
Introduction to Design of Experiments

Jean-Marc Vincent and Arnaud Legrand

Laboratory ID-IMAG
MESCAL Project

Universities of Grenoble
{Jean-Marc.Vincent,Arnaud.Legrand}@imag.fr

November 10, 2014

J.-M. Vincent and A. Legrand Introduction to Design of Experiments 1 / 40



Outline

1 Confidence Intervals

2 Using Confidence Intervals

3 Design of Experiments: Early Intuition

4 Getting rid of Outliers

5 Issues when studying something else than the mean

J.-M. Vincent and A. Legrand Introduction to Design of Experiments 2 / 40



Outline

1 Confidence Intervals

2 Using Confidence Intervals

3 Design of Experiments: Early Intuition

4 Getting rid of Outliers

5 Issues when studying something else than the mean

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Confidence Intervals 3 / 40



Continuous random variable

I A random variable (or stochastic variable) is, roughly speaking, a
variable whose value results from a measurement.
Such a variable enables to model uncertainty that may result of in-
complete information or imprecise measurements.
Formally (Ω,F , P ) is a probability space where:

I Ω, the sample space, is the set of all possible outcomes (e.g., {1, 2, 3, 4, 5, 6})
I F if the set of events where an event is a set containing zero or more

outcomes (e.g., the event of having an odd number {1, 3, 5})
I The probability measure P : F → [0, 1] is a function returning an

event’s probability.

I Since many computer science experiments are based on time mea-
surements, we focus on continuous variables.

X : Ω→ R
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Probability Distribution

A probability distribution (a.k.a. probability density function or p.d.f.) is
used to describe the probabilities of different values occurring.

A random variable X has density f , where f is a non-negative and inte-
grable function, if:

P [a 6 X 6 b] =

∫ b

a

f(x) dx
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Expected value

I When one speaks of the ”expected price”, ”expected height”, etc.
one means the expected value of a random variable that is a price, a
height, etc.

E[X] = x1p1 + x2p2 + . . .+ xkpk

=

∫ ∞
−∞

xf(x) dx

The expected value of X is the “average value” of X.

It is not the most probable value. The mean is one aspect of the
distribution of X. The median or the mode are other interesting
aspects.

I The variance is a measure of how far the values of a random variable
are spread out from each other.
If a random variable X has the expected value (mean) µ = E[X],
then the variance of X is given by:

Var(X) = E
[
(X − µ)2

]
=

∫ ∞
−∞

(x− µ)2f(x) dx
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How to estimate Expected value ?

To empirically estimate the expected value of a random variable, one re-
peatedly measures observations of the variable and computes the arithmetic
mean of the results.

Unfortunately, if you repeat the estimation, you may get a different value
since X is a random variable . . .
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Central Limit Theorem

I Let {X1, X2, . . . , Xn} be a random sample of size n (i.e., a sequence
of independent and identically distributed random variables with
expected values µ and variances σ2).

I The sample average of these random variables is:

Sn =
1

n
(X1 + · · ·+Xn)

Sn is a random variable too.

I For large n’s, the distribution of Sn is approximately normal with mean

µ and variance σ2

n .

Sn −−−−→
n→∞

N
(
µ,
σ2

n

)
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The Normal Distribution
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The smaller the variance the more “spiky” the distribution.

I Dark blue is less than one standard deviation from the mean. For the
normal distribution, this accounts for about 68% of the set.

I Two standard deviations from the mean (medium and dark blue) ac-
count for about 95%

I Three standard deviations (light, medium, and dark blue) account for
about 99.7%
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CLT Illustration

Start with an arbitrary distribution and compute the distribution of Sn for
increasing values of n.

1 2 3 4 8 16 32
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CLT consequence: confidence interval
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When n is large:

P

(
µ ∈

[
Sn − 2

σ√
n
, Sn + 2

σ√
n

])
= P

(
Sn ∈

[
µ− 2

σ√
n
, µ+ 2

σ√
n

])
≈ 95%

There is 95% of chance that the true mean lies within 2 σ√
n

of the sample mean.
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Comparing Two Alternatives

Assume, you have evaluated two scheduling heuristics A and B on n dif-
ferent DAGs.

BA

Makespan

Heuristic

The two 95% confidence intervals do not overlap ; P(µA < µB) > 90%.
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BA

Makespan

Heuristic

The two 95% confidence intervals do overlap ; ??.

Reduce C.I ?
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Comparing Two Alternatives

Assume, you have evaluated two scheduling heuristics A and B on n dif-
ferent DAGs.

BA

Makespan

Heuristic

The two 70% confidence intervals do not overlap ; P(µA < µB) > 49%.

Let’s do more experiments instead.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Using Confidence Intervals 13 / 40



Comparing Two Alternatives

Assume, you have evaluated two scheduling heuristics A and B on n dif-
ferent DAGs.

BA

Makespan

Heuristic

The width of the confidence interval is proportionnal to σ√
n

.

Halving C.I. requires 4 times more experiments!

Try to reduce variance if you can...
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Comparing Two Alternatives with Blocking

I C.I.s overlap because variance is large. Some DAGS have an intrinsi-
cally longer makespan than others, hence a large Var(A) and Var(B)

BA

Makespan

Heuristic

I The previous test estimates µA and µB independently.
E[A] < E[B]⇔ E[B −A] < 0.
In the previous evaluation, the same DAG is used for measuring Ai
and Bi, hence we can focus on B −A.
Since Var(B −A) is much smaller than Var(A) and Var(B), we can
conclude that µA < µB with 95% of confidence.

I Relying on such common points is called blocking and enable to reduce
variance.
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How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.
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Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.
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Key Hypothesis

The hypothesis of CLT are very weak. Yet, to qualify as replicates, the
repeated measurements:

I must be independent (take care of warm-up)

I must not be part of a time series (the system behavior may temporary
change)

I must not come from the same place (the machine may have a problem)

I must be of appropriate spatial scale

Perform graphical checks
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Simple Graphical Check

Fixed Location: If the fixed location assumption holds, then the run sequence plot will
be flat and non-drifting.

Fixed Variation: If the fixed variation assumption holds, then the vertical spread in the
run sequence plot will be the approximately the same over the entire horizontal axis.

Independence: If the randomness assumption holds, then the lag plot will be structureless
and random.

Fixed Distribution : If the fixed distribution assumption holds, in particular if the fixed
normal distribution holds, then

I the histogram will be bell-shaped, and
I the normal probability plot will be linear.

If you see several modes, you may want to investigate further is there is not another
hidden parameter you should take into account.
J.-M. Vincent and A. Legrand Introduction to Design of Experiments Using Confidence Intervals 17 / 40
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Temporal Dependancy
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I Looks independant and statistically identical

I Danger: temporal correlation ; study stationnarity.
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Detect Trends
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I Model the trend: here increase then saturates

I Possibly remove the trend by compensating it (multiplicative factor
here)
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Detect Periodicity
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May depend on sampling frequency or on horloge resolution.

I Study the period (Fourier)

I Use time series
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4 Getting rid of Outliers

5 Issues when studying something else than the mean
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Comparing Two Alternatives (Blocking + Randomization)

I When comparing A and B for different settings, doing A,A,A,A,A,A
and then B,B,B,B,B,B is a bad idea.

I You should better do A,B, A,B, A,B, A,B, . . . .

I Even better, randomize your run order. You should flip a coin for each
configuration and start with A on head and with B on tail...

A,B, B,A, B,A, A,B, . . . .

With such design, you will even be able to check whether being the
first alternative to run changes something or not.

I Each configuration you test should be run on different machines.
You should record as much information as you can on how the exper-
iments was performed (http://expo.gforge.inria.fr/).
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Experimental Design

There are two key concepts:

replication and randomization

You replicate to increase reliability. You randomize to reduce bias.

If you replicate thoroughly and randomize properly,
you will not go far wrong.

It doesn’t matter if you cannot do your own advanced statistical
analysis. If you designed your experiments properly, you may be
able to find somebody to help you with the statistics.

If your experiments is not properly designed, then no matter how
good you are at statistics, you experimental effort will have been
wasted.

No amount of high-powered statistical analysis can turn a bad
experiment into a good one.
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Abnormal measurements
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I Rare events: interpretation

I Get rid of it using:
I a threshold value: what is the right threshold ?
I quantiles: what is the good rejection rate ?
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Thresholds:

Reject values larger than 10 ; 5% of rejection
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Reject values larger than 50 ; 1% of rejection
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"cauchy−seuil1pc.don"

Actually, here, the samples are generated using the Cauchy distribution,
which is pathological for most ideas you may come up with. :)
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Summarizing the distribution
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What is the shape of the histogram:

I uni/multi-modal

I symmetrical or not (; skewness)

I Flat of not (; kurtosis)

Summarize with central tendancy
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Summarizing the distribution
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I Mode: the most probable value (higly depends on the bin size)

I Median: splits the samples in half (rather unstable)

I Mean: average “cost” (can simply estimate confidence intervals)
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Mode value
histogram
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Mode

I Categorical data

I Most frequent value

I highly unstable value

I for continuous value distribution depends on the histogram step

I interpretation depends on the flatness of the histogram

=⇒ Use it carefully
=⇒ Predictor function
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Median value
histogram

Median

I Ordered data

I Split the sample in two equal parts∑
i6Median

fi 6
1

2
6

∑
i6Median+1

fi.

I more stable value

I does not depends on the histogram step

I difficult to combine (two samples)

=⇒ Randomized algorithms
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Mean value
histogram

Mean

I Vector space

I Average of values

Mean =
1

Sample Size

∑
xi =

∑
x

x.fx.

I stable value

I does not depends on the histogram step

I easy to combine (two samples ⇒ weighted mean)

=⇒ Additive problems (cost, durations, length,...)
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Central tendency
histogram
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Complementarity

I Valid if the sample is ”Well-formed”

I Semantic of the observation

I Goal of analysis

=⇒ Additive problems (cost, durations, length,...)
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Central tendency (2)

Summary of Means

I Avoid means if possible
Loses information

I Arithmetic mean
When sum of raw values has physical meaning
Use for summarizing times (not rates)

I Harmonic mean
Use for summarizing rates (not times)

I Geometric mean
Not useful when time is best measure of perf
Useful when multiplicative effects are in play
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Computational aspects

I Mode : computation of the histogram steps, then computation of
max O(n) “off-line”

I Median : sort the sample O(nlog(n)) or O(n) (subtile algorithm)
“off-line”

I Mean : sum values O(n) “on-line” computation

Is the central tendency significant ?
⇒ Explain variability.
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Variability

Categorical data (finite set)

fi : empirical frequency of element i
Empirical entropy

H(f) =
∑
i

fi log fi.

Measure the empirical distance with the uniform distribution

I H(f) > 0

I H(f) = 0 iff the observations are reduced to a unique value

I H(f) is maximal for the uniform distribution
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Variability (2)

Ordered data

Quantiles : quartiles, deciles, etc
Sort the sample :

(x1, x2, · · · , xn) −→ (x(1), x(2), · · · , x(n));

Q1 = x(n/4); Q2 = x(n/2) = Median; Q3 = x(3n/4).

For deciles

di = argmaxi{
∑
j6i

fj 6
i

10
}.

Utilization as quantile/quantile plots to compare distributions
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Variability (3)

Vectorial data

Quadratic error for the mean

V ar(X) =
1

n

n∑
1

(xi − x̄n)2.

Properties:

V ar(X) > 0;

V ar(X) = x2 − (x̄)2, où x2 =
1

n

n∑
i=1

x2i .

V ar(X + cste) = V ar(X);

V ar(λX) = λ2V ar(X).
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Roadmap for a good data analysis

1 Plot the sample (various representations)

2 Describe the results (data analysis)

3 Preliminary processing : remove or flag outliers, estimate or flag miss-
ing values

4 Propose a stochastic model : establish the hypothesis : independence
(time correlation, auto-correlation), stationarity, same probability law

5 Summarize data by a histogram

6 Comment the shape (modal/skewness/flatness/...)

7 Estimate the central tendency of the sample : choose the central index

8 Estimate the accuracy of the result (confidence intervals)

9 Propose a visualization
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