
Outlines

Issues in HPC middlewares

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais

November, 20th 2013

Outlines

Last lecture: low-level HPC programming languages

Threads
Thread programming models (user, kernel, mixed)
PThread
OpenMP

GPGPU
Cuda
OpenCL

MPI

Outlines

Today lecture

Goals of the lecture
understand links between OS and HPC middleware
understand how HPC middleware can be improved
think about some issues in HPC middleware

Methods
lots of study cases
some outdated, some still valid
the way issues are solved are more important than the
presented results

Outlines
Part I: Extending OS interfaces for HPC
Part II: Improving low-level API
Part III: HPC implementation issues

Extending OS interfaces for HPC

2 Linux POSIX Threads Libraries
History
Synchronization

3 Efficient network communications
Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

4 Improving thread models
Classical models
Scheduler Activations

Outlines
Part I: Extending OS interfaces for HPC
Part II: Improving low-level API
Part III: HPC implementation issues

Improving low-level API

5 Optimizing communications
Optimizing communication methods
An experimental project: the Madeleine interface

6 Hierarchical plate-forms and efficient scheduling
Programming on current SMP machines
BubbleSched: guiding scheduling through bubbles

Outlines
Part I: Extending OS interfaces for HPC
Part II: Improving low-level API
Part III: HPC implementation issues

HPC implementation issues

7 Mixing threads and communications
Why?
Issues
A proposition

8 Asynchronous communications with MPI
MPI recall
MPI pathological behavior

9 Conclusion
High-performance parallel programming is difficult

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Part I

Extending OS interfaces for HPC

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

An normalized API is not an implementation

Even when normalized, an API can be implemented very
differently
Different possible focus: portability, performance, coverage
(for optional parts of the standard)
Examples: PThreads, MPI, OpenMP, etc.
private extensions can be developed in order to offer new
features or to guarantee better performances

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

History
Synchronization

Outlines: Extending OS interfaces for HPC

2 Linux POSIX Threads Libraries
History
Synchronization

3 Efficient network communications

4 Improving thread models

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

History
Synchronization

History: history

LinuxThread (1996) : kernel level, Linux standard thread
library for a long time, not fully POSIX compliant

GNU-Pth (1999) : user level, portable, POSIX
NGPT (2002) : mixed, based on GNU-Pth, POSIX, not

developed anymore
NPTL (2002) : kernel level, POSIX, current Linux

standard thread library
PM2/Marcel (2001) : mixed, mostly POSIX compliant, lots of

extensions for HPC (scheduling control, etc.)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

History
Synchronization

From linuxthread to NPTL

LinuxThread: first “official” Linux thread library (1996)
use available support (nearly none) from the Linux kernel

based on the clone() system call
implemented as processes that share their virtual memory
each thread has its own pid (and not tid)
no notion of multithreaded process from OS point of view

NPTL: developed in 2002 to have a real POSIX thread library
based on new kernel features

notion of multithreaded processes introduced in the kernel
signals correctly handled
extension of clone() system call (synchronous notification
of new thread, etc.)
new low-level synchronization service (futex)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

History
Synchronization

Implementation of threads synchronizations

From signals. . .

communication base of the linuxthread library
the only support from the kernel at this time
one ’manager’ hidden thread
race conditions and error prone
not really efficient

. . . to futex
synchronization in userspace (no system call) if no
contention
also allow synchronization between processes
require specific support from the kernel used by NPTL
since, kernel support improved for specific needs

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

History
Synchronization

Futex: powerful but complex interface

From the manpage:
int futex(int *uaddr, int op, int val, const struct

timespec *timeout, int *uaddr2, int val3);
[...]
Five operations are currently defined:
FUTEX_WAIT [...]
FUTEX_WAKE [...]
FUTEX_FD (present up to and including Linux 2.6.25)

[...]
Because it was inherently racy, FUTEX_FD has been
removed from Linux 2.6.26 onward.

FUTEX_REQUEUE (since Linux 2.5.70)
[...]

FUTEX_CMP_REQUEUE (since Linux 2.6.7)
There was a race in the intended use of FUTEX_REQUEUE,
so FUTEX_CMP_REQUEUE was introduced.
[...]

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

History
Synchronization

Summary

without good OS support, no way to offer efficient and
correct middleware
designing the best OS support can be really tricky,
especially for synchronization

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Outlines: Extending OS interfaces for HPC

2 Linux POSIX Threads Libraries

3 Efficient network communications
Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

4 Improving thread models

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Interacting with the network card: PIO mode

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Interacting with the network card: DMA mode

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

Goals
Reduce the communication time

Copy time cannot be neglected
but it can be partially recovered with pipelining

Reduce the processor use
currently, memcpy are executed by processor instructions

Idea
The network card directly read/write data from/to the
application memory

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications for emission

PIO mode transfers
No problem for zero-copy

DMA mode transfers
Non contiguous data in physical memory
Headers added in the protocol

linked DMA
limits on the number of non contiguous segments

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications for reception

A network card cannot “freeze” the received message on the
physical media

If the receiver posted a “recv” operation before the message
arrives

zero-copy OK if the card can filter received messages
else, zero-copy allowed with bounded-sized messages
with optimistic heuristics

If the receiver is not ready
A handshake protocol must be setup for big messages
Small messages can be stored in an internal buffer

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Using a Handshake Protocol

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

A few more considerations

The receiving side plays an important role
Flow-control is mandatory
Zero-copy transfers

the sender has to ensure that the receiver is ready
a handshake (REQ+ACK) can be used

Communications in user-space introduce some difficulties
Direct access to the NIC

most technologies impose “pinned” memory pages

Network drivers have limitations

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Communication Protocol Selection

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Communication Protocol Selection

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Operating System Bypass

Initialization
traditional system
calls
only at session
beginning

Transfers
direct from user
space
no system call
“less” interrupts

Humm. . . And what
about security ?

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

Problem
Zero-copy mechanism uses DMA that requires physical
addresses
Mapping between virtual and physical address is only
known by:

the processor (MMU)
the OS (pages table)

We need that
the library knows this mapping
this mapping is not modified during the communication

ex: swap decided by the OS, copy-on-write, etc.

No way to ensure this in user space !

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

First solution
Pages “recorded” in the kernel to avoid swapping
Management of a cache for virtual/physical addresses
mapping

in user space or on the network card

Diversion of system calls that can modify the address
space

Second solution
Management of a cache for virtual/physical addresses
mapping on the network card
OS patch so that the network card is informed when a
modification occurs
Solution chosen by MX/Myrinet and Elan/Quadrics

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Direct consequences

Latency measure can vary whether the memory region
used

Some pages are “recorded” within the network card
Ideal case are ping-pong exchanges

The same pages are reused hundred of times

Worst case are applications using lots of different data
regions. . .

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Outlines: Extending OS interfaces for HPC

2 Linux POSIX Threads Libraries

3 Efficient network communications

4 Improving thread models
Classical models
Scheduler Activations

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Thread models characteristics

Characteristics
Library Efficiency Flexibility SMP Blocking syscalls

User + + - -
Kernel - - + +
Mixed + + + limited

Summary
Mixed libraries seems more attractive however they are more
complex to develop. They also suffer from the blocking system
call problem.

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

User Threads and Blocking System Calls

User level library

Kernel scheduler

User scheduler

Mixed library

Kernel scheduler

User scheduler

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Scheduler Activations

Idea proposed by Anderson et al. (91)
Dialogue (and not monologue) between the user and kernel
schedulers

the user scheduler uses system calls
the kernel scheduler uses upcalls

Upcalls
Notify the application of scheduling kernel events

Activations
a new structure to support upcalls
a kinf of kernel thread or virtual processor

creating and destruction managed by the kernel

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

User scheduler

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Upcall(Blocked, New)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(Unblocked,Preempted,New)

Linux POSIX Threads Libraries
Efficient network communications

Improving thread models

Classical models
Scheduler Activations

Summary on activations

The best thread model?
efficient, flexible, SMP aware, and correctly handling
blocking system calls
patch for an old Linux kernel
released for some time in FreeBSD

but a model not used nowadays
complex to implement
require a two-level thread library

very complex wrt POSIX for some features (signals, etc.)
not really efficient with multiple processes

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Part II

Improving low-level API

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Outlines: Improving low-level API

5 Optimizing communications
Optimizing communication methods
An experimental project: the Madeleine interface

6 Hierarchical plate-forms and efficient scheduling

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Optimizing communication methods

Low-level libraries sometimes prefer using the processor in
order to guaranty low latencies

Depending on the message size
PIO for small messages
Pipelined copies with DMA for medium messages
Zero-copy + DMA for large messages

Example: limit medium/large is set to 32 KB for MX
sending messages from 0 to 32 KB cannot overlap
computations

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

It depends on
The underlying network with driver performance

latency
PIO and DMA performance
Gather/Scatter feature
Remote DMA feature
etc.

Multiple network cards ?

But also on
memory copy performance
I/O bus performance

Efficient AND portable is not easy

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

An experimental project: the Madeleine interface

Goals
Rich interface to exchange complex message while keeping the
portability

Characteristics
incremental building of messages with internal
dependencies specifications

the application specify dependencies and constraints
(semantics)
the middle-ware automatically choice the best strategy

multi-protocols communications
several networks can be used together

thread-aware library

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Message building

Sender
begin_send(dest)

pack(&len, sizeof(int))

,
r_express)

pack(data, len)

,
r_cheaper)

pack(data2, len,
r_cheaper)

end_send()

Receiver
begin_recv()

unpack(&len, sizeof(int))

,
r_express)

data = malloc(len)
unpack(data, len)

,
r_cheaper)

data2 = malloc(len)
unpack(data2, len,

r_cheaper)

end_recv()

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Message building

Sender
begin_send(dest)

pack(&len, sizeof(int)

)

,
r_express)

pack(data, len

)

,
r_cheaper)

pack(data2, len,
r_cheaper)

end_send()

Receiver
begin_recv()

unpack(&len, sizeof(int)

)

,
r_express)

data = malloc(len)
unpack(data, len

)

,
r_cheaper)

data2 = malloc(len)
unpack(data2, len,

r_cheaper)

end_recv()

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Message building

Sender
begin_send(dest)

pack(&len, sizeof(int)

)

,
r_express)

pack(data, len

)

,
r_cheaper)

pack(data2, len,
r_cheaper)

end_send()

Receiver
begin_recv()

unpack(&len, sizeof(int)

)

,
r_express)

data = malloc(len)
unpack(data, len

)

,
r_cheaper)

data2 = malloc(len)
unpack(data2, len,

r_cheaper)

end_recv()

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

How to implement optimizations ?

Using parameters and historic

sender and receiver always take the same (deterministic)
decisions
only data are sent

Using other information

allow unordered communication (especially for short
messages)

can required controls messages

allow dynamically new strategies (plug-ins)
use “near future”

allow small delays or application hints

Optimisations « Just-in-
Time »

Courtesy of Olivier Aumage

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Why such interfaces ?

Portability of the application
No need to rewrite the application when running on an other
kind of network

Efficiency
local optimizations (aggregation, etc.)
global optimizations (load-balancing on several networks,
etc.)

But non standard interface
rewrite some standard interfaces on top of this one

some efficiency is lost

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Optimizing communication methods
An experimental project: the Madeleine interface

Still lots of work

What about
equity wrt. optimization ?
finding optimal strategies ?

still an open problem in many cases

convincing users to try theses new interfaces
managing fault-tolerance
allowing cluster interconnections (ie high-speed network
routing)
allowing connection and disconnections of nodes
etc.

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Outlines: Improving low-level API

5 Optimizing communications

6 Hierarchical plate-forms and efficient scheduling
Programming on current SMP machines
BubbleSched: guiding scheduling through bubbles

10

Towards more and more
hierarchical computers

● SMT

(HyperThreading)

● Multi-Core
● SMP
● Non-Uniform Memory

Access (NUMA)

P P P P

P P P P

P P P P

P P P P

M

M

M

M

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

11

Hagrid, octo-dual-core

M

MM

M

M

M M

M

R� seau, disque, etc.

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15
● AMD Opteron
● NUMA factor

1.1-1.5

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

12

Aragog, dual-quad-core

M

P1 P5 P3 P7

P0 P2P4 P6

● Intel
● Hierarchical cache levels

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

13

How to run applications
on such machines?

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

14

How to program
parallel machines?

● By hand
– Tasks, POSIX threads, explicit context switch

● High-level languages
– Processes, task description, OpenMP, HPF,

UPC, ...

● Technically speaking, threads

● How to schedule them efficiently?

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

15

How to schedule efficiently?

● Performance
– Affinities between threads and memory taken into

account

● Flexibility
– Execution easily guided by applications

● Portability
– Applications adapted to any new machine

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

16

Predetermined approaches

● Two phases
– Preliminary computation of

● Data placement [Marather, Mueller, 06]
● Thread scheduling

– Execution
● Strictly follows the pre-computation

● Example: PaStiX [Hénon, Ramet, Roman, 00]

✔Excellent performances

✗ Not always sufficient or possible: strongly
irregular problems...

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

17

Opportunistic approaches

● Various greedy algorithms
– Single / several [Markatos, Leblanc, 94] /

a hierarchy of task lists [Wang, Wang, Chang, 00]

● Used in nowaday's operating systems
– Linux, BSD, Solaris, Windows, ...

✔Good portability

✗ Uneven performances
– No affinity information...

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

18

Negotiated approaches

● Language extensions
– OpenMP, HPF, UPC, ...

✔Portability (adapts itself to the machine)

✗ Limited expressivity (e.g. no NUMA support)

● Operating System extensions
– NSG, liblgroup, libnuma, ...

✔Freedom for programmers

✗ Static placement, requires rewriting placement
strategies according to the architecture

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

19

Issues

● Negotiated approach seems promising, but
– Which scheduling strategy?

● Depends on the application

– Which information to take into account?
● Affinities between threads?
● Memory occupation?

– Where does the runtime play a role?

● But there is hope!
– Programmers and compilers do have some clues to give

– Missing piece: structures

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

20

BubbleSched
Guiding scheduling through bubbles

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

21

Idea:
Structure to better schedule

Bridging the gap between programmers and
architectures

● Grab the structure of the parallelism
– Express relations between threads, memory, I/O, ...

● Model the architecture in a generic way
– Express the structure of the computation power

● Scheduling is mapping
– As it should just be!

– Completely algorithmic

– Allows all kinds of scheduling approaches

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

22

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

23

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

24

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

25

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

26

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

28

Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

29

Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

Some can be stronger

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

30

Examples of thread and
bubble repartitions

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

38

Implemented schedulers

● Full-featured schedulers
– Gang scheduling

– Spread
● Favor load balancing

– Affinity
● Favor affinities (Broquedis)
● Memory aware (Jeuland)

● Reuse and compose
– Work stealing

– Combined schedulers (time, space, etc.)

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

60

Conclusion
A new scheduling approach

Structure & conquer!
● Bubbles = simple yet powerful abstractions

– Recursive decomposition schemes
● Divide & Conquer
● OpenMP

● Implement scheduling strategies for hierarchical
machines
– A lot of technical work is saved

● Significant benefits
– 20-40%

Courtesy of Samuel Thibault

Optimizing communications
Hierarchical plate-forms and efficient scheduling

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Part III

HPC implementation issues

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Outlines: HPC implementation issues

7 Mixing threads and communications
Why?
Issues
A proposition

8 Asynchronous communications with MPI

9 Conclusion

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Mixing threads and communications

Problems: asynchronous communications required
progression of asynchronous communications (MPI)
remote PUT/GET primitives
etc.

Solutions
Using threads
Implementing part of the protocol in the network card
(MPICH/GM)
Using remote memory reads

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Multithreading

A solution for asynchronous communications
computations can overlap communications
automatic parallelism

But disparity of implementations
kernel threads

blocking system calls, SMP
users threads

efficient, flexible

mixed model threads

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Difficulties of threads and communications

Different way to communicate
active polling

memory read, non blocking system calls
passive polling

blocking system calls, signals

Different usable methods
not always available
not always compatible

with the operating system
with the application

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

An experimental proposition: an I/O server

Requests centralization
a service for the application
allow optimizations

aggregation of requests

Portability of the application
uniform interface

effective strategies (polling, signals, system calls) are
hidden to the application

application without explicit strategy
independence from the execution plate-form

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

I/O server linked to the thread scheduler

Threads and polling

difficult to implement
the thread scheduler can help to get guarantee frequency
for polling

independent with respect to the number of threads in the
application

instead of

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Illustration of such an interface

Registration of events kinds
IO_handle=IO_register(params)

call-back functions registration
used by communication libraries at initialization time

Waiting for an event
IO_wait(IO_handle, arg)

blocking function for the current thread
the scheduler will use the call-backs

communications are still manged by communication
libraries

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Example with MPI

Registration
IO_t MPI_IO;
...
IO_register_t params = {
.blocking_syscall:=NULL,
.group=&group_MPI(),
.poll=&poll_MPI(),
.frequency=1

};

MPI_IO=
IO_register(¶ms);

...

Communication
MPI_Request request;
IO_MPI_param_t param;
...
MPI_Irecv(buf, size,

..., &request);
param.request=&request;
IO_wait(MPI_IO, ¶m);
...

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Running the scrutation server

}

{

poll
}

{

group

A

MPI call

threads scheduler
User level

Application

library

MPI

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Running the scrutation server

}

{

poll
}

{

group

Callback functions:

Frequency
- poll
- group

init_server()

A

MPI call

threads scheduler
User level

Application

library

MPI

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Running the scrutation server

}

{

poll
}

{

group

Req2

ev_wait()

ev_wait()

B
C

Req1

A

MPI call

threads scheduler
User level

Application

library

MPI

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Running the scrutation server

}

{

poll
}

{

group

Req2

B
C

Req1

21

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Running the scrutation server

}

{

poll
}

{

group

Req2

B
C

Req1

21

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Running the scrutation server

}

{

poll
}

{

group

B
C

Req1

1

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Key points

High level communication libraries needs multithreading
allow independent communication progression
allow asynchronous operations (puts/gets)

Threads libraries must be designed with services for
communication libraries

allow efficient polling
allow selection of communication strategy

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

Why?
Issues
A proposition

Mixing threads and communications

mixing several efficient HPC libraries can lead to inefficient
behaviors (conflictual optimizations)
multi-criteria optimization is generally a good strategy
this requires a co-design of all involved HPC libraries
HPC programming is not a lego game

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Outlines: HPC implementation issues

7 Mixing threads and communications

8 Asynchronous communications with MPI
MPI recall
MPI pathological behavior

9 Conclusion

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Message Passing Interface

Characteristics
Interface (not implementation)
Different implementations

MPICH
LAM-MPI
OpenMPI
and all closed-source MPI dedicated to specific hardware

MPI 2.0 begins to appear

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Several Ways to Exchange Messages with MPI

MPI_Send (standard)
At the end of the call, data can be reused immediately

MPI_Bsend (buffered)
The message is locally copied if it cannot be send
immediately

MPI_Rsend (ready)
The sender “promises” that the receiver is ready

MPI_Ssend (synchronous)
At the end of the call, the reception started
(similar to a synchronization barrier)

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Non Blocking Primitives

MPI_Isend / MPI_Irecv (immediate)

MPI_request r;

MPI_Isend(..., data, len, ..., &r)

// Calculus that does not modify
’data’
MPI_wait(&r, ...);

These primitives must be used as much as possible

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

About MPI Implementations

MPI is available on nearly all existing networks and
protocols!

Ethernet, Myrinet, SCI, Quadrics, Infiniband, IP, shared
memory, etc.

MPI implementation are really efficient
low latency (hard), large bandwidth (easy)
optimized version from hardware manufacturers (IBM, SGI)
implementations can be based on low-level interfaces

MPICH/Myrinet, MPICH/Quadrics

BUT these “good performance” are often measured with
ping-pong programs. . .

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Asynchronous communications with MPI

Problem
The process does other
things when the ACK
occurs

Solutions
Using threads within MPI
(MPICH/Madeleine)
Implementing part of the
protocol in the network
card (MPICH/GM)
Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Asynchronous communications with MPI

Problem
The process does other
things when the ACK
occurs

Solutions
Using threads within MPI
(MPICH/Madeleine)
Implementing part of the
protocol in the network
card (MPICH/GM)
Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Asynchronous communications with MPI

Recv
0 1 2

Isend

Calculus

req

Recv

Calculus

Wait

Isend

data

Recv

Calculus

Wait

Isend

data

req

ack

ack

req

Ignored message
No reactivity

Problem
The process does other
things when the ACK
occurs

Solutions
Using threads within MPI
(MPICH/Madeleine)
Implementing part of the
protocol in the network
card (MPICH/GM)
Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

Mixing threads and communications
Asynchronous communications with MPI

Conclusion

MPI recall
MPI pathological behavior

Lessons to learn

How to improve this behavior?
requiring help from the programmer
using the compiler
using hardware RDMA
using threads

Why not solved in all MPI implementations?
threads not yet handled in all MPI implementations
overhead to use (internal) threads in monothreaded
applications
not so many user interested (workaround already
implemented, etc.)

Mixing threads and communications
Asynchronous communications with MPI

Conclusion
High-performance parallel programming is difficult

Outlines: HPC implementation issues

7 Mixing threads and communications

8 Asynchronous communications with MPI

9 Conclusion
High-performance parallel programming is difficult

Mixing threads and communications
Asynchronous communications with MPI

Conclusion
High-performance parallel programming is difficult

High-performance parallel programming is difficult

Need of efficiency
lots of efficient hardware available (network, processors, etc.)
but lots of API

Need of portability
applications cannot be rewritten for each new hardware
use of standard interfaces (pthread, MPI, etc.)

On the way to the portability of the efficiency
very difficult to get: still lots of research
require very well designed interfaces allowing:

the application to describe its behavior (semantics)
the middle-ware to select the strategies
the middle-ware to optimize the strategies

Mixing threads and communications
Asynchronous communications with MPI

Conclusion
High-performance parallel programming is difficult

lots of criteria to optimize in real applications
scheduling, communication, memory, etc.

multi-criteria optimization is more than aggregation of
mono-criteria optimization
other high-level interface programming for parallel
applications ? (work-stealing, etc.)

Part IV

MPI Exercise

Matrix multiplication in MPI

How to write such a program?

	Outlines
	Part I: Extending OS interfaces for HPC
	Part II: Improving low-level API
	Part III: HPC implementation issues

	Extending OS interfaces for HPC
	Linux POSIX Threads Libraries
	History
	Synchronization

	Efficient network communications
	Interacting with the network card: PIO and DMA
	Zero-copy communications
	Handshake Protocol
	OS Bypass

	Improving thread models
	Classical models
	Scheduler Activations

	Improving low-level API
	Optimizing communications
	Optimizing communication methods
	An experimental project: the Madeleine interface

	Hierarchical plate-forms and efficient scheduling
	Programming on current SMP machines
	BubbleSched: guiding scheduling through bubbles

	HPC implementation issues
	Mixing threads and communications
	Why?
	Issues
	A proposition

	Asynchronous communications with MPI
	MPI recall
	MPI pathological behavior

	Conclusion
	High-performance parallel programming is difficult

	MPI Exercise

