
Exercise on validation

Typical random access protocol to a common channel (CSMA family)

while Message not send do
Send message
if Collision then

Wait some amount of time
end if

end while

What should be the amount of time ?

Protocol dimensioning

Waiting time :
Random

Uniform on an interval [0, In]

Length of the interval depends on the number of collisions

Adaptive scheme In+1 = 2 × In,

I0 fixed, characteristic of the protocol
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Protocol history

University of Hawaiì 1970 http://www.hicss.hawaii.edu/

Norman Abramson et al.
Use of a radio network to provide computer communications without
centralization or vacations

Ancestor of CSMA/CD (ethernet), CSMA/CA (WiFi)...
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Quantitative specification validation

Experiment

Propose an experiment to check the specification of the protocol

Estimation

How could I0 be estimated ?

Decision

How could you conclude on the validity of the implementation of the protocol
?
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Architecture comparison

Performance characterization

Distributed protocol (consensus)
List of benchmarks (with some parameters)

Several types of architecture

Problem: decide which architecture is the best one
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Comparison of results

Decision problem

Two hypothesis :
- H0 : (null hypothesis) A is equivalent to B
- H1 : (alternative hypothesis) A is better than B
Decision error:
type 1 error : reject H0 when H0 is true
type 2 error : accept H0 when H1 is true.

According the observation find the decision function minimizing some risk
criteria
Rejection region : if (x1, · · · , xn) ∈ C reject H0

Danger : errors are not symmetric
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Testing Normal Distributed Variables

Observations : N (m0, σ
2
0)) under hypothesis H0 and N (m1, σ

2
1)) under

hypothesis H1 with m1 > m0

Rejection region C =

{
1
n

(x1 + · · ·+ xn) > K
}
.

Computation of the rejection region type 1 error : choose α

α = PH0 (
1
n

(X1 + · · ·+ Xn) > Kα)

= PH0

(
(

√
n
σ

(
1
n

(X1 + · · ·+ Xn)−m0) >
√

n
σ

(Kα −m0)

)

= P(Y >
√

n
σ

(Kα −m0)) with Y ∼ N (0, 1).

Φα =

√
n
σ

(Kα −m0) then Kα = m0 +
σ√
n

Φα.
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Numerical example

α = 0.05 (a priori confidence)
Φα = 1.64 (read on the table of the Normal distribution)

Under H0, m0 = 6 and σ0 = 2
Sample size n = 100

Kα = 6 +
2

10
1.64 = 6.33.

If 1
n (x1 + · · ·+ xn) > 6.33 reject H0 (accept H1), else accept H0

Type 2 error: Depends on the alternative hypothesis

m1 = m′ (known) σ1 known

β = PH1 (
1
n

(X1 + · · ·+ Xn) 6 Kα) = P(Y 6
√

n
σ1

(Kα −m1)).

m1 > m0 or m1 6= m0 : cannot compute
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Application example (1)

Test if algorithm 1 is better than algorithm 0
Generate n random inputs i1, · · · , in
Compute A0(ik ) A1(ik )

xk = A1(ik )− A0(ik )

Reject the hypothesis m = 0 if 1
n (x1 + · · ·+ xn) > Kα
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Application example (2)

Test if system 1 is better than system 0
Generate n0 random inputs i1, · · · , in0

Compute S0(ik )

Generate n1 random inputs i1, · · · , in1

ComputeS1(ik )

Compute the mean difference

Compute the standard deviation of the difference

Reject the hypothesis m = 0 if x̄1 − x̄0 > Kα
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Experiment with one factor

Evaluate complexity as a function of the size of data
Response time as function of the message sizes
Load of a web server function of the number of connexion
etc

Observations

Couple (x , y) paired observations
x predictor variable (known without error or noise)

y response variable
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Methodology

1 Plot data and analyse separately x and y (histogram, central tendency,...)
2 Plot the cloud of points (x , y)

3 Analyse the shape of the cloud
4 Propose a dependence function (fix the parameters y = ax + b, y = beax ,...)
5 Give the semantic of the function
6 Give an error criteria with its semantic
7 Compute the parameters minimizing a criteria
8 Compute the confidence intervals on parameters (precision of the prediction)
9 Explain the unpredicted variance (ANOVA)

10 Analyse the result
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What is a regression?

Regression analysis is the most widely used statistical tool for understanding
relationships among variables. Several possible objectives including:

1 Prediction of future observations. This includes extrapolation since we
all like connecting points by lines when we expect things to be
continuous

2 Assessment of the effect of, or relationship between, explanatory
variables on the response

3 A general description of data structure (generally expressed in the
form of an equation or a model connecting the response or dependent
variable and one or more explanatory or predictor variable)

4 Defining what you should "expect" as it allows you to define and
detect what does not behave as expected

The linear relationship is the most commonly found one
we will illustrate how it works
it is very general and is the basis of many more advanced tools
(polynomial regression, ANOVA, . . . )
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Starting With a Simple Data Set

Descriptive statistics provides simple summaries about the sample and
about the observations that have been made.

How could we summarize the following data set ?

x y
1 1.00 3.00
2 2.00 1.00
3 3.00 5.00
4 5.00 2.00
5 7.00 6.00
6 9.00 4.00
7 11.00 7.00
8 13.00 9.00
9 14.00 8.00

10 15.00 5.00
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Eyeball Method
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A straight line drawn through the maximum number of points on a
scatter plot balancing about an equal number of points above and
below the line
Some points are rather far from the line. Maybe we should instead try
to minimize some kind of distance to the line
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Least Squares Line (3): y as a function of x or the opposite?
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OK, do we have less asymetrical options?
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Least Distances Line (a.k.a. Deming Regression)
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Note that somehow, this makes sense only if we have a square plot,
i.e., if x and y have the same units
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Least Rectangles Line
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Minimize E (α, β) =
∑n

i=1

∣∣∣xi − yi−α
β

∣∣∣ · |yi − α− βxi |
This leads to the regression line y =

sy
sx (x − x̄) + ȳ .
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Least Squares (in Both Directions) Line
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Minimize D(α, β) =
∑n

i=1

(
xi − yi−α

β

)2
+ (yi − α− βxi )

2

Has to be computed analytically
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Which line to choose?
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Eyeball

Least Distance

Least Rectangles

Least Squares

Least Squares x^2+y^2
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What does correspond to each line?

Eyeball: AFAIK nothing
Least Squares: classical linear regression y ∼ x
Least Squares in both directions: I don’t know
Deming: equivalent to Principal Component Analysis
Rectangles: may be used when one variable is not "explained" by the
other, but are inter-dependent

This is not just a geometric problem. You need a model of to decide which
one to use
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The Simple Linear Regression Model
We need to invest in a probability model

Y = a + bX + ε

Y is the response variable
X is a continuous explanatory variable
a is the intercept
b is the slope
ε is some noise
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a + bX represents the “true line”, the part of Y that depends on X
The error term ε is independent “idosyncratic noise”, i.e., the part of
Y not associated with X

Gauss-Markov Theorem
Under a few assumptions, the least squares regression is the best linear
unbiased estimate

E(β̂) = b and E(α̂) = a Var(β̂) and Var(α̂) are minimal
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Multiple explanatory variables

The same results hold true when there are several explanatory
variables:

Y = a + b(1)X (1) + b(2)X (2) + b(1,2)X (1)X (2) + ε

The least squares regressions are good estimators of a, b(1), b(2),
b(1,2)

We can use an arbitrary linear combination of variables, hence
Y = a + b(1)X + b(2) 1

X + b(3)X 3 + ε

is also a linear model
Obviously the closed-form formula are much more complicated but
softwares like R handle this very well
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Linear regression

Theoretical model

(X ,Y ) follows a correlation model

Y = αX + β + ε;

with ε a white noise ε ∼ N (0, .)

Objective function

Find estimator (â, b̂) minimizing the SSE (sum of square errors)
n∑

i=1

(yi − axi − b)2 =
n∑

i=1

e2
i .

ei = yi − axi − b is the error prediction when the coefficients are a and b
(â, b̂) is the estimator of (α, β) minimizing SSE
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Coefficients estimation

Statistics

Empirical mean of x : x = 1
n
∑n

i=1 xi .

Empirical mean of y : y = 1
n
∑n

i=1 yi .

Empirical variance of x : S2
X = 1

n
∑n

i=1(xi − x)2 = x2 − x2.

Empirical variance of y : S2
Y = 1

n
∑n

i=1(yi − y)2 = y2 − y2.

Empirical Covariance of (x , y): SXY = 1
n
∑n

i=1(xi − x)(yi − y) = x · y − x · y .

Estimators

yi =
SXY

S2
X

(xi − x) + y

â =
SXY

S2
X

and b̂ = y − x · SXY

S2
X

= y − â · x
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Error analysis
Total error :

SST =
n∑

i=1

(yi − y)2 =
n∑

i=1

y2
i − ny2 = SSY − SS0.

Prediction error:

SSE =
n∑

i=1

(yi − âxi − b̂)2 = n(y2 − b̂y − âx · y

Residual error (that has not been predicted): SSR = SST − SSE
Determination coefficient:

R2 =
SSR
SST

Prediction quality

R2 = 1 perfect fit

R2 = 0 no fit

Usually we accept the model when R2 > 0.8
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Important Hypothesis (1)

Weak exogeneity The predictor variables X can be treated as fixed values,
rather than random variables: the X are assumed to be error-free, i.e.,
they are not contaminated with measurement errors
Although not realistic in many settings, dropping this assumption leads
to significantly more difficult errors-in-variables models

Linearity the mean of the response variable is a linear combination of the
parameters (regression coefficients) and the predictor variables
Since predictor variables themselves can be arbitrarily transformed, this
is not that restrictive. This trick is used, for example, in polynomial
regression, but beware of overfitting

Independance of Errors if several responses Y1 and Y2 are fit, ε1 and ε2
should be independant
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Other Very Important Hypothesis

Constant variance (a.k.a. homoscedasticity)

●

●●

●

●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

homoscedastic heteroscedastic

0

20

40

60

−20 0 20 40 60 −20 0 20 40 60
x

y

Variance is independant of X
If several responses Y1 and Y2 are fit, ε1 and ε2 should have the
same variance
Either normalize Y or use an other estimator
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Other Classical Hypothesis (3)

Normal and iid errors This is not an assumption of the Gauss Markov
Theorem. Yet, it is quite convenient to build confidence intervals of the
regression

Arrangement of the predictor variables X it has a major influence on the
precision of estimates of β (remember Anscombe’s quartet).
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This is part of your design of experiments:
If you want to test linearity, X should be uniformly distributed
If you want the best estimation, you should use extreme values of X
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Linearity: Residuals vs. Explanatory Variable
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When there are several factors, you have to check for every dimension. . .
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Homoscedasticity: Residuals vs. Fitted values
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Normality: qqplots

● ● ● ●●●
●

●●
●●●

●●●
●●

●●●
●●●●

●
●●

●●●●●
●●●

●●●
●●●

●●●

●
●

●
● ●

●

● ● ● ●●●●●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●

●
●●

●●●
●
●●

●●

●
●

●●
●

●

●

normal exponential

−1

0

1

2

0

1

2

3

4

−2 −1 0 1 2 −2 −1 0 1 2
theoretical

sa
m

pl
e

A quantile-quantile plot is a graphical method for comparing two
probability distributions by plotting their quantiles against each other
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Model Formulae in R

The structure of a model is specified in the formula like this:

response variable ~ explanatory variable(s)

~ reads "is modeled as a function of " and lm(y~x) means y = α+βx + ε

On the right-hand side, on should specify how the explanatory variables are
combined. The symbols used here have a different meaning than in
arithmetic expressions

+ indicates a variable inclusion (not an addition)
- indicates a variable deletion (not a substraction)
* indicates inclusion of variables and their interactions
: means an interaction

Therefore
z~x+y means z = α + β1x + β2y + ε

z~x*y means z = α + β1x + β2y + β3xy + ε

z~(x+y)^2 means the same
log(y)~I(1/x)+x+I(x^2) means z = α + β1 × 1

x + β2x + β3x2 + ε
29 / 44



Checking the model with R

reg <- lm(data=df[df$type=="heteroscedastic",],y~x)
par(mfrow=c(2,2)); plot(reg); par(mfrow=c(1,1))
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Decomposing the Variance

How well does the least squares line explain variation in Y ?
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Remember that Y = Ŷ + ε (Ŷ is the "true mean").
Since Ŷ and ε are uncorrelated, we have

Var(Y ) = Var(Ŷ + ε) = Var(Ŷ ) + Var(ε)

1
n − 1

n∑

i=1

(Yi − Ȳ )2 =
1

n − 1

n∑

i=1

(Ŷi − ¯̂Y )2 +
1

n − 1

n∑

i=1

(εi − ε̄)2

Since ε̄ = 0 and Ȳ = ¯̂Y , we have
n∑

i=1

(Yi − Ȳ )2

︸ ︷︷ ︸
Total Sum of Squares

=
n∑

i=1

(Ŷi − Ȳ )2

︸ ︷︷ ︸
Regression SS

+
n∑

i=1

ε̄2

︸ ︷︷ ︸
Error SS

SSR = Variation in Y explained by the regression line
SSE = Variation in Y that is left unexplained

SSR = SST ⇒ perfect fit
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︸ ︷︷ ︸
Regression SS

+
n∑

i=1

ε̄2

︸ ︷︷ ︸
Error SS

SSR = Variation in Y explained by the regression line
SSE = Variation in Y that is left unexplained

SSR = SST ⇒ perfect fit
32 / 44



A Goodness of Fit Measure: R2

The coefficient of determination, denoted by R2, measures goodness of fit:

R2 =
SSR
SST

= 1− SSE
SST

0 6 R2 6 1
The closer R2 is to 1, the better the fit

Warning:
A not so low R2 may mean important noise or bad model
As you add parameters to a model, you inevitably improve the fit.
There is a trade-off beteween model simplicity and fit. Strive for
simplicity!
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Illustration with R (homoscedastic data)
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reg <- lm(data=df[df$type=="homoscedastic",],y~x)
summary(reg)

Call:
lm(formula = y ~ x, data = df[df$type == "homoscedastic", ])

Residuals:
Min 1Q Median 3Q Max

-4.1248 -1.3059 -0.0366 1.0588 3.9965

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.56481 0.33165 13.76 <2e-16 ***
x 0.50645 0.01154 43.89 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.816 on 48 degrees of freedom
Multiple R-squared: 0.9757, Adjusted R-squared: 0.9752
F-statistic: 1926 on 1 and 48 DF, p-value: < 2.2e-16
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Conclusion

1 You need a model to perform your regression
2 You need to check whether the underlying hypothesis of this model are

reasonable or not

This model will allow you to:
1 Assess and quantify the effect of parameters on the response
2 Extrapolate within the range of parameters you tried
3 Detect outstanding points (those with a high residual and/or with a

high lever)
This model will guide on how to design your experiments:

e.g., the linear model assumes some uniformity of interest over the
parameter space range
if your system is heteroscedastic, you will have to perform more
measurements for parameters that lead to higher variance

44 / 44



Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Outline

1 Comparison of Systems

2 One Factor

3 Factor Selection

4 Trace Analysis

5 Conclusion

16 / 29Performance Evaluation



Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Time dimensioning problems

Time out estimation

Distributed protocol (consensus)
Crash of processes

Variable communications (wireless network)

Failure detection mechanism (parametrized)

Factors

Crash of processes

Variable communications (wireless network)

Failure detection mechanism (parametrized)

⇒ Evaluation of the latency

17 / 29Performance Evaluation



Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Latency estimation

PDA→ PDA communication (ping)

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400 450 500

latencyen (ms)

Distribution of latency
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Factors Analysis

Factors (a priori)

Distance

Number of obstacles

Number of nodes

Network load

Sender type

Receiver type

Saving energy

Tagushi analysis
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Factors Analysis

Significant factors

Distance

Number of obstacles

Number of nodes

Network load (2)

Sender type (4)

Receiver type (1)

Saving energy (3)

Tagushi analysis
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Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Time out estimation

Laptop→ PDA

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 200 400 600 800 1000
Délais entre 2 réceptions

émetteur : laptop1 − récepteur : PDA2

P
ro

ba
bi

lit
é

Laptop→ laptop

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200

P
ro

ba
bi

lit
é

Délais entre 2 réceptions

émetteur : laptop1 − récepteur : laptop2

21 / 29Performance Evaluation



Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Outline

1 Comparison of Systems

2 One Factor

3 Factor Selection

4 Trace Analysis

5 Conclusion

22 / 29Performance Evaluation



Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Trace analysis example

Presentation of the paper available on http://fta.inria.fr
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Introduction and Motivation

P2P, Grid, Cloud, and Volunteer computing systems

Main Features:

Tens or hundreds of thousands of unreliable and heterogeneous
hosts
Uncertainty of host availability

Main Motivation
Effective Resource Selection for Stochastic Scheduling Algorithms

Goal
Model of host availability
(i.e., subset of hosts with the same availability distribution)
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Measurement

Define Availability

CPU availability on each host

A1

Time

CPU

on host i

A2 An

Length of Availability Intervals: A1, A2, ..., An
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Measurement

Measurement Method

BOINC
Middleware for volunteer computing systems
Underlying software infrastructure for projects such as
SETI@home

We instrumented the BOINC client to collect CPU availability traces:

Total number of host traces: 226,208
Collection period: April 1, 2007 - Jan 1, 2009
Total CPU time: 57,800 years
Number of intervals: 102,416,434
Assume 100% or 0% availability
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Measurement Remove outliers

Outline

1 Introduction and Motivation

2 Measurement
Remove outliers

3 Modelling Process
Randomness Tests
Clustering
Model fitting

4 Discussions
Significance of Clustering Criteria
Scheduling Implications

5 Related Work

6 Conclusion and Future Work

B. Javadi (INRIA) Statistical Models of Availability MASCOTS 2009 6 / 34



Measurement Remove outliers

Outliers

Data Set Remove
Outliers

Check for outliers: Artifacts resulted from a benchmark run periodically
every five days
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Modelling Process Randomness Tests
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Modelling Process Randomness Tests

Randomness Tests

Data Set Remove
Outliers

Randomness
Tests

Non-iid Hosts

iid Hosts

Not pass

Pass

To determine which hosts have truly random availability intervals

Four well-known non-parametric tests:
Runs test
Runs up/down test
Mann-Kendall test
Autocorrelation function test (ACF)

Test Runs std Runs up/down ACF Kendall All

# of hosts 101649 144656 109138 101462 57757
Fraction 0.602 0.857 0.647 0.601 0.342

Result: 34% are i.i.d. hosts (2.2 PetaFLOPS)
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Modelling Process Clustering
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Modelling Process Clustering

Distribution of Availability Intervals

Data Set Remove
Outliers

Randomness
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Modelling Process Clustering

Clustering Method

Data Set Remove
Outliers

Randomness
Tests

Non-iid Hosts

iid Hosts Clustering

Not pass

Pass

Generate a few clusters based on availability distribution function

Method:

Hierarchical

Compute all permutations
Memory intensive

K-means (fast K-means)

Fast convergence
Dependent on initial centroids
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Modelling Process Clustering

Distance Metrics

Distance between CDF of two hosts

Kolmogorov-Smirnov: Maximum difference between two CDFs

Kuiper: Maximum deviation above and below of two CDFs

Cramer-von Mises: Area between two CDFs

Anderson-Darling: Area between two CDFs, more weight on the tail
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Modelling Process Clustering

Distance Metrics

Important Challenge:

Number of samples in each CDF
Few samples –> not enough confidence on the result

Too much samples –> the metric will be too sensitive

Data Set: different hosts have different number of samples
Our solution: randomly select a fixed number of intervals from
each host (i.e., 30 samples)
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Modelling Process Clustering

Clustering Results

Dendrogram of hierarchical clustering: 5-10 distinct groups (bootstrap)
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Modelling Process Clustering

Clustering Results

Comparison of distances in clusters (k-means for all iid hosts):
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Modelling Process Clustering

EDF of clusters
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Modelling Process Model fitting
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Modelling Process Model fitting

Methods

Data Set Remove
Outliers

Randomness
Tests

Non-iid Hosts

iid Hosts Clustering Model
Fitting

Not pass

Pass

Method:
Maximum Likelihood Estimation (MLE)
Moment Matching (MM)

Target Distributions:
Exponential
Pareto
Weibull
Log-normal
Gamma
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Modelling Process Model fitting

Graphical Test
PP-plots: Exponential, Pareto, Weibull, Log-normal, Gamma

Cluster 1:

Cluster 2:

Cluster 3:

Cluster 4:

Cluster 5:

Cluster 6:
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Modelling Process Model fitting

Goodness Of Fit Tests

Generate p-values by two GOF tests (average over 1000 runs):
Kolmogorov-Smirnov (KS) test
Anderson-Darling (AD) test

Exponential Pareto Weibull Log-Normal Gamma
Data sets AD KS AD KS AD KS AD KS AD KS
All iid hosts 0.004 0.000 0.061 0.013 0.581 0.494 0.568 0.397 0.431 0.359

Cluster 1 0.155 0.071 0.029 0.008 0.466 0.243 0.275 0.116 0.548 0.336
Cluster 2 0.188 0.091 0.020 0.004 0.471 0.259 0.299 0.128 0.565 0.384
Cluster 3 0.002 0.000 0.068 0.023 0.485 0.380 0.556 0.409 0.372 0.241
Cluster 4 0.264 0.163 0.002 0.000 0.484 0.242 0.224 0.075 0.514 0.276
Cluster 5 0.204 0.098 0.013 0.002 0.498 0.296 0.314 0.153 0.563 0.389
Cluster 6 0.059 0.016 0.033 0.009 0.570 0.439 0.485 0.328 0.538 0.467
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Modelling Process Model fitting

Some properties of clusters

Clusters # of hosts % of total avail. mean (hrs) Best fit Parameters
shape scale

All iid hosts 57757 1.0 12.697 Weibull 0.3787 3.0932
Cluster 1 3606 0.16 90.780 Gamma 0.3131 289.9017
Cluster 2 9321 0.35 54.563 Gamma 0.3372 161.8350
Cluster 3 13256 0.22 11.168 Log-Normal -0.8937 3.2098
Cluster 4 275 0.01 123.263 Gamma 0.3739 329.6922
Cluster 5 1753 0.05 34.676 Gamma 0.3624 95.6827
Cluster 6 29546 0.20 4.138 Weibull 0.4651 1.8461

Cluster sizes are different and often significant

Heterogeneity in distribution parameters (different scale
parameters)
Decreasing hazard rate

B. Javadi (INRIA) Statistical Models of Availability MASCOTS 2009 22 / 34



Modelling Process Model fitting

Some properties of clusters

Clusters # of hosts % of total avail. mean (hrs) Best fit Parameters
shape scale

All iid hosts 57757 1.0 12.697 Weibull 0.3787 3.0932
Cluster 1 3606 0.16 90.780 Gamma 0.3131 289.9017
Cluster 2 9321 0.35 54.563 Gamma 0.3372 161.8350
Cluster 3 13256 0.22 11.168 Log-Normal -0.8937 3.2098
Cluster 4 275 0.01 123.263 Gamma 0.3739 329.6922
Cluster 5 1753 0.05 34.676 Gamma 0.3624 95.6827
Cluster 6 29546 0.20 4.138 Weibull 0.4651 1.8461

Cluster sizes are different and often significant
Heterogeneity in distribution parameters (different scale
parameters)

Decreasing hazard rate

B. Javadi (INRIA) Statistical Models of Availability MASCOTS 2009 22 / 34



Modelling Process Model fitting

Some properties of clusters

Clusters # of hosts % of total avail. mean (hrs) Best fit Parameters
shape scale

All iid hosts 57757 1.0 12.697 Weibull 0.3787 3.0932
Cluster 1 3606 0.16 90.780 Gamma 0.3131 289.9017
Cluster 2 9321 0.35 54.563 Gamma 0.3372 161.8350
Cluster 3 13256 0.22 11.168 Log-Normal -0.8937 3.2098
Cluster 4 275 0.01 123.263 Gamma 0.3739 329.6922
Cluster 5 1753 0.05 34.676 Gamma 0.3624 95.6827
Cluster 6 29546 0.20 4.138 Weibull 0.4651 1.8461

Cluster sizes are different and often significant
Heterogeneity in distribution parameters (different scale
parameters)
Decreasing hazard rate

B. Javadi (INRIA) Statistical Models of Availability MASCOTS 2009 22 / 34



Discussions Significance of Clustering Criteria
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Discussions Significance of Clustering Criteria

Significance of Clustering Criteria

Could the same clusters have been found using some other static
criteria?

Cluster by venue: Work, Home, School
Cluster by Time zone: 6 different time zones
Cluster by CPU speed
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Discussions Scheduling Implications
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Discussions Scheduling Implications

Scheduling Implications

Scheduling accuracy

Global model vs. Individual cluster model

Ex: Completion probability of a 24-hour task:
Global model: <20%
Cluster 4: 70%

Resource Selection/Replication

Single job: Prediction of task failure
Multi-job: How the task size distribution follows the availability
distribution
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Related Work

Related Work

Different from other research
Measurement

Resource type: home, work, and school
Scale: 200,000 hosts
Duration: 1.5 years
Availability : CPU availability

Modelling

Classification according to randomness tests
Cluster-based Model vs Global Model
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Conclusion and Future Work

Conclusion and Future Work
Discovering availability models for host subsets from a distributed system

Conclusion

Methodology

Remove outliers
Classification based on the randomness tests (iid vs non-iid)
Partitioning hosts into subsets by their availability distribution

Modelling (Apply the methodology for the SETI@home)

34% of hosts have truly random availability intervals
Six clusters with three different distributions: Gamma, Weibull, and
Log-normal

Future Work

Apply the result for improving makespan of DAG-applications

Explore ability of clustering dynamically while the system is on-line
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Conclusion and Future Work

Failure Trace Archive

http://fta.inria.fr
Repository of availability traces of parallel and distributed
systems, and tools for analysis
Facilitate design, validation and comparison of fault-tolerance
algorithms and models
15 data sets including SETI@home data set

More Details
Poster Session at MASCOTS 2009 (Today 19:00-21:00)
Website: http://fta.inria.fr
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Conclusion and Future Work

Thank You

Questions?
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Conclusion and Future Work

Distance Metrics

Distance between CDF of two hosts

Kolmogorov-Smirnov: Dn,m = sup | Fn(x)−Gm(x) |
Kuiper: Vn,m = sup | Fn(x)−Gm(x) | +sup | Gm(x)− Fn(x) |
Cramer-von Mises:

Tn,m = nm
(n+m)2

8<:
nX

i=1

[Fn(xi)−Gm(xi)]
2 +

mX
j=1

[Fn(yj)−Gm(yj)]
2

9=;
Anderson-Darling: Qn =

R∞
−∞[F (x)− Fn(x)]2ψ(F (x))dF

ψ(F (x)) = 1
F (x)(1−F (x))
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Conclusion and Future Work

Fitting with Hyper-Exponential

Fitting Method:
Expectation Maximization (EM) [using EMpht package]

Accurate
Flexible
Slow

Moment Matching (MM)
Less accurate
Not flexible
Very fast

We used MM for 2-phase hyper-exponential by the first two moments
as follows:
p = 1

2(1 −
√

CV 2−1
CV 2+1)

λ1 = 2p
µ

λ2 = 2(1−p)
µ
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PP-Plots

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) Cluster 6
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Goodness of Fit Tests

Hyper-Exponential (MM) Hyper-Exponential (EM)
Data sets Parameters AD KS Parameters AD KS

All iid hosts p1 = 0.024 λ1 = 0.004
p2 = 0.976 λ2 = 0.154

0.026 0.005 p1 = 0.197 λ1 = 0.0179
p2 = 0.279 λ2 = 29.171
p3 = 0.524 λ3 = 0.316

0.531 0.375

Cluster 1 p1 = 0.115 λ1 = 0.003
p2 = 0.885 λ2 = 0.019

0.287 0.119 p1 = 0.180 λ1 = 14.401
p2 = 0.820 λ2 = 0.009

0.450 0.318

Cluster 2 p1 = 0.114 λ1 = 0.004
p2 = 0.886 λ2 = 0.032

0.275 0.113 p1 = 0.183 λ1 = 12.338
p2 = 0.817 λ2 = 0.015

0.512 0.403

Cluster 3 p1 = 0.030 λ1 = 0.005
p2 = 0.970 λ2 = 0.174

0.005 0.000 p1 = 0.341 λ1 = 0.031
p2 = 0.261 λ2 = 71.852
p3 = 0.398 λ3 = 1.923

0.561 0.434

Cluster 4 p1 = 0.136 λ1 = 0.002
p2 = 0.864 λ2 = 0.014

0.448 0.273 p1 = 0.694 λ1 = 0.020
p2 = 0.306 λ2 = 0.003

0.473 0.274

Cluster 5 p1 = 0.105 λ1 = 0.006
p1 = 0.895 λ2 = 0.052

0.295 0.122 p1 = 0.173 λ1 = 13.374
p2 = 0.827 λ2 = 0.024

0.523 0.393

Cluster 6 p1 = 0.010 λ1 = 0.005
p2 = 0.990 λ2 = 0.478

0.114 0.038 p1 = 0.516 λ1 = 0.131
p2 = 0.150 λ2 = 163.771
p3 = 0.334 λ3 = 2.411

0.572 0.470
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Synthesis : principles

1 Formulate the hypothesis
2 Design the experiment to validate the hypothesis
3 Check the validity of the experience
4 Analyse the experiments to validate or invalidate the hypothesis
5 Report the arguments in a convincing form
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Synthesis : Steps for a Performance Evaluation Study
[Jain]

1 State the goals of the study and define system boundaries.
2 List system services and possible outcomes.
3 Select performance metrics.
4 List system and workload parameters
5 Select factors and their values.
6 Select evaluation techniques.
7 Select the workload.
8 Design the experiments.
9 Analyze and interpret the data.

10 Present the results. Start over, if necessary.
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Common mistakes in experimentation [Jain]

1 The variation due to experimental error is ignored
2 Important parameters are not controlled
3 Simple one-factor-at-a-time designs are used
4 Interactions are ignored
5 Too many experiments are conducted
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