Outlines

HPC programming languages

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais

October 6th, 2014

Outlines

Goals of my four lectures

Today
Overview of a few different programming languages used
in HPC (Threads, OpenMP, Cuda, OpenCL, MPI)

Next lecture (about 6 weeks later)
Understand the internal of HPC programming model
implementations
Understand why so many HPC programming models
Understand why mixing HPC programming models is hard
Understand why still new HPC programming models

Next two lectures
Focussed on work the stealing model and parallel tasks
model

Outlines
Part I: Threads : Posix and OpenMP
Part II: General Purpose Graphical Processor Units (GPGPU)
Part III: Message Passing Interface (MPI)

Threads : Posix and OpenMP

2 Introduction to threads

3 PThread
Normalization of the threads interface
Basic POSIX Thread API

4 OpenMP
Presentation
Overview

Outlines
Part I: Threads : Posix and OpenMP
Part II: General Purpose Graphical Processor Units (GPGPU)
Part III: Message Passing Interface (MPI)

General Purpose Graphical Processor Units (GPGPU)

5 OpenCL and Cuda

6 Cuda
Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

7 OpenCL
A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Outlines
Part I: Threads : Posix and OpenMP
Part II: General Purpose Graphical Processor Units (GPGPU)
Part III: Message Passing Interface (MPI)

Message Passing Interface (MPI)

8 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

9 Conclusion

Introduction to threads
PThread
OpenMP

Part I

Threads : Posix and OpenMP

Introduction to threads
PThread
OpenMP

Outlines: Threads : Posix and OpenMP

2 Introduction to threads

3 PThread

4 OpenMP

Introduction to threads
PThread
OpenMP

Programming on Shared Memory Parallel Machines

Using process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Mem Mem Mem Mem

Introduction to threads
PThread
OpenMP

Programming on Shared Memory Parallel Machines

Using threads

process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Multithreaded process

Memory

Introduction to threads
PThread
OpenMP

Introduction to threads

Why threads ?
To take profit from shared memory parallel architectures

SMP, hyperthreaded, multi-core, NUMA, etc. processors
future Intel processors: several hundreds cores

To describe the parallelism within the applications
independent tasks, I/O overlap, etc.

What will use threads ?
User application codes

directly (with thread libraries)
POSIX API (IEEE POSIX 1003.1C norm) in C, C++, . . .

with high-level programming languages (Ada, OpenMP, . . .)
Middleware programming environments

demonized tasks (garbage collector, . . .), . . .

Introduction to threads
PThread
OpenMP

User threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP - Blocking syscalls -

Introduction to threads
PThread
OpenMP

Kernel threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

Kernel level

Efficiency - Flexibility - SMP + Blocking syscalls +

Introduction to threads
PThread
OpenMP

Mixed models

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP + Blocking syscalls limited

Introduction to threads
PThread
OpenMP

Thread models characteristics

Characteristics
Library Efficiency Flexibility SMP Blocking syscalls

User + + - -
Kernel - - + +
Mixed + + + limited

Summary
Mixed libraries seems more attractive however they are more
complex to develop. They also suffer from the blocking system
call problem.

Introduction to threads
PThread
OpenMP

Normalization of the threads interface
Basic POSIX Thread API

Outlines: Threads : Posix and OpenMP

2 Introduction to threads

3 PThread
Normalization of the threads interface
Basic POSIX Thread API

4 OpenMP

Introduction to threads
PThread
OpenMP

Normalization of the threads interface
Basic POSIX Thread API

Normalisation of the thread interface

Before the norm
each Unix had its (slightly) incompatible interface
but same kinds of features was present

POSIX normalization
IEEE POSIX 1003.1C norm (also called POSIX threads
norm)
Only the API is normalised (not the ABI)

POSIX thread libraries can easily be switched at source
level but not at runtime

POSIX threads own
processor registers, stack, etc.
signal mask

POSIX threads can be of any kind (user, kernel, etc.)

Introduction to threads
PThread
OpenMP

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API

Creation/destruction
int pthread_create(pthread_t *thread, const
pthread_attr_t *attr, void

*(*start_routine)(void*), void *arg)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void

**value_ptr)

Synchronisation (semaphores)
int sem_init(sem_t *sem, int pshared, unsigned
int value)

int sem_wait(sem_t *sem)

int sem_post(sem_t *sem)

int sem_destroy(sem_t *sem)

Introduction to threads
PThread
OpenMP

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API (2)

Synchronisation (mutex)
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex)

int pthread_mutex_unlock(pthread_mutex_t
*mutex)

int pthread_mutex_destroy(pthread_mutex_t
*mutex)

Synchronisation (conditions)
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_broadcast(pthread_cond_t
*cond)

int pthread_cond_destroy(pthread_cond_t *cond)

Introduction to threads
PThread
OpenMP

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for global per-thread variables
compiler + linker support at compile + execute time
libraries can have efficient per-thread variables without
disturbing the application
http://www.akkadia.org/drepper/tls.pdf

http://www.akkadia.org/drepper/tls.pdf

Introduction to threads
PThread
OpenMP

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for global per-thread variables
compiler + linker support at compile + execute time
libraries can have efficient per-thread variables without
disturbing the application
http://www.akkadia.org/drepper/tls.pdf

http://www.akkadia.org/drepper/tls.pdf

Introduction to threads
PThread
OpenMP

Presentation
Overview

Outlines: Threads : Posix and OpenMP

2 Introduction to threads

3 PThread

4 OpenMP
Presentation
Overview

Introduction to threads
PThread
OpenMP

Presentation
Overview

What is OpenMP?

An API to parallelize a program
explicitly, with threads, with shared memory

Contents of OpenMP
compiler directives
runtime library routines
environment variables

OpenMP abbreviation
Short version Open Multi-Processing
Long version Open specifications for Multi-Processing via

collaborative work between interested parties from the
hardware and software industry, government and
academia.

Introduction to threads
PThread
OpenMP

Presentation
Overview

What is not OpenMP?

not designed to manage distributed memory parallel
systems
implementation can vary depending on the vendor
no optimal performance guarantee
not a checker for data dependencies, deadlock, etc.
not a checker for code correction
not a automatic parallelization tool
not designed for parallel I/O

More information
https://computing.llnl.gov/tutorials/openMP/
http://openmp.org/wp/

https://computing.llnl.gov/tutorials/openMP/
http://openmp.org/wp/

Introduction to threads
PThread
OpenMP

Presentation
Overview

Goals of OpenMP
Standardization

target a variety of shared memory architectures/platforms
supported by lots of hardware and software vendors

Lean and Mean (less pertinent with last releases)
simple and limited set of directives
3 or 4 directives enough for classical parallel programs

Ease of Use
allows to incrementally parallelize a serial program
allows both coarse-grain and fine-grain parallelism

Portability (API in C/C++ and Fortran)
public forum for API and membership
most major platforms have been implemented

Introduction to threads
PThread
OpenMP

Presentation
Overview

Outlines: Threads : Posix and OpenMP

2 Introduction to threads

3 PThread

4 OpenMP
Presentation
Overview

Fork-Join Model
 Program begins with a Master thread
 Fork: Teams of threads created at times
during execution

 Join: Threads in the team synchronize
(barrier) and only the master thread
continues execution

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

OpenMP and #pragma
 One needs to specify blocks of code
that are executed in parallel

 For example, a parallel section:

#pragma omp parallel [clauses]
 Defines a section of the code that will be executed

in parallel
 The “clauses” specify many things including what

happens to variables
 All threads in the section execute the same code

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

First “Hello World” example

#include <omp.h>
int main(){
print(“Start\n”);
#pragma omp parallel
 { // note the {
 printf(“Hello World\n”);
 } // note the }
/* Resume Serial Code */
 printf(“Done\n”);
}

% my_program
Start
Hello World
Hello World
Hello World
Done

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

First “Hello World” example

#include <omp.h>
int main(){
print(“Start\n”);
#pragma omp parallel
 {
 printf(“Hello World\n”);
 }
/* Resume Serial Code */
 printf(“Done\n”);
}

% my_program
Start
Hello World
Hello World
Hello World
Done

 Questions
 How many threads?
 This is not useful

because all threads
do exactly the same
thing

 Conditional
compilation?

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

How Many Threads?
 Set via an environment variable

setenv OMP_NUM_THREADS 8
 Bounds the maximum number of threads

 Set via the OpenMP API

void omp_set_num_threads(int number);

int omp_get_num_threads();

 Typically, a function of the number
of processors available
 We often take the number of threads

identical to the number of processors/cores

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Threads Doing Different Things
#include <omp.h>
int main() {
 int iam =0, np = 1;
#pragma omp parallel private(iam, np)
 {
 np = omp_get_num_threads();
 iam = omp_get_thread_num();
 printf(“Hello from thread %d out of %d threads\n”, iam,

np);
 }
}

% setenv OMP_NUM_THREADS 3
% my_program
Hello from thread 0 out of 3
Hello from thread 1 out of 3
Hello from thread 2 our of 3

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Conditional Compilation
 The _OPENMP variable is defined if the
code is compiled with OpenMP

#ifdef _OPENMP
#include <omp.h>
#ifdef _OPENMP
int main() {
 int iam = 0, np = 1;
#pragma omp parallel private(iam, np)
 {
#ifdef _OPENMP
 np = omp_get_num_threads();
 iam = omp_get_thread_num();
#endif
 printf(“Hello from thread %d out of %d threads\n”, iam, np);
 }
}
 This code will work serially!

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Data Scoping and Clauses
 Shared: all threads access the single
copy of the variable, created in the
master thread

 it is the responsibility of the programmer to ensure that it is
shared appropriately

 Private: a volatile copy of the
variable is created for each thread,
and discarded at the end of the
parallel region (but for the master)

 There are other variations
 firstprivate: initialization from the master’s copy
 lastprivate: the master gets the last value updated by the last

thread to do an update
 and several others
(Look in the on-line material if you’re interested)

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Work Sharing directives
 We have seen the concept of a parallel
region, which is a brute-force SPMD
directive

 Work Sharing directives make it
possible to have threads “share work”
within a parallel region.
 For Loop
 Sections
 Single

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

For Loops
 Share iterations of the loop
across threads

 Represents a type of “data
parallelism”
 do the same operation on pieces of

the same big piece of data
 Program correctness must NOT
depend on which thread
executes which iteration
 No ordering!

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

For Loop Example
#include <omp.h>

#define N 1000

main () {

 int i, chunk;float a[N], b[N], c[N];

 for (i=0; i < N; i++)

 a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,c) private(i)

 {

 #pragma omp for schedule(dynamic)

 for (i=0; i < N; i++)

 c[i] = a[i] + b[i];

 } /* end of parallel section */

}

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Sections
 Breaks work into separate
sections

 Each section is executed by
a thread

 Can be used to implement
“task parallelism”
 do different things on different pieces of

data
 If more threads than
sections, then some are idle

 If fewer threads than
sections, then some sections
are seralized

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Section Example
#include <omp.h>
#define N 1000
main (){
 int i;float a[N], b[N], c[N];
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
#pragma omp parallel shared(a,b,c) private(i)
 {
 #pragma omp sections
 {
 #pragma omp section

 {
 for (i=0; i < N/2; i++)
 c[i] = a[i] + b[i];

 }
 #pragma omp section
 {
 for (i=N/2; i < N; i++)
 c[i] = a[i] + b[i];
 }
 } /* end of sections */
 } /* end of parallel section */
}

Section #1

Section #2

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Single
 Serializes a section of code
within a parallel region

 Sometimes more convenient
than terminating a parallel
region and starting it later

 especially because variables are already
shared/private, etc.

 Typically used to serialize
a small section of the code
that’s not thread safe

 e.g., I/O

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Combined Directives
 It is cumbersome to create a parallel
region and then create a parallel for
loop, or sections, just to terminate
the parallel region

 Therefore OpenMP provides a way to do
both at the same time
 #pragma omp parallel for
 #pragma opm parallel sections

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Synchronization and Sharing
 When variables are shared among
threads, OpenMP provides tools to make
sure that the sharing is correct

 Why could things be unsafe?
int x = 0;

#pragma omp parallel sections shared(x)

 {

 #pragma omp section

 x = x + 1

 #pragma omp section

 x = x + 2

 }

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Synchronization directive
 #pragma omp master

 Creates a region that only the master executes
 #pragma omp critical

 Creates a critical section
 #pragma omp barrier

 Creates a “barrier”
 #pragma omp atomic

 Create a “mini” critical section

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Critical Section

 #pragma omp parallel for \

shared(sum)

 for(i = 0; i < n; i++){

 value = f(a[i]);

 #pragma omp critical

 {

 sum = sum + value;

 }

 }

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Barrier

 if (x == 2) {

 #pragma omp barrier

 }

 All threads in the current
parallel section will synchronize
 they will all wait for each other at this instruction

 Must appear within a basic block

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Atomic
#pragma omp atomic
i++;

 Only for some expressions
 x = expr (no mutual exclusion on expr evaluation)
 x++
 ++x
 x--
 --x

 Is about atomic access to a memory location
 Some implementations will just replace
atomic by critical and create a basic
blocks

 But some may take advantage of cool
hardware instructions that work atomically

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Scheduling
 When I talked about the parallel for
loops, I didn’t say how the iterations
were shared among threads

 Question: I have 100 iterations. I have
5 threads. Which thread does which
iteration?

 OpenMP provides many options to do this
 Choice #1: Chunk size

 a way to group iterations togethers
 e.g., chunk size = 2 means that iterations are grouped 2

by 2
 allows to avoid prohibitive overhead in some situations

 Choice #2: Scheduling Policy

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Loop Scheduling in OpenMP
 static:

 Iterations are divided into pieces of a size specified by chunk.
 The pieces are statically assigned to threads in the team in a

roundrobin fashion in the order of the thread number.
 dynamic:

 Iterations are broken into pieces of a size specified by chunk.
 As each thread finishes a piece of the iteration space, it

dynamically obtains the next set of iterations.
 guided:

 The chunk size is reduced in an exponentially decreasing
manner with each dispatched piece of the iteration space.

 chunk specifies the smallest piece (except possibly the last).
 Default schedule: implementation
dependent.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Example

int chunk = 3

#pragma omp parallel for \

 shared(a,b,c,chunk) \

 private(i) \

 schedule(static,chunk)

 for (i=0; i < n; i++)

 c[i] = a[i] + b[i];}

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

OpenMP Scheduling
chunk size = 6
Iterations = 18 Thread 1 Thread 2 Thread 3

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

OpenMP Scheduling
chunk size = 6
Iterations= 18 Thread 1 Thread 2 Thread 3

STATIC
ti

m
e

Work in different iterations is identical.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

So, isn’t static optimal?
 The problem is that in may cases the
iterations are not identical
 Some iterations take longer to compute than other

 Example #1
 Each iteration is a rendering of a movie’s frame
 More complex frames require more work

 Example #2
 Each iteration is a “google search”
 Some searches are easy
 Some searches are hard

 In such cases, load unbalance arises
 which we know is bad

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

OpenMP Scheduling
chunk size = 6
Iterations=18 Thread 1 Thread 2 Thread 3

STATIC

ti
m

e

Work in different iterations is NOT identical.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

OpenMP Scheduling
chunk size = 2
Iterations=18 Thread 1 Thread 2 Thread 3

DYNAMIC

ti
m

e

Work in different iterations is NOT identical.

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

So isn’t dynamic optimal?
 Dynamic scheduling with small chunks
causes more overhead than static
scheduling

 In the static case, one can compute what each thread does at
the beginning of the loop and then let the threads proceed
unhindered

 In the dynamic case, there needs to be some type of
communication: “I am done with my 2 iterations, which
ones do I do next?”

 Can be implemented in a variety of ways internally

 Using dynamic scheduling with a large
chunk size leads to lower overhead, but
defeats the purpose

 with fewer chunks, load-balancing is harder
 Guided Scheduling: best of both worlds

 start with large chunks, ends with small ones

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

Guided Scheduling
 The chunk size is reduced in an
exponentially decreasing manner with
each dispatched piece of the iteration
space.

 chunk specifies the smallest piece
(except possibly the last).

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

OpenMP Scheduling
chunk size = 2
Iterations= 18 Thread 1 Thread 2 Thread 3

Guided
3 chunks of size 4
2 chunks of size 2

ti
m

e

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

What should I do?
 Pick a reasonable chunk size
 Use static if computation is evenly
spread among iterations

 Otherwise probably use guided

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

How does OpenMP work?
 The pragmas allow OpenMP to build some
notion of structure of the code

 And then, OpenMP generates pthread
code!!
 You can see this by running the nm command on your

executable
 OpenMP hides a lot of the complexity
 But it doesn’t have all the flexibility
 The two are used in different domains

 OpenMP: “scientific applications”
 Pthreads: “system” applications

 But this distinction is really
arbitrary IMHO

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

More OpenMP Information

 OpenMP Homepage: http://www.openmp.org/

 On-line OpenMP Tutorial:

http://www.llnl.gov/computing/tutor
ials/openMP/

Courtesy of Henri Casanova

Introduction to threads
PThread
OpenMP

Presentation
Overview

OpenCL and Cuda
Cuda

OpenCL

Part II

General Purpose Graphical
Processor Units (GPGPU)

OpenCL and Cuda
Cuda

OpenCL

Outlines: General Purpose Graphical Processor Units
(GPGPU)

5 OpenCL and Cuda

6 Cuda

7 OpenCL

OpenCL and Cuda
Cuda

OpenCL

Credits

Most of theses slides come from a Tutorial on GPU
programming made last year during the Compas’2013
conference
I prepared this tutorial with João V. F. LIMA (Cuda part) and
Brice VIDEAU (OpenCL part)

OpenCL and Cuda
Cuda

OpenCL

Parallel Programming with GPU

GPGPU: General Purpose Graphic Processing Unit

very good ratio GFlops/price and GFlops/Watt
GPU Tesla C2050 from NVidia : about 300 GFlops in
double precision
specialized hardware architecture:
classical programming does not work

Two leading environments

Cuda specific to NVidia, can use all the features of
NVidia cards. Works only with NVidia GPU.

OpenCL norm (not implementation) supported by different
vendors (AMD, NVidia, Intel, Apple, etc.) Target
GPUs but also CPUs.

Very similar programming concepts

OpenCL and Cuda
Cuda

OpenCL

Cuda and OpenCL bases

Part 1: device programs

C code with restriction and extension (memory model,
vector types, etc.)
run in parallel by lots of threads on the targeted hardware
functions to be run are called kernels

Part 2: host programs

API in C/C++
manage memory transfers
manage kernel launches (compilations and runs)

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Outlines: General Purpose Graphical Processor Units
(GPGPU)

5 OpenCL and Cuda

6 Cuda
Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

7 OpenCL

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Introduction

Terminology:
Host – The CPU and its memory (host memory)
Device – The GPU and its memory (device memory)
Kernel – C functions executed N times in parallel (CUDA
threads)

Simple CUDA API:
cudaMalloc(), cudaFree(), cudaMemcpy()
cuda*()

In all examples, we assume CUDA 4.1 or later

http://developer.nvidia.com

http://developer.nvidia.com

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

CUDA-capable GPU Architecture

The unit of execution is a streaming processor (SP) core
SPs are grouped as streaming multiprocessors (SM)
Single Instruction Multiple Thread (SIMT) architecture

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Compute Capability

Describe the architecture version
Defined by:

Major revision number – core architecture
Minor revision number – incremental improvement

Architecture families by major revision
Revision 1 – Tesla architecture (GeForce GTX 280)
Revision 2 – Fermi architecture (GeForce GTX 480)
Revision 3 – Kepler architecture (GeForce GTX 680)

http://developer.nvidia.com/cuda-gpus

http://developer.nvidia.com/cuda-gpus

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Thread Hierarchy

CUDA threads are grouped in 1D, 2D, or 3D thread blocks

Block size is fixed on each kernel launch
Blocks are organized into a 1D, 2D, or 3D grid

Blocks execute in parallel on each SM

Grid size
The number of thread blocks in a grid is usually dictated by the
size of the data being processed. This number may be greater
than available SMs.

Note: there is a limit of threads and dimensions
Up to 1024 threads per block on current GPUs
See deviceQuery from CUDA SDK examples

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Thread Hierarchy

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Grid 1

Device

Thread
(0,0)

Thread
(0,1)

Thread
(0,2)

Thread
(0,3)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Block (2,1)

Thread
(4,0)

Thread
(0,4)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

Thread
(1,4)

Thread
(2,4)

Thread
(3,4)

Thread
(4,4)

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Memory Hierarchy

Global memory
Device memory

Shared memory
On-chip memory (SM)

Constant memory
Device memory

Local memory
Global memory (device)
Only occur if kernel uses more register than available

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Memory Hierarchy

Grid

Thread
(0,0)

Block (0,0)

Registers

Thread
(1,0)

Registers

Shared Memory

Thread
(0,0)

Block (1,0)

Registers

Thread
(1,0)

Registers

Shared Memory

Global Memory

Constant Memory
Host

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Hello world

Hello world in CUDA
__global__ void mykernel(void)
{
}

int main(void)
{
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Hello world

Compilation (NVCC)
simple command line
$ nvcc -o hello_world hello_world.cu
$./hello_world
Hello World!

with compiler options
$ nvcc --compiler-options "-Wall" \
-o hello_world hello_world.cu -lm

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

CUDA C/C++ Basics

CUDA programs are composed (basically) of:

Hello world in CUDA
1 (optional) Select device (default: 0)
2 Allocate device memory for inputs and outputs
3 Copy data to the device
4 Launch kernel on device
5 Copy back results to host memory
6 Free device memory

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Add One

Add One in CUDA (Kernel)
__global__ void addone(float* A)
{
int i = threadIdx.x;
A[i] = A[i] + 1;

}

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Add One

Add One in CUDA (Host)
float *A, *d_A;
int N = 20;

A = (float*) malloc(N * sizeof(float));
cudaMalloc((void**)&d_A, N * sizeof(float));

cudaMemcpy(d_A, A, N * sizeof(float),
cudaMemcpyHostToDevice);

addone<<<1, N>>>(d_A); // N CUDA threads
cudaMemcpy(A, d_A, N * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(d_A); free(A);

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Memory Transfer

cudaMemcpy(void* dst, const void* src, size_t nbytes,
cudaMemcpyKind direction);
cudaMemcpyKind available values:

cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyHostToHost
cudaMemcpyDeviceToDevice

Some alternatives
cudaMemcpy2D – for 2D arrays
cudaMemset – initilizes or sets device memory to a value
cudaMemcpyAsync – asynchronous transfer

More details later (Asynchronous execution)

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Kernel Launch

dim3 – three integers (1D, 2D, or 3D)
dim3(x, y, z)

mykernel<<<dim3 grid, dim3 block, size_t nbytes,
cudaStream_t stream>>> (...)

grid specifies the dimension and size of the grid
block specifies the dimension and size of each block
nbytes is the number of in shared memory per block
stream speficies the execution stream

Use of nvcc mandatory
Separates GPU from host code

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Thread and Grid Index

Built-in variables in device code (kernel):
dim3 gridDim; – grid dimension
dim3 blockDim; – block dimension
dim3 blockIdx; – block index
dim3 threadIdx; – thread index

CUDA 2D index (Kernel)
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Add One with Theads and Blocks

Add One in 2D
__global__ void addone(float* A, int N) {
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int index = x + y * blockDim.x * gridDim.x;

if(index < N)
A[index] = A[index] + 1;

}

dim3 block_dim(64, 64);
dim3 grid_dim((N+64-1)/64, (N+64-1)/64);

addone<<<grid_dim, block_dim>>>(d_A, N);

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Error Checking

All runtime functions return an error code (cudaError_t)
cudaGetLastError() – returns the last error from a runtime
call
cudaGetErrorString(cudaError_t error) – returns the
message string from an error code

Error checking (Host)
cudaError_t err = cudaGetLastError();
if(err != cudaSuccess)
printf("CUDA Error (%d): %s\n", err,
cudaGetErrorString(err));

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Asynchronous Memory Transfer

cudaMemcpyAsync(void* dst, const void* src, size_t
nbytes, cudaMemcpyKind direction, cudaStream_t
stream);
Requirements:

Compute capability 1.1 or higher
Page-locked host memory
stream != 0 (default stream)

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Page-locked Memory

Page-locked – non-pageable host memory (pinned)
Not swapped by the OS
Consuming too much may reduces system performace

Host interface
cudaHostAlloc – allocates page-locked memory on the
host
cudaFreeHost – frees page-locked host memory
cudaHostRegister – register a host memory for use
cudaHostUnregister – unregister a host memory

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Page-locked Memory

CUDA Host Memory
float* hostPtr;

cudaHostAlloc((void**)&hostPtr, N * sizeof(float),
cudaHostAllocDefault);

cudaFreeHost(hostPtr);

hostPtr = (float*)malloc(N * sizeof(float));
cudaHostRegister(hostPtr, N * sizeof(float),

cudaHostRegisterPortable);
cudaHostUnregister(hostPtr);

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Streams

A stream is a sequence of commands that execute in order
Different streams may execute concurrently (not guaranteed)

CUDA Streams (Host)
cudaStream_t stream;
cudaStreamCreate(&stream);

cudaMemcpyAsync(d_A, A, N * sizeof(float),
cudaMemcpyHostToDevice, stream);

addone<<<grid, threads, 0, stream>>>(d_A);
cudaMemcpyAsync(A, d_A, N * sizeof(float),

cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);

cudaStreamDestroy(stream);

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Events

A way to monitor the device’s progress
Events allow to perform accurate timing

CUDA Events (Host)
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start, stream);
addone<<<grid, threads, 0, stream>>>(d_A);
cudaEventRecord(stop, stream);
cudaEventSynchronize(stop);

float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Synchronization

All operations on stream 0 (default) are synchronous

Synchronization Functions (Host)
// Synchronize all current GPU operations
cudaDeviceSynchronize(void);

cudaStreamSynchronize(cudaStream_t);

cudaEventSynchronize(cudaEvent_t);

// All future work into stream wait the end of event
cudaStreamWaitEvent(cudaStream_t, cudaEvent_t, int);

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Control Flow

A SM creates, manages, schedules, and executes warps
Groups of 32 parallel threads
A SM partitions blocks in warps and schedules them
Availble at build-in variable warpSize

Branch divergence occurs only within a warp
Threads within a single warps take different paths
Case of if else conditional statements
A warp executes serially each branch (if and else)

Different warps execute independently

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Control Flow

Example with divergence
if(threadIdx.x > 2) { ... }
else { ... }

Example without divergence
if((threadIdx.x/warpSize) > 2) { ... }
else { ... }

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Control Flow

in
st

ru
ct

io
ns

 /
tim

e if(...)

// then clause

// else clause

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Control Flow

...

0 1 2 3 30 31

...

...

32 33 34 35 62 63

...in
st

ru
ct

io
ns

 /
tim

e

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Overlap of Data Transfer and Kernel Execution

Perform copies and kernel execution concurrently
Compute Capability 1.1 and higher

asyncEngineCount device property greater than 0
asyncEngineCount is 1 for 1.x capability
asyncEngineCount may be 2 for 2.x capability

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Overlap of Data Transfer and Kernel Execution

Overlapping
for(int i= 0; i < 3; i++)
cudaMemcpyAsync(devicePtr + i*size,
hostPtr + i*size, size,
cudaMemcpyHostToDevice, stream[i]);

for(int i= 0; i < 3; i++)
addone<<<grid, threads, 0, stream[i]>>>
(devicePtr + i*size);

for(int i= 0; i < 3; i++)
cudaMemcpyAsync(hostPtr + i*size,

devicePtr + i*size, size,
cudaMemcpyDeviceToHost, stream[i]);

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Overlap of Data Transfer and Kernel Execution

cudaMemcpyAsync(HD) Kernel<<<>>> cudaMemcpyAsync(DH)
Sequential

Concurrent (Host)

HD1 K1 DH1stream 0

stream 1

stream 2

HD2 K2 DH2

HD3 K3 DH3

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Overlap of Data Transfer and Kernel Execution

cudaMemcpyAsync(HD) Kernel<<<>>> cudaMemcpyAsync(DH)
Sequential

Concurrent (Host)

HD1 K1 DH1stream 0

stream 1

stream 2

HD2 K2 DH2

HD3 K3 DH3

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Overlap of Data Transfer and Kernel Execution

Concurrent (Tesla GPUs)

HD1

K1

DH1HD2

K2

DH3HD3

K3

DH2Engine 0

Kernel

Concurrent (Fermi GPUs)

HD1

K1

DH1

HD2

K2

DH3

HD3

K3

DH2

Engine 0

Kernel

Engine 1

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Overlap of Data Transfer and Kernel Execution

Concurrent (Tesla GPUs)

HD1

K1

DH1HD2

K2

DH3HD3

K3

DH2Engine 0

Kernel

Concurrent (Fermi GPUs)

HD1

K1

DH1

HD2

K2

DH3

HD3

K3

DH2

Engine 0

Kernel

Engine 1

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Memory Scope and Lifetime

Variable declaration Memory Scope Lifetime
int var; register thread thread
int var[10]; local thread thread

__shared__ int var; shared block block
__device__ int var; global grid application
__constant__ int var; constant grid application

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Function Qualifiers

__global__ – kernel function
executed on the device
callable from host
these funcions must have void return type

__device__ – device function
executed on the device
callable from the device only

__host__ – host function
executed on the host
it can be used with __device__

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

Function Qualifiers

Add One
__host__ __device__ float addone(const float v){
return (v + 1.0f);

}

__global__ void mykernel(float* A, int N){
int i = threadIdx.x + blockDim.x * blockIdx.x;
if(i < N)
A[i] = addone(A[i]);

}

OpenCL and Cuda
Cuda

OpenCL

Introduction
CUDA C/C++ Basics
Asynchronous Execution
Advanced Topics

References

Programming Massively Parallel Processors with CUDA,
Stanford University. http:
//code.google.com/p/stanford-cs193g-sp2010.
Programming Massively Parallel Processors: A Hands-on
Approach, David Kirk and Wen-mei Hwu.
CUDA C Progrmaming Guide, NIVIDIA.
CUDA C Best Practices Guide, NVIDIA.

http://code.google.com/p/stanford-cs193g-sp2010
http://code.google.com/p/stanford-cs193g-sp2010

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Outlines: General Purpose Graphical Processor Units
(GPGPU)

5 OpenCL and Cuda

6 Cuda

7 OpenCL
A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

OpenCL Architecture Model

Host-Devices model
1 host and several devices.
Devices are connected to the host.
Host issues commands to the
devices.
Data transport is done via memory
copy.

Host

Devices

Devices

Devices

Commands

Several devices support OpenCL
NVIDIA for GPU and in the future for Tegra.
AMD and Intel for CPUs and GPUs and MIC?
IBM CELL processor.
ARM GPUs (Mali) + CPUs

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Context and Queues

Contexts aggregate resources, programs and devices
belonging to a common platform (ie NVIDIA, or ATI).
Host and devices communicate via buffers defined in a
context.
Commands are sent to devices using command queues.
Commands are called kernels.

Command queues
Can be synchronous or asynchronous.
Can be event driven.
Several queues can point to the same device, allowing
concurrent execution.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

OpenCL Processing Model

Work
item 1

Work
item 1

Compute Unit 1

Compute Device

item 2
Work

Work
item n

Work
item n−1

item 2
Work

Work
item n

Work
item n−1

Compute Unit m

Kernels are split into uni, two or three-dimensional ranges
called work groups.
Work groups are mapped to compute units.
Individual item are processed by work items.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

OpenCL Memory Model

4 different memory space defined on an OpenCL device :

Global memory :
corresponds to the
device RAM, input data
are stored there.
Constant memory :
cached global memory.
Local memory : high
speed memory shared
among work items of a
compute unit.
Private memory :
registers of a work item.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Life and Death of OpenCL in a Program

The Host Side of OpenCL

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

General Workflow

Select desired

platform

Select desired

devices Context

Create associated

Create command queues

associated do devices

Send data to devices

using command queues

Get data from devices

using command queues resources used

Release everySend commands to devices

using command queues

Compile or load kernels

on the devices

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Platform Selection

In a near future every platform will support OpenCL, but the
user may not be interested in all of them: select an appropriate
platform

Get Platforms

1 #include <CL / c l . h>
2 cl_uint num_platforms ;
3 c lGetP la t fo rmIDs (NULL, NULL, &num_platforms) ;
4 cl_platform_id ∗p la t fo rms = mal loc (sizeof (cl_platform_id) ∗ num_platforms) ;
5 c lGetP la t fo rmIDs (num_platforms , p la t fo rms , NULL) ;
6 /∗ . . . ∗ /
7 for (i n t i =0; i <num_platforms ; i ++){
8 /∗ . . . ∗ /
9 c lGe tP la t f o rm In fo (p la t fo rms [i] , CL_PLATFORM_VENDOR, . . .) ;

10 /∗ . . . ∗ /
11 }

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Device Selection

Several device from the same vendor is also common: one
device for the screen and one device for computations

Get Devices

1 #include <CL / c l . h>
2 cl_uint num_devices ;
3 clGetDeviceIDs (p la t fo rm , CL_DEVICE_TYPE_ALL , NULL, NULL, &num_devices) ;
4 cl_device_id ∗devices = mal loc (sizeof (cl_device_id) ∗ num_devices) ;
5 clGetDeviceIDs (p la t fo rm , CL_DEVICE_TYPE_ALL , num_devices , devices , NULL) ;
6 /∗ . . . ∗ /
7 for (i n t i =0; i <num_devices ; i ++){
8 /∗ . . . ∗ /
9 c lGetDev ice In fo (devices [i] , CL_DEVICE_NAME , . . .) ;

10 /∗ . . . ∗ /
11 }

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Context Creation

Context gather devices from the same platform. Those devices
will be able to share resources.

Create Context

1 cl_context_properties p r o p e r t i e s [] =
2 { CL_CONTEXT_PLATFORM, (cl_context_properties) p la t fo rm_ id , 0 } ;
3 cl_device_id devices [] = { device_id_1 , device_id_2 } ;
4 cl_context contex t =
5 c lCreateContext (p roper t i es , 2 , devices , NULL, NULL, NULL) ;

A shortcut exists, skipping device selection:

Create Context from Type

1 cl_context_properties p r o p e r t i e s [] =
2 { CL_CONTEXT_PLATFORM, (cl_context_properties) p la t fo rm_ id , 0 } ;
3 cl_context contex t =
4 clCreateContextFromType (p roper t i es , CL_DEVICE_TYPE_GPU , NULL, NULL, NULL) ;

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Building Program from Source

Once the context is created, the program is to be built (or
loaded from binary).

Building Program

1 /∗ s t r i n g s i s an ar ray o f s t r i ng_coun t NULL terminated s t r i n g s ∗ /
2 cl_program program =
3 clCreateProgramWithSource (context , s t r ing_coun t , s t r i n gs , NULL, NULL) ;
4 /∗ i f d e v i c e _ l i s t i s NULL, program i s b u i l t
5 ∗ f o r a l l a v a i l a b l e devices i n the contex t ∗ /
6 clBui ldProgram (program , num_devices , d e v i c e _ l i s t , opt ions , NULL, NULL) ;
7 cl_kernel kerne l = c lCreateKerne l (program , " kernel_name " , NULL) ;

Kernels are extracted from the built program using their name.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Creating Command Queues

A command queue is used to send commands to a device.
They have to be associated with a device.

Creating Command Queues

1 cl_command_queue queue =
2 clCreateCommandQueue (context , devices [chosen_device] , 0 , NULL) ;

Options can be specified instead of 0,
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
allows for out of order execution for instance.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Using OpenCL

Using OpenCL is (hopefully) easier than setting it up.

Create buffers to

store data on devices

Send data to devices

using command queues

Send commands to devices

using command queues

Get data from devices

using command queues

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Buffer Creation

In OpenCL buffers creation and deletion are explicitly
managed. As can be noted buffers are tied to a context and not
a particular command queue. The implementation is free to
transfer buffers from devices to host memory or to another
device.

Creating Simple Buffers

1 cl_mem read_buf fe r =
2 c lC rea teBu f fe r (context , CL_MEM_READ_ONLY, bu f fe r_s i ze , NULL, NULL) ;
3 cl_mem w r i t e _ b u f f e r =
4 c lC rea teBu f fe r (context , CL_MEM_WRITE_ONLY, bu f fe r_s i ze , NULL, NULL) ;

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Pinned Buffer Creation

Pinned buffer creation can offer premium performances. Here
is a code sample that can be used on NVIDIA devices. The
finals pointers obtained can be used to transfer data between
the host and the device.

Creating Pinned Simple Buffers

1 cl_mem pinned_read_buf fer =
2 c lC rea teBu f fe r (context , CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY,
3 bu f fe r_s i ze , NULL, NULL) ;
4 cl_mem p inned_wr i t e_bu f fe r =
5 c lC rea teBu f fe r (context , CL_MEM_ALLOC_HOST_PTR | CL_MEM_WRITE_ONLY,
6 bu f fe r_s i ze , NULL, NULL) ;
7 unsigned char ∗data_ in =
8 clEnqueueMapBuffer (queue , p inned_read_buf fer , CL_TRUE, CL_MAP_WRITE, 0 ,
9 bu f fe r_s i ze , 0 , NULL, NULL, NULL) ;

10 unsigned char ∗data_out =
11 clEnqueueMapBuffer (queue , p inned_wr i te_bu f fe r , CL_TRUE, CL_MAP_READ, 0 ,
12 bu f fe r_s i ze , 0 , NULL, NULL, NULL) ;

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Transferring Data

The implementation is free to move buffers in memory. But
nonetheless, memory is often kept on the device associated to
the command queue used to transfer the data.

Data Transfer

1 clEnqueueWri teBuf fer (queue , read_buf fer , CL_TRUE, 0 ,
2 bu f fe r_s i ze , data_in , 0 , NULL, NULL) ;
3 /∗ Processing t h a t reads read_buf fe r and w r i t e s w r i t e _ b u f f e r ∗ /
4 /∗ . . . ∗ /
5 clEnqueueReadBuffer (queue , w r i t e _ b u f f e r , CL_TRUE, 0 ,
6 bu f fe r_s i ze , data_out , 0 , NULL, NULL) ;

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Performing Calculations

Once data is transfered, kernels are used to perform
calculations.

Kernel Usage

1 /∗ Place kerne l parameters i n the kerne l s t r u c t u r e . ∗ /
2 c lSetKerne lArg (kernel , 0 , sizeof (data_s ize) , (void∗)& data_s ize) ;
3 c lSetKerne lArg (kernel , 1 , sizeof (read_buf fe r) , (void∗)& read_buf fe r) ;
4 c lSetKerne lArg (kernel , 2 , sizeof (w r i t e _ b u f f e r) , (void∗)& w r i t e _ b u f f e r) ;
5 /∗ Enqueue a 1 dimensional ke rne l w i th a l o c a l s i ze o f 32 ∗ /
6 size_t localWorkSize [] = { 32 } ;
7 size_t globalWorkSize [] = { shrRoundUp (32 , data_s ize) } ;
8 clEnqueueNDRangeKernel (queue , kernel , 1 , NULL,
9 globalWorkSize , localWorkSize , 0 , NULL, NULL) ;

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Event Management

Almost all functions presented end with:
1 . . . , 0 , NULL, NULL) ;

These 3 arguments are used for event management, and thus
asynchronous queue handling. Functions can wait for a number
of events, and can generate 1 event.

1 event_t e v e n t _ l i s t [] = { event1 , event2 } ;
2 event_t event ;
3 clEnqueueReadBuffer (queue , w r i t e _ b u f f e r , CL_FALSE, 0 ,
4 bu f fe r_s i ze , data_out , 2 , e v e n t _ l i s t , &event) ;

Previous buffer read waits for 2 events and generate a third that
will happen when the read is completed.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Release Resources

OpenCL uses reference counts to manage memory. In order to
exit cleanly from an OpenCL program all allocated resources
have to be freed:

buffers (clReleaseMemObject)
events (clReleaseEvent)
kernel (clReleasekernel)
programs (clReleaseProgram)
queues (clReleaseCommandQueue)
context (clReleaseContext)
etc...

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Writing Kernels

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Recall : OpenCL Memory Model

4 different memory space defined on an OpenCL device :

Global memory :
corresponds to the
device RAM, input data
are stored there.
Constant memory :
cached global memory.
Local memory : high
speed memory shared
among work items of a
compute unit.
Private memory :
registers of a work item.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

OpenCL Language : a Subset of C

Kernels are written using a C-like language
Recursion is prohibited
Helper functions are defined

Barriers
Work item indexes
Atomic operations
Vector operations

New keywords :
__kernel
__global, __local, __constant, __private
__read_only, __write_only, __read_write

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Example : Unidimensional Convolutions

Input

N` N`

Ne

Ne

n

N

(0,0)

(1,0)

(0,1)

(i,j)

Output

N`

Ne

(0,0) (1,0)

(0,1)

(i,j)

One unidimensional convolution with transposition, simple but
not too much. Real world code used in BigDFT an electronic
structure calculation program.

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Kernel Declaration

Kernel Declaration

1 /∗ Ac t i va te double p r e c i s i o n support ∗ /
2 #pragma OPENCL EXTENSION cl_khr_ fp64 : enable
3 #define FILT_W 16
4 #define WG_S 16
5 __kernel void
6 _ _ a t t r i b u t e _ _ ((reqd_work_group_size (WG_S,WG_S, 1))
7 mag ic f i l t e r1dKerne l_d (uint n , uint ndat ,
8 __global const double ∗psi ,
9 __global double ∗out) {

10 / / padded l o c a l b u f f e r s ize : 33∗16
11 __local double tmp [WG_S∗(WG_S+FILT_W + 1)] ;

Works on double precision floats
Kernel expects work group size of 16 x 16
n and ndat are in __local memory
tmp1 is a storage buffer in local memory, shared among
work items

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Work with Indexes

Get Indexes and Load Data

1 / / get our p o s i t i o n i n the l o c a l work group
2 const size_t i g = ge t_g loba l_ id (0) ;
3 const size_t j g = ge t_g loba l_ id (1) ;
4 / / get our p o s i t i o n i n the r e s u l t mat r i x
5 const size_t i = g e t _ l o c a l _ i d (0) ;
6 const size_t j = g e t _ l o c a l _ i d (1) ;
7 / / t ranspose indexes i n the work group i n order to read transposed data
8 p t r d i f f _ t i g t = i g − i + j − FILT_W / 2 ;
9 p t r d i f f _ t j g t = j g − j + i ;

10 / / i f we are on the outs ide , s e l e c t a border element to load , wrapping around
11 / / we w i l l be load ing 2 elements each
12 i f (i g t < 0)
13 tmp [i ∗ (WG_S+FILT_W+1) + j] = ps i [j g t + (n + i g t) ∗ ndat] ;
14 else
15 tmp [i ∗ (WG_S+FILT_W+1) + j] = ps i [j g t + i g t ∗ ndat] ;
16 i g t += FILT_W ;
17 i f (i g t >= n)
18 tmp [i ∗ (WG_S+FILT_W+1) + j + FILT_W] = ps i [j g t + (i g t − n) ∗ ndat] ;
19 else \ n \
20 tmp [i ∗ (WG_S+FILT_W+1) + j + FILT_W] = ps i [j g t + i g t ∗ ndat] ;

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Compute Convolution and Write Output

Performing Computations

1 / / i n i t i a l i z e r e s u l t
2 double t t = 0 . 0 ;
3 / / r e s t p o s i t i o n i n the b u f f e r to f i r s t element invo lved i n the convo lu t i on
4 tmp += j 2 ∗(WG_S+FILT_W+1) + i 2 ;
5 / / wa i t f o r b u f f e r to be f u l l
6 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
7
8 / / apply f i l t e r
9 t t += ∗tmp++ ∗ FILT0 ;

10 t t += ∗tmp++ ∗ FILT1 ;
11 /∗ . . . ∗ /
12 t t += ∗tmp++ ∗ FILT15 ;
13 / / s to re the r e s u l t
14 out [(j g∗n+ i g)] = t t ;
15 } ;

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Test System Setup

GPU 2:
Tesla C2070 (Fermi)
6 GB of RAM
Driver version: 260.14

GPU 2:
Radeon HD6970
2 GB of RAM
Driver version: 11.6

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Test System Setup

Host :
Lenovo D20
1 Xeon 5550 @ 2.83 GHz (4 Nehalem cores)
8 GB of RAM
Linux 2.6.38-11 x86_64
icc 11.1

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Comparison CPU,Fermi,HD6970

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

M
agicfilter

M
agicfilter_reverse

M
agicfilter_grow

M
agicfilter_shrink

K
inetic

K
inetic_k

A
nalysis

S
ynthesis

S
ynthesis_grow

A
nalysis_shrink

U
ncom

press

C
om

press

G
F

LO
P

S

Kernels

Performances of CPU vs NVIDIA vs AMD

CPU
NVIDIA

AMD

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Comparison CPU,Fermi,HD6970

 0

 10

 20

 30

 40

 50

 60

 70

M
agicfilter

M
agicfilter_reverse

M
agicfilter_grow

M
agicfilter_shrink

K
inetic

K
inetic_k

A
nalysis

S
ynthesis

S
ynthesis_grow

A
nalysis_shrink

U
ncom

press

C
om

press

R
at

io
 to

 C
P

U

Kernels

Performances of CPU vs NVIDIA vs AMD

CPU
NVIDIA

AMD

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Comparison CUDA, OpenCL, CPU

 0

 20

 40

 60

 80

 100

C
PU

-m
kl

C
PU

-m
kl-m

pi

C
U
D
A

C
U
D
A-m

kl

O
C
L-cublas

O
C
L-m

kl

C
U
D
A-m

pi

C
U
D
A-m

kl-m
pi

O
C
L-cublas-m

pi

O
C
L-m

kl-m
pi

 0

 2

 4

 6

 8

 10

P
e
rc

e
n
t

S
p
e
e
d
u
p

Badiane, X5550 + Fermi C2070 , ZnO 64 at.: CPU vs. Hybrid

Comms
LinAlg
Conv
CPU
Other
Speedup

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Hybrid ATI + NVIDIA

Tesla C2070 + Radeon HD 6970

MPI+NVIDIA/AMD Execution Time (s) Speedup
1 6020 1
4 1660 3.6
1 + NVIDIA 300 20
4 + NVIDIA 160 38
1 + AMD 347 17
4 + AMD 197 30
(4 + NV) + (4 + AMD) 109 55

Table: Performance results for different configuration of BigDFT, using
MPI + GPUs

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Interesting Additions from OpenCL 1.1 and 1.2

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

clSetEventCallback

Version : OpenCL 1.1 and 1.2
The OpenCL implementation calls a C function asynchronously
when the status of an event changes.

Status Changes:

CL_COMPLETE (1.1)
CL_SUBMITTED (1.2)
CL_RUNNING (1.2)

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

clCreateSubDevices

Version : OpenCL 1.2 (Extension 1.1)
Split a device in several sub devices either arbitrarily or based
on memory hierarchy.

Hierarchical Split:
CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
...
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE

CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

clEnqueueMigrateMemObjects

Version : OpenCL 1.2

Migrates an object to the memory associated to a device
via its command queue.
Can be event driven.

Special Uses:
CL_MIGRATE_MEM_OBJECT_HOST
CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED

OpenCL and Cuda
Cuda

OpenCL

A Standard for Parallel Computing
Life and Death of OpenCL in a Program
Writing Kernels and performance results
New version of OpenCL and conclusions

Conclusions

OpenCL
OpenCL proved easy to use.
Performance is on-par with previous CUDA
implementation.
Kernels have been shown to run on other architectures:
ATI and CPU.

Perspectives
Some OpenCL implementations are still recent and buggy.
Best way to do multi-GPU, GPU+OpenCL CPU?
Optimizing kernels for multiple devices?
Automated kernel generation.

MPI
Conclusion

Part III

Message Passing Interface (MPI)

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Message Passing Interface (MPI)

8 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

9 Conclusion

Message Passing

 The above is a programming model and things may look
different in the actual implementation (e.g., MPI over
Shared Memory)

 Message Passing is popular because it is general:
 Pretty much any distributed system works by exchanging

messages, at some level
 Distributed- or shared-memory multiprocessors, networks of

workstations, uniprocessors
 It is not popular because it is easy (it’s not)

P

M

P

M

P

M
. . .

network

 Each processor runs a process
 Processes communicate by

exchanging messages
 They cannot share memory in

the sense that they cannot
address the same memory cells

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Code Parallelization
 Shared-memory programming

 Parallelizing existing code can be very easy
 OpenMP: just add a few pragmas
 Pthreads: wrap work in do_work functions

 Understanding parallel code is easy
 Incremental parallelization is natural

 Distributed-memory programming
 parallelizing existing code can be very difficult

 No shared memory makes it impossible to “just”
reference variables

 Explicit message exchanges can get really tricky
 Understanding parallel code is difficult

 Data structured are split all over different memories
 Incremental parallelization can be challenging

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Programming Message
Passing

 Shared-memory programming is simple conceptually
(sort of)

 Shared-memory machines are expensive when one
wants a lot of processors

 It’s cheaper (and more scalable) to build distributed
memory machines
 Distributed memory supercomputers (IBM SP series)
 Commodity clusters

 But then how do we program them?
 At a basic level, let the user deal with explicit

messages
 difficult
 but provides the most flexibility

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Message Passing

 Isn’t exchanging messages completely known
and understood?
 That’s the basis of the IP idea
 Networked computers running programs that

communicate are very old and common
 DNS, e-mail, Web, ...

 The answer is that, yes it is, we have
“Sockets”
 Software abstraction of a communication between

two Internet hosts
 Provides and API for programmers so that they do

not need to know anything (or almost anything)
about TCP/IP and write code with programs that
communicate over the internet

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Socket Library in UNIX
 Introduced by BSD in 1983

 The “Berkeley Socket API”
 For TCP and UDP on top of IP

 The API is known to not be very intuitive for first-time
programmers

 What one typically does is write a set of “wrappers” that hide
the complexity of the API behind simple function

 Fundamental concepts
 Server side

 Create a socket
 Bind it to a port numbers
 Listen on it
 Accept a connection
 Read/Write data

 Client side
 Create a socket
 Connect it to a (remote) host/port
 Write/Read data

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Socket: server.c
int main(int argc, char *argv[])
{
 int sockfd, newsockfd, portno, clilen;
 char buffer[256];

struct sockaddr_in serv_addr, cli_addr;
 int n;

 sockfd = socket(AF_INET, SOCK_STREAM, 0);
bzero((char *) &serv_addr, sizeof(serv_addr));

 portno = 666;
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);

bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr))
listen(sockfd,5);

 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
 bzero(buffer,256);
 n = read(newsockfd,buffer,255);
 printf("Here is the message: %s\n",buffer);
 n = write(newsockfd,"I got your message",18);
 return 0;
}

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Socket: client.c
int main(int argc, char *argv[])
{
 int sockfd, portno, n;
 struct sockaddr_in serv_addr;
 struct hostent *server;

 char buffer[256];
 portno = 666;
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 server = gethostbyname(“server_host.univ.edu);
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,(char *)&serv_addr.sin_addr.s_addr,server->h_length);
 serv_addr.sin_port = htons(portno);
 connect(sockfd,&serv_addr,sizeof(serv_addr));
 printf("Please enter the message: ");
 bzero(buffer,256);
 fgets(buffer,255,stdin);

write(sockfd,buffer,strlen(buffer));
bzero(buffer,256);
read(sockfd,buffer,255);

 printf("%s\n",buffer);
 return 0;
}

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Socket in C/UNIX

 The API is really not very simple
 And note that the previous code does not have

any error checking
 Network programming is an area in which you

should check ALL possible error code
 In the end, writing a server that receives a

message and sends back another one, with the
corresponding client, can require 100+ lines of C if
one wants to have robust code

 This is OK for UNIX programmers, but not for
everyone

 However, nowadays, most applications written
require some sort of Internet communication

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Sockets in Java

 Socket class in java.net
 Makes things a bit simpler
 Still the same general idea
 With some Java stuff

 Server
try { serverSocket = new ServerSocket(666);
} catch (IOException e) { <something> }
Socket clientSocket = null;
try { clientSocket = serverSocket.accept();
} catch (IOException e) { <something> }
PrintWriter out = new

PrintWriter(clientSocket.getOutputStream()
, true);

BufferedReader in = new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

// read from “in”, write to “out”

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Sockets in Java

 Java client
try {socket = new Socket(”server.univ.edu", 666);}

 catch { <something> }

out = new PrintWriter(socket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));

 // write to out, read from in

 Much simpler than the C
 Note that if one writes a client-server program one

typically creates a Thread after an accept, so that
requests can be handled concurrently

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Using Sockets for parallel
programming?

 One could thing of writing all parallel code on a
cluster using sockets
 n nodes in the cluster
 Each node creates n-1 sockets on n-1 ports
 All nodes can communicate

 Problems with this approach
 Complex code
 Only point-to-point communication
 No notion of types messages
 But

 All this complexity could be “wrapped” under a higher-level API
 And in fact, we’ll see that’s the basic idea

 Does not take advantage of fast networking within a cluster/
MPP

 Sockets have “Internet stuff” in them that’s not necessary
 TPC/IP may not even be the right protocol!

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Message Passing for Parallel
Programs

 Although “systems” people are happy
with sockets, people writing parallel
applications need something better
 easier to program to
 able to exploit the hardware better within a

single machine
 This “something better” right now is

MPI
 We will learn how to write MPI programs

 Let’s look at the history of message
passing for parallel computing

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Message Passing Interface (MPI)

8 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

9 Conclusion

The MPI Standard
 MPI Forum setup as early as 1992 to come up with a de facto

standard with the following goals:
 source-code portability
 allow for efficient implementation (e.g., by vendors)
 support for heterogeneous platforms

 MPI is not
 a language
 an implementation (although it provides hints for

implementers)
 June 1995: MPI v1.1 (we’re now at MPI v1.2)

 http://www-unix.mcs.anl.gov/mpi/
 C and FORTRAN bindings
 We will use MPI v1.1 from C in the class

 Implementations:
 well-adopted by vendors
 free implementations for clusters: MPICH, LAM, CHIMP/MPI
 research in fault-tolerance: MPICH-V, FT-MPI, MPIFT, etc.

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

SPMD Programs
 It is rare for a programmer to write a different program for each

process of a parallel application
 In most cases, people write Single Program Multiple Data

(SPMD) programs
 the same program runs on all participating processors
 processes can be identified by some rank
 This allows each process to know which piece of the problem to

work on
 This allows the programmer to specify that some process does

something, while all the others do something else (common in
master-worker computations)

main(int argc, char **argv) {
 if (my_rank == 0) { /* master */
 ... load input and dispatch ...
 } else { /* workers */
 ... wait for data and compute ...
 }

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI Concepts

 Fixed number of processors
 When launching the application one must specify the

number of processors to use, which remains unchanged
throughout execution

 Communicator
 Abstraction for a group of processes that can communicate
 A process can belong to multiple communicators
 Makes is easy to partition/organize the application in

multiple layers of communicating processes
 Default and global communicator: MPI_COMM_WORLD

 Process Rank
 The index of a process within a communicator
 Typically user maps his/her own virtual topology on top of

just linear ranks
 ring, grid, etc.

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI Communicators

MPI_COMM_WORLD

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

User-created
Communicator

21

3 4 5

876

0

1

0

User-created
Communicator

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

A First MPI Program
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int my_rank, n;
 char hostname[128];
 MPI_init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&n);
 gethostname(hostname,128);
 if (my_rank == 0) { /* master */
 printf(“I am the master: %s\n”,hostname);
 } else { /* worker */
 printf(“I am a worker: %s (rank=%d/%d)\n”,
 hostname,my_rank,n1);
 }
 MPI_Finalize();
 exit(0);
}

Has to be called first, and once

Has to be called last, and once

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Compiling/Running it

 Compile with mpicc
 Run with mpirun

% mpirun np 4 my_program <args>
 requests 4 processors for running my_program with command-

line arguments
 see the mpirun man page for more information
 in particular the machinefile option that is used to run on a

network of workstations
 Some systems just run all programs as MPI programs and

no explicit call to mpirun is actually needed
 Previous example program:
% mpirun np 3 machinefile hosts my_program
 I am the master: somehost1
 I am a worker: somehost2 (rank=2/2)
 I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected to the process calling mpirun)

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Message Passing Interface (MPI)

8 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

9 Conclusion

Point-to-Point Communication

 Data to be communicated is described by three
things:
 address
 data type of the message
 length of the message

 Involved processes are described by two things
 communicator
 rank

 Message is identified by a “tag” (integer) that
can be chosen by the user

P

M

P

M

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Point-to-Point Communication

 Two modes of communication:
 Synchronous: Communication does not

complete until the message has been
received

 Asynchronous: Completes as soon as the
message is “on its way”, and hopefully it
gets to destination

 MPI provides four versions
 synchronous, buffered, standard, ready

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Synchronous/Buffered sending in
MPI

 Synchronous with MPI_Ssend
 The send completes only once the receive has

succeeded
 copy data to the network, wait for an ack
 The sender has to wait for a receive to be posted
 No buffering of data

 Buffered with MPI_Bsend
 The send completes once the message has been

buffered internally by MPI
 Buffering incurs an extra memory copy
 Doe not require a matching receive to be posted
 May cause buffer overflow if many bsends and no

matching receives have been posted yet

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Standard/Ready Send

 Standard with MPI_Send
 Up to MPI to decide whether to do synchronous or

buffered, for performance reasons
 The rationale is that a correct MPI program should

not rely on buffering to ensure correct semantics
 Ready with MPI_Rsend

 May be started only if the matching receive has
been posted

 Can be done efficiently on some systems as no
hand-shaking is required

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_RECV

 There is only one MPI_Recv, which returns when the data has
been received.
 only specifies the MAX number of elements to receive

 Why all this junk?
 Performance, performance, performance
 MPI was designed with constructors in mind, who would endlessly

tune code to extract the best out of the platform (LINPACK
benchmark).

 Playing with the different versions of MPI_?send can improve
performance without modifying program semantics

 Playing with the different versions of MPI_?send can modify
program semantics

 Typically parallel codes do not face very complex distributed
system problems and it’s often more about performance than
correctness.

 You’ll want to play with these to tune the performance of your code
in your assignments

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Example: Sending and
Receiving

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, nprocs, x[4];
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* master */
 x[0]=42; x[1]=43; x[2]=44; x[3]=45;
 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
 for (i=1;i<nprocs;i++)
 MPI_Send(x,4,MPI_INT,i,0,MPI_COMM_WORLD);
 } else { /* worker */
 MPI_Status status;
 MPI_Recv(x,4,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 }
 MPI_Finalize();
 exit(0);
}

destination
and

source

user-defined
tag

Max number of
elements to receive

Can be examined via calls
like MPI_Get_count(), etc.

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Example: Deadlock

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

Deadlock

No
Deadlock

No
Deadlock

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

What about MPI_Send?

 MPI_Send is either synchronous or
buffered....

 With , running “some” version of MPICH
...

MPI_Send()

MPI_Recv()

...

...

MPI_Send()

MPI_Recv()

...

Deadlock

No
Deadlock

Data size > 127999 bytes

Data size < 128000 bytes

 Rationale: a correct MPI program should not rely
on buffering for semantics, just for performance.

 So how do we do this then? ...

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Non-blocking
communications

 So far we’ve seen blocking communication:
 The call returns whenever its operation is

complete (MPI_SSEND returns once the message
has been received, MPI_BSEND returns once the
message has been buffered, etc..)

 MPI provides non-blocking communication:
the call returns immediately and there is
another call that can be used to check on
completion.

 Rationale: Non-blocking calls let the
sender/receiver do something useful while
waiting for completion of the operation
(without playing with threads, etc.).

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Non-blocking Communication

 MPI_Issend, MPI_Ibsend, MPI_Isend, MPI_Irsend,
MPI_Irecv

 MPI_Request request;
 MPI_Isend(&x,1,MPI_INT,dest,tag,communicator,&request);

 MPI_Irecv(&x,1,MPI_INT,src,tag,communicator,&request);

 Functions to check on completion: MPI_Wait,
MPI_Test, MPI_Waitany, MPI_Testany, MPI_Waitall,
MPI_Testall, MPI_Waitsome, MPI_Testsome.
MPI_Status status;

MPI_Wait(&request, &status) /* block */

MPI_Test(&request, &status) /* doesn’t block */

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Example: Non-blocking comm
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, x, y;
 MPI_Status status;
 MPI_Request request;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* P0 */
 x=42;
 MPI_Isend(&x,1,MPI_INT,1,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&y,1,MPI_INT,1,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 } else if (my_rank == 1) { /* P1 */
 y=41;
 MPI_Isend(&y,1,MPI_INT,0,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&x,1,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 }
 MPI_Finalize(); exit(0);
}

No
Deadlock

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Use of non-blocking comms

 In the previous example, why not just swap one pair
of send and receive?

 Example:
 A logical linear array of N processors, needing to exchange

data with their neighbor at each iteration of an application
 One would need to orchestrate the communications:

 all odd-numbered processors send first
 all even-numbered processors receive first

 Sort of cumbersome and can lead to complicated patterns
for more complex examples

 In this case: just use MPI_Isend and write much simpler code
 Furthermore, using MPI_Isend makes it possible to

overlap useful work with communication delays:
MPI_Isend()
<useful work>
MPI_Wait()

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Iterative Application Example
for (iterations)

 update all cells
 send boundary values
 receive boundary values

 Would deadlock with MPI_Ssend, and maybe
deadlock with MPI_Send, so must be implemented
with MPI_Isend

 Better version that uses non-blocking
communication to achieve
communication/computation overlap (aka latency
hiding):
for (iterations)
 initiate sending of boundary values to neighbours;
 initiate receipt of boundary values from neighbours;
 update nonboundary cells;
 wait for completion of sending of boundary values;

 wait for completion of receipt of boundary values;
 update boundary cells;

 Saves cost of boundary value communication if
hardware/software can overlap comm and comp

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Non-blocking
communications

 Almost always better to use non-blocking
 communication can be carried out during blocking system

calls
 communication and communication can overlap
 less likely to have annoying deadlocks
 synchronous mode is better than implementing acks by hand

though
 However, everything else being equal, non-blocking

is slower due to extra data structure bookkeeping
 The solution is just to benchmark

 When you do your programming assignments, you
will play around with different communication types

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

More information

 There are many more functions that allow
fine control of point-to-point communication

 Message ordering is guaranteed
 Detailed API descriptions at the MPI site at

ANL:
 Google “MPI”. First link.
 Note that you should check error codes, etc.

 Everything you want to know about deadlocks
in MPI communication

 http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Message Passing Interface (MPI)

8 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

9 Conclusion

Collective Communication

 Operations that allow more than 2 processes
to communicate simultaneously
 barrier
 broadcast
 reduce

 All these can be built using point-to-point
communications, but typical MPI
implementations have optimized them, and
it’s a good idea to use them

 In all of these, all processes place the same
call (in good SPMD fashion), although
depending on the process, some arguments
may not be used

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Barrier

 Synchronization of the calling processes
 the call blocks until all of the processes

have placed the call
 No data is exchanged
 Similar to an OpenMP barrier

...

MPI_Barrier(MPI_COMM_WORLD)

...

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Broadcast

 One-to-many communication
 Note that multicast can be

implemented via the use of
communicators (i.e., to create
processor groups)
...

MPI_Bcast(x, 4, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Broadcast example

 Let’s say the master must send the user
input to all workers

int main(int argc,char **argv) {

int my_rank;

 int input;

MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 if (argc != 2) exit(1);

 if (sscanf(argv[1],”%d”,&input) != 1) exit(1);

MPI_Bcast(&input,1,MPI_INT,0,MPI_COMM_WORLD);

...

}

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Scatter

 One-to-many communication
 Not sending the same message to all

root

destinations
...

MPI_Scatter(x, 100, MPI_INT, y, 100, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root
Send buffer

Receive buffer

Data to send to each Data to receive

. . .

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

This is actually a bit tricky

 The root sends data to itself!

 Arguments #1, #2, and #3 are only
meaningful at the root

master node

work node

work node work node

work node

work node

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Scatter Example

 Partitioning an array of input among
workers

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
<allocate array recvbuffer of size N/n>

if (my_rank == 0) { /* master */
<allocate array a of size N>

}
MPI_Scatter(a, N/n, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 ...
}

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Scatter Example

 Without redundant sending at the root

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
if (my_rank == 0) { /* master */

<allocate array a of size N>
<allocate array recvbuffer of size N/n>

 MPI_Scatter(a, N/n, MPI_INT,
 MPI_IN_PLACE, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 } else { /* worker */

<allocate array recvbuffer of size N/n>
MPI_Scatter(NULL, 0, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 }
 ...
}

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Gather

 Many-to-one communication
 Not sending the same message to the root

root

sources

...

MPI_Gather(x, 100, MPI_INT, y, 100, MPI_INT, 0, MPI_COMM_WORLD)
...

Rank of the root
Send buffer

Receive buffer

Data to send from each Data to receive

. . .

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Gather-to-all

 Many-to-many communication
 Each process sends the same message to all
 Different Processes send different messages

...

MPI_Allgather(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

All-to-all
 Many-to-many communication
 Each process sends a different message to each other

process

...

MPI_Alltoall(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

Block i from proc j goes to block j on proc i

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Reduction Operations

 Used to compute a result from data that is
distributed among processors
 often what a user wants to do anyway

 e.g., compute the sum of a distributed array
 so why not provide the functionality as a single API

call rather than having people keep re-
implementing the same things

 Predefined operations:
 MPI_MAX, MPI_MIN, MPI_SUM, etc.

 Possibility to have user-defined operations

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_Reduce, MPI_Allreduce

 MPI_Reduce: result is sent out to the root
 the operation is applied element-wise for each

element of the input arrays on each processor
 An output array is returned

 MPI_Allreduce: result is sent out to
everyone

...

MPI_Reduce(x, r, 10, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD)
...

output arrayinput array array size root

...

MPI_Allreduce(x, r, 10, MPI_INT, MPI_MAX, MPI_COMM_WORLD)
...

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_Reduce example

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

11 16 20 22 24 18P0

sbuf

rbuf

MPI_Reduce(sbuf,rbuf,6,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD)

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_Scan: Prefix reduction
 Process i receives data reduced on

process 0 to i.

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

3 4 2 8 12 1P0

8 6 7 9 19 12P1

10 10 11 19 23 17P2

11 16 12 22 24 18P3

MPI_Scan(sbuf,rbuf,6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

sbuf rbuf

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

And more...

 Most broadcast operations come with a
version that allows for a stride (so that blocks
do not need to be contiguous)
 MPI_Gatherv(), MPI_Scatterv(), MPI_Allgatherv(),

MPI_Alltoallv()
 MPI_Reduce_scatter(): functionality

equivalent to a reduce followed by a scatter
 All the above have been created as they are

common in scientific applications and save
code

 All details on the MPI Webpage

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Message Passing Interface (MPI)

8 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

9 Conclusion

MPI-2
 MPI-2 provides for:

 Remote Memory
 put and get primitives, weak synchronization
 makes it possible to take advantage of fast hardware (e.g., shared memory)
 gives a shared memory twist to MPI

 Parallel I/O
 we’ll talk about it later in the class

 Dynamic Processes
 create processes during application execution to grow the pool of resources
 as opposed to “everybody is in MPI_COMM_WORLD at startup and that’s the

end of it”
 as opposed to “if a process fails everything collapses”
 a MPI_Comm_spawn() call has been added (akin to PVM)

 Thread Support
 multi-threaded MPI processes that play nicely with MPI

 Extended Collective Communications
 Inter-language operation, C++ bindings
 Socket-style communication: open_port, accept, connect (client-server)

 MPI-2 implementations are now available

Courtesy of Henri Casanova

MPI
Conclusion

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI
Conclusion

Outlines: Message Passing Interface (MPI)

8 MPI

9 Conclusion

MPI
Conclusion

Summary

Lots of different parallel languages in HPC

PThread, OpenMP, Cuda, OpenCL, MPI and lots of others
different targets, different properties (shared memory,
SIMD, etc.)

Future
Mixing these models?
Why still new parallel language nowadays?
How can these parallel environment be improved?

	Outlines
	Part I: Threads : Posix and OpenMP
	Part II: General Purpose Graphical Processor Units (GPGPU)
	Part III: Message Passing Interface (MPI)

	Threads : Posix and OpenMP
	Introduction to threads
	PThread
	Normalization of the threads interface
	Basic POSIX Thread API

	OpenMP
	Presentation
	Overview

	General Purpose Graphical Processor Units (GPGPU)
	OpenCL and Cuda
	Cuda
	Introduction
	CUDA C/C++ Basics
	Asynchronous Execution
	Advanced Topics

	OpenCL
	A Standard for Parallel Computing
	Life and Death of OpenCL in a Program
	Writing Kernels and performance results
	New version of OpenCL and conclusions

	Message Passing Interface (MPI)
	MPI
	Message Passing
	Introduction to MPI
	Point-to-Point Communications
	Collective Communications

	Conclusion

