HPC: Linear
Algebra
Challenges

HPC: Linear Algebra Challenges

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

December 10, 2012

1/111

arnaud.legrand@imag.fr

Reducing communication time

HPC: Linear
Algebra
Challenges

There are three main techniques for improving completion time:
» Tuning (overlap communication and computation)
» Ghosting (duplicate computation when there are dependencies)
» Scheduling (cache aware/cache oblivious, data distribution, ...)

» Change essence of the algorithm (e.g. Strassen n?%° or Winograd
n38) but this may be numerically harmful and beware of the O.

2/111

QOutline

HPC: Linear
Algebra
Challenges

@ Communication “Avoiding” Algorithms
@ Cache oblivious algorithm
@ Parallel Algorithm

© Synchronization-reducing algorithms
@ DAG generation
@ DAG generation
@ Granularity and Hybrid Computing

© Auto-tuning

© Reproducibility and Mixed-Precision Methods

3/111

QOutline

HPC: Linear
Algebra
Challenges

@ Communication “Avoiding” Algorithms
oz @ Cache oblivious algorithm

“Avoiding” .
Algorithms @ Parallel Algorithm

4/111

HPC: Linear
Algebra

Why avoid communication? (1/2)
Communication Algorithms have two costs (measured in time or energy):
A 1. Arithmetic (FLOPS)

2. Communication: moving data between
— levels of a memory hierarchy (sequential case)

— processors over a network (parallel case).

it

Courtesy of Jzames Demmel
5/111

HPC: Linear
L Why avoid communication? (2/3)
* Running time of an algorithm is sum of 3 terms:
Communication — #flops * time_per_flop
e — #words moved / bandwidth
— # messages * latency

} communication

* Time_per_flop << 1/ bandwidth << latency
* Gaps growing exponentially with time [FOSC]

Annual improvements

Time_per_flop Bandwidth Latency
Network 26% 15%
59%
DRAM 23% 5%

* Avoid communication to save time

s Courtesy of James Demmel

6/111

HPC: Linear
Algebra

Why Minimize Communication? (2/2)

Communication

“Avoiding”
Algorithms 10000

100

Picojoules

m now (45nm)

10 m 2018 (11nm in this case)

Source: John Shalf, LBL
Courtesy of James Demmel
7/111

HPC: Linear
Algebra

Why Minimize Communication? (2/2)

Minimize communication to save energy
Communication

“Avoiding”
Algorithms 10000

Off-chip

100 +

Picojoules

m now (45nm)

10 W 2018 (11nm in this case)

Source: John Shalf, LBL
Courtesy of James Demmel
8/111

Goals

Communication
“Avoiding”

Algorichms * Redesign algorithms to avoid communication
e Between all memory hierarchy levels
e |1<> L2 <> DRAM <> network, etc
e Attain lower bounds if possible
e Current algorithms often far from lower bounds
¢ Large speedups and energy savings possible

6 Courtesy of James Demmel

9/111

HPC: Linear
Algebra

Naive Matrix Multiply

{implements C = C + A*B}

fori=1ton
Cach bli .
aljgfn:i}?m ot forj=1ton
fork=1ton

C(i,j) = C(i.j) + Ai.k) * B(k,j)

B(.))

Courtesy of James Demmel
10/111

HPC: Linear
Algebra

Naive Matrix Multiply

{implements C = C + A*B}

fori=1ton
{read row i of A into fast memory}
Cache oblivious .
algorithm forj=1ton

{read C{(i,j) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

B(.))

Courtesy of James Demmel
11/111

HPC: Linear
Algebra

Naive Matrix Multiply

{implements C = C + A*B}
fori=1ton
: {read row i of A into fast memory} ... h?reads altogether
oo forj=1ton
{read C{(i,j) into fast memory} ... n?reads altogether
{read column j of B into fast memory} ... n3reads altogether
fork=1ton
C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory} ... n2 writes altogether
C(i)) C(i))
[} =] B(.j)

n3 + 3n2 reads/writes altogether — dominates 2n3 arithmetic
18

Courtesy of James Demmel
12/111

HPC: Linear
Algebra

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

Cache oblivious fori=1ton/b
algorithm forj=1ton/b
{read block C(i,j) into fast memory}
fork=1ton/b
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
{write block C(i,j) back to slow memory}

C(E) C(ﬂ’) ,A(i‘))
b-by-b__|—» _ g s O .
block = + m Bl

Courtesy of James Demmel
13/111

HPC: Linear
Algebra

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

Cache oblivious fori=1ton/b
algorithm forj -1to n/b
{read block C(i,j) into fast memory} .. b2 x (n/b)2 = n? reads

fork=1ton/b
{read block A(i,k) into fast memory} ... b%x (n/b)3 =n3/b reads
{read block B(k,j) into fast memory} ... b%x (n/b)3 =n3/b reads
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
{write block C(i,j) back to slow memory} ... b? x (n/b)? = n? writes

C(E) C(ﬂ’) ,A(i‘))
b-by-b__|—» i = s .
block = + m Bl

‘ 2n3/b + 2n? reads/writes << 2n3 arithmetic - Faster!
26 Courtesy of James Demmel
14 /111

Does blocked matmul attain lower bound?

* Recall: if 3 b-by-b blocks fit in fast memory of
size M, then #reads/writes = 2n3/b + 2n?

* Make b as large as possible: 3b2 < M, so
#reads/writes > 3%2n3/M2 + 2n2

* Attains lower bound = Q (#flops / M¥/2)

Cache oblivious
algorithm

* But what if we don’t know M?
* Or if there are multiple levels of fast memory?
* How do we write the algorithm?

21 Courtesy of James Demmel
15 /111

HPC: Linear
Algebra

Chere Recursive Matrix Multiplication (RMM) (1/2)

* For simplicity: square matrices with n = 2m
e C=|C1Cipl=A-B= A11A12.£B11B12
21 V2 A21 AZ 21 22

Cache oblivious
algorithm

= [A11'B11 + A’Byy Ay'Bypt A12'322}
Az'Byyt AypByy Ay'Biat AyyByy

* True when each A;etc 1x1 or n/2 x n/2

func C = RMM (A, B, n)
ifn=1,C=A*B,else
{ C;+=RMM (A,,, B;;, n/2) + RMM (A,, , B,,, n/2)
C;,=RMM (A, , B;,, n/2) + RMM (A,, , B,,, n/2)
C;1=RMM (Ay , By, n/2) + RMM (A,, , By, ni2)
C,,=RMM (A, , B;,, n/2) + RMM (A,, , B,,, n/2) }
return

22 Courtesy of James Demmel

16 /111

HPC: Linear
Algebra
Challenges

Cache oblivious
algorithm

How hard is hand-tuning matmul, anyway?

90%

w
o
ES

average overn=1,..,
—@— suppliedin binary form

—@— uses Intel compiler, SSE intrinsics
10% -| —@—usesGNU compiler, SSE intrinsics
—(O—uses GNU compiler, no intrinsics

—@— uses PGl compiler, no intrinsics

)
o
®

0% -

Matrix multiply on 2.3GHz
AMD Opteron (Budapest)

* Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09

« Students given “blocked” code to start with (7x faster than naive) ——
« Still hard to get close to vendor tuned performance (ACML) (another 6x)

« For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

Cmgaesy of James Demmel

17 /111

HPC: Linear
Algebra
Challenges

Cache oblivious
algorithm

Fraction of peak
[~ w = w o ~ o
o o o o o o (=] o
2 F 2 2 R 2 R ¥

o
B

How hard is hand-tuning matmul, anyway?

] o © some intrinsics aligned
b GSI (o] ® nointrinsics
105 2 @ all intrinsics unaligned
1 - gl
4 @ g ° e Sa.
i 14 ! 5 g, SN
° 3 ' Yto, AN
9 \ é’e,,e '7731./- \
1 o o S Tate,, @
) 2 20 . ©o edco /4 0!
| 20217 \\1\ O 1(2/
° D
1 e ® 9% % eis
. 18 6 1‘3.1 8 17
. given L
21
16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Number of lines of code in matrix multiply

Courtegy of James Demmel
18/111

HPC: Linear Introduction
Algebra Strong scaling
Challenges

Solving science problems faster

Parallel

Algorithm Parallel computers can solve bigger problems
» weak scaling

Parallel computers can also solve a fixed problem faster
» strong scaling

Obstacles to strong scaling
» may increase relative cost of communication

» may hurt load balance

N
A
D el
Edgar Solomonik and James Demmel 2.5D algorithms 3/ 36 mlTl

HPC: Linear Introduction
Algebra Strong scaling
Challenges

Achieving strong scaling

Parallel
Al th
Sertin How to reduce communication and maintain load balance?

» reduce communication along the critical path
Communicate less

» avoid unnecessary communication
Communicate smarter

» know your network topology

N
A
D el
Edgar Solomonik and James Demmel 2.5D algorithms 4/ 36 mlTl

HPC: Linear
Algebra 2.5D matrix multiplication §trong scaling matrix multiplication
I m !

Challenges

Strong scaling matrix multiplication

Matrix multiplication on BG/P (n=65,536)
100 T

" 25D MM ——
3D MM :

Parallel
Algorithm

Percentage of machine peak

#nodes A.

D el
Edgar Solomonik and James Demmel 2.5D algorithms 5/ 36 mlTl

HPC: Linear
Algebra

izl Let's compute together the amount of operations and data movements

» for a 1D distribution:

Parallel
Algorithm

22 /111

HPC: Linear
Algebra

el Let's compute together the amount of operations and data movements

o Flops | Bytes | Memory
» for a 1D distribution: 3 > ‘ 37

Parallel
Algorithm

22 /111

HPC: Linear
Algebra

el Let's compute together the amount of operations and data movements

o Flops | Bytes | Memory
» for a 1D distribution: 3 > ‘ 37

Parallel

Algorithm » for a 2D distribution:

22 /111

HPC: Linear
Algebra
Challenges Let's compute together the amount of operations and data movements

T Flops | Bytes | Memory
» for a 1D distribution: 3 > e
p p
Parallel Flops | Bytes | Memor
Azt » for a 2D distribution: njp y > 37 y
b ven o

22 /111

HPC: Linear
Algebra
Challenges Let's compute together the amount of operations and data movements

T Flops | Bytes | Memory
» for a 1D distribution: 3 > e
p p
Parallel Flops | Bytes | Memor
Azt » for a 2D distribution: njp y > 37 y
b ven o

» for a 3D distribution:

Not always that much memory available...

22 /111

HPC: Linear
Algebra

il Let's compute together the amount of operations and data movements

T Flops | Bytes | Memory
» for a 1D distribution: 3 > e
P pn P

Pl Flops | Bytes | Memory
AL » for a 2D distribution: — > T
R

o Flops | Bytes | Memory
» for a 3D distribution: 3 > e
) \3/5n p2/3

P
Not always that much memory available...

22 /111

HPC: Linear
Algebra
Challenges

Parallel
Algorithm

Let's compute together the amount of operations and data movements

v

v

v

v

for a 1D distribution:

for a 2D distribution:

for a 3D distribution:

P
Not always that much memory available...

for a 2.5D distribution:

Flops | Bytes | Memory
n 2 3n®
p pn p

Flops | Bytes | Memory
n 2 3n%
p VPn)

Flops | Bytes | Memory
3 2
= et s

Flops | Bytes | Memory
? P 2 3cn®
= Ve

22 /111

HPC: Linear
Algebra
Challenges

Parallel
Algorithm

2.5D matrix multiplication Strong scaling matrix multiplication
F min,

A~ AN @

Ed, lomonik and James Demmel D algorithms 6/ 36 -

mmel
111

HPC: Linear) . roducti) o
Algebra 2.5D matrix multiplication Strong scalin, m‘uluplucauon

Challenges Betfcinin

2D matrix multiplication
[Cannon 69], [Van De Geijn and Watts 97]

Aigorichm a7,
v
S

Edgar Solomonik and James Demmel 2.5D algorithms 7/ 36

HPC: Linear
Algebra
Challenges

SUMMA Algorithm

« SUMMA = Scalable Universal Matrix Multiply
« Slightly less efficient, but simpler and easier to generalize
slgorih « Presentation from van de Geijn and Watts
Algorithm * www.netlib.org/lapack/lawns/lawn96.ps
* Similar ideas appeared many times
« Used in practice in PBLAS = Parallel BLAS
» www.netlib.org/lapack/lawns/lawn100.ps

02/21/2007 CS267 Lecture DLAL 22

Courtesy of James Demmel
25 /111

HPC: Linear
Algebra
Challenges

Parallel
Algorithm

| k
7= T N * \ =
i| <. /j
A(i.k) 4

- i, j represent all rows, columns owned by a processor
« ks a single row or column
« or a block of b rows or columns

C(i.j) = C(i.)) + Zk Alk) * B(k,))

» Assume a py by pc processor grid (py = p¢ = 4 above)
» Need not be square

02/21/2007 CS267 Lecture DLAL 23

Courtesy of James Demmel
26 /111

HPC: Linear
Algebra
Challenges

Parallel
Algorithm

A k)

| k
NN) .
] =t /j
P
For k=0ton-1 ...orn/b-1where b is the block size
. =#cols in A(i,k) and # rows in B(k.,j)
foralli=1topy ...in parallel
owner of A(i,k) broadcasts it to whole processor row
forallj=1to pc ... in parallel
owner of B(k,j) broadcasts it to whole processor column
Receive A(i k) into Acol
Receive B(k,j) into Brow
C_myproc =C_myproc + Acol * Brow
02/21/2007 CS267 Lecture DLAL 24

Courtesy of James Demmel

27 /111

HPC: Linear
Algebra
Challenges

SUMMA performance

° To simplify analysis only, assume s = sqrt(p)

For k=0to n/b-1
Parallel foralli=1tos ... s=sqrt(p)
Az owner of A(i,k) broadcasts it to whole processor row
...time=log s *(a + B * b*n/s), using a tree
forallj=1to s
owner of B(k,j) broadcasts it to whole processor column
...time =log s *(o + B * b*n/s), using a tree
Receive A(i,k) into Acol
Receive B(k,j) into Brow
C_myproc = C_myproc + Acol * Brow
... time = 2%(n/s)2*b

° Total time=2*n3/p + a*logp*n/b + B*logp* n2 /s
02/21/2007 CS267 Lecture DLAL 25

Courtesy of James Demmel
28 /111

HPC: Linear
Algebra
Challenges

SUMMA performance

.« Totaltime=2*n3/p + a*logp*n/b + B*logp*n2/s
« Parallel Efficiency =
Pl 11 +a*logp*p/(2*b*n2) + B *log p * s/(2*n))
e ~Same [term as Cannon, except for log p factor
log p grows slowly so this is ok
 Latency (o) term can be larger, depending on b
When b=1, get a*logp*n
As b grows to n/s, term shrinks to
a*logp*s (log p times Cannon)
» Temporary storage grows like 2*b*n/s
e Can change b to tradeoff latency cost with memory

02/21/2007 CS267 Lecture DLAL 26

Courtesy of James Demmel
29 /111

HPC: Linear
Algebra 2.5D matrix multiplication ‘Strong‘ ‘s‘c‘ali ‘ultiplication
Challenges

3D matrix multiplication
[Agarwal et al 95], [Aggarwal, Chandra, and Snir 90], [Bernsten 89]

64 CPUs (4x4x4)

/':Iagrzlrlilhm A) | |
o s ® oW om @
8 s CR
B @ oW oW W
| B]
W om m m
W om om

A,,
oo p a7 W om ow @
Y. o A W om om w

Y o e e W w w

S) W om om m

A~
TS aeww
s | B o o |
o o A
CZ [B Ben iy | A
A~ 4 copies of matrices A.

Solomonik and James Demmel 2.5D algorithms

HPC: Linear) . roducti) . o
Algebra 2.5D matrix multiplication ‘Strong scaling matrix m‘uluplucauon
F min, It sc

Challenges

2.5D matrix multiplication

Parallel
Algorithm A

B 32 CPUs (4x4x2)

lomonik and James Demmel D algorithms

HPC: Linear
Algebra
Challenges

Parallel
Algorithm

Can we do better?

Lower bound assumed 1 copy of data: M = O(n2/P) per proc.
What if matrix small enough to fit c>1 copies, so M = cn?/P ?
— #words_moved = Q(#flops / M¥2) =Q(n2/ (c/2p1/2))
— #messages = Q(#flops / M3/2) = Q(PY2 /c3/2)

Can we attain new lower bound?
— Special case: “3D Matmul”: ¢ = PY/3
* Dekel, Nassimi, Sahni [81], Bernsten [89],

Agarwal, Chandra, Snir [90], Johnson [93],
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

* Processors arranged in PY3x P13 x P1/3 grid

* Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j), where
each submatrix is n/PY/3x n/pP%/3
— Not always that much memory available...

31

Courtesy of James Demmel
32 /111

2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c>1

Parallel

g * Processors form (P/c)¥? x (P/c)Y/? x c grid
(P/c)*/?

I
Q\&
\ Example: P= 32, c=2

|

Courtesy of James Demmel
33 /111

HPC: Linear
Algebra
Challenges

2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, ¢ > 1

Parallel

g * Processors form (P/c)¥? x (P/c)Y/? x c grid
j

Initially P(i,j,0) owns A(i,j) and BJi,j)
each of size n(c/P)Y2 x n(c/P)1/2

‘|

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of % A(i,m)*B(m,j)
(3) Sum-reduce partial sums 2, A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)

Courtesy of James Demmel
34 /111

HPC: Linear
Algebra
Challenges

Strong scaling matrix multiplication
P m C

2.5D strong scaling

n = dimension, p = #processors, ¢ = Fcopies of data

Aeartnn » must satisfy 1 < ¢ < p!/3
» special case: ¢ =1 yields 2D algorithm
> special case: ¢ = p!/3 yields 3D algorithm

cost(2.5D MM(p, c)) = O(n*/p) flops
+ O(n?/,/c- p) words moved

+ O(y/p/c3) messages™

ignoring IOg(p) actors
A SN

D el
Edgar Solomonik and James Demmel 2.5D algorithms 10/ 36 mlTl

HPC: Linear
Algebra
Challenges

2.5D matrix multiplication Strong scaling matrix multiplication
P m C

2.5D strong scaling

n = dimension, p = #processors, ¢ = Fcopies of data

arallel i 1/3
el » must satisfy 1 < ¢ < p!/
» special case: ¢ =1 yields 2D algorithm

> special case: ¢ = p!/3 yields 3D algorithm

cost(2D MM(p)) = O(n3/p) flops
+ 0(n?/+/p) words moved

+ O(y/p) messages*
= cost(2.5D MM(p, 1))

*ignoring log(p) factors 20.@

mmel

Edgar Solomonik and James Demmel 2.5D algorithms 11/ 36 111

HPC: Linear
Algebra
Challenges

2.5D matrix multiplication Strong scaling matrix multiplication
P m C

2.5D strong scaling

n = dimension, p = #processors, ¢ = #copies of data

arallel H 1/3
Ao » must satisfy 1 < ¢ < p/
» special case: ¢ =1 yields 2D algorithm

> special case: ¢ = p'/3 yields 3D algorithm

cost(2.5D MM(c - p,c)) = O(n*/(c - p)) flops
+ 0(n?/(c - /p)) words moved
+ O(y/p/c) messages
= cost(2D MM(p))/c
erfect strong scalin
p g ing 20.@

el
Edgar Solomonik and James Demmel 2.5D algorithms 12/ 36 mlTl

HPC: Linear ol
Algebi a nultiplication scaling m. u
Challenges Performing faster at scale

2.5D MM on 65,536 cores

Matrix multiplication on 16,384 nodes of BG/P

100 T T
Parallel [2.5D MM s
Algorithm ~ - 2D MM
3 seof]
3 r 2.7X faster
© [
= I
-(Cé 60 |- Using c=16 matrix copies —
S [
g 40]
g [
§ [12X faster
o 20 N
o [
ol

8192 131072

Edgar Solomonik and James Demmel 2.5D algorithms 13/ 36

QOutline

HPC: Linear
Algebra
Challenges

© Synchronization-reducing algorithms
2o @ DAG generation
ey @ DAG generation
@ Granularity and Hybrid Computing

39/111

HPC: Linear
Algebra
Challenges

ScaLAPACK Parallel Library
ScaLAPACK SOFTWARE HIERARCHY

ScalLAPACK

DAG generation

(MPL, PVYM, etc.)
02/21/2007 CS267 Lecture DLAL 27

[Message Passing Primitives]

Courtesy of James Demmel
40 /111

HPC: Linear
Algebra
Challenges

DAG generation

LAPACK and ScalLAPACK

LAPACK ScalLAPACK
Machines ‘Workstations, Distributed
Vector, SMP Memory, DSM
Based on BLAS BLAS, BLACS
Functionality | Linear Systems Linear Systems
Least Squares Least Squares
Eigenproblems Eigenproblems
(leas than LAPACK)
Matrix types | Dense, band Dense, band,
out-ofcore
Error Bounds Complete A few
Languages F77 or C F77 and C
Interfaces to C+4, F20 HPF
Manual? Yes Yes
Where? www.netlib.org/ | www.netlib.org/
lapack scalapack
02/21/Z007 TS267 Lecture DLAT

42

Courtesy of James Demmel
41 /111

HPC: Linear
Algebra
Challenges

Looking at the Gordon Bell Prize

| o
0 1 GFlop/s; 1988; Cray Y-MP; 8 Processors
Static finite element analysis
0 1 TFlop/s; 1998; Cray T3E; 1024 Processors -
DAG generation T

Modeling of metallic magnet atoms, using a
variation of the locally self-consistent multiple
scattering method.

0 1 PFlop/s; 2008; Cray XT5; 1.5x10° Processors

Superconductive materials

0 1 EFlop/s; ~2018; 2; 1x107 Processors (107 ’recds)

Courtesy of Jack Dongarra
42 /111

HPC: Linear
Algebra
Challenges

Major Changes to Software

= Must rethink the design of our
software
= Another disruptive technology

« Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software
= Numerical libraries for example will
change
= For example, both LAPACK and

ScaLAPACK will undergo major changes
to accommodate this “

DAG generation

Courtesy of Jack Dongarra
43 /111

HPC: Linear
Algebra
Challenges

£ ANew Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on
(Vector operations) - Level-1 BLAS
operations

DAG generation

Courtesy of Jack Dongarra
44 /111

HPC: Linear
Algebra
Challenges

£ ANew Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80%s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

DAG generation

Courtesy of Jack Dongarra
45 /111

HPC: Linear
Algebra
Challenges

£ ANew Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations
LAPACK (80%s) Rely on
(Blocking, cache - Level-3 BLAS
friendly) operations
DAG generation Scal APACK (90's) Rely on

(Distributed Memory) - PBLAS Mess Passing

Courtesy of Jack Dongarra
46 /111

HPC: Linear
Algebra
Challenges

£ ANew Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on
(Vector operations) - Level-1 BLAS
operations

LAPACK (80%s) Rely on
(Blocking, cache - Level-3 BLAS
friendly) operations

DAG generation Scal APACK (90's) Rely on
(Distributed Memory) - PBLAS Mess Passing
PLASMA (00°s) Rely on
New Algorithms - a DAG/scheduler
(many-core friendly) - block data layout

- some extra kernels

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kemels
Those new algorithms need new kernels and rely on efficient scheduling algorithms.
Courtesy of Jack Dongarra
47 /111

HPC: Linear
Algebra
Challenges

Coding for an Abstract Multicore

Parallel software for multicores should have
two characteristics:

* Fine granularity:

» High level of parallelism is needed

» Cores will probably be associated with relatively small local
memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

» Asynchronicity:

« As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of
synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.

DAG generation

Courtesy of Jack Dongarra
48 /111

HPC: Linear
Algebra
Challenges

Steps in the LAPACK LU

DGETF2 LAPACK
(Factor a panel)

DLSWP l LAPACK

2 |
P
1331 e

\V

DAG generation

DLSWP
(Forward swap)

. DTRSM
(Triangular solve)

DGEMM _
(Matrix multiply)

Courtesy of Jack Dongarra
49 /111

HPC: Linear
Algebra
Challenges

DAG generation

¢ LU Timing Profile (16 core system)

Threads no lookahead

—] BEERERLRINN

Time for each component

DGETF2
I DLASWP(L)
E bpLASWP(R)
@ DTRSM
B bceEmm
DGETF2
DLSWP l
DLSWP % ﬂ
DTRSM % l l l l
—m
Bulk Sync Phases DGEMM g l l l l
d

~\ L
Courtesy of Jack Dongarra
50 /111

HPC: Linear
Algebra

Chalenges e Adaptiye Lookahead - Dynamic
FA Vit

TR,

while (1)
fetch_task();
switch (task.type) {
case PANEL: //
dgetf2();
update_progress() ;
case COLUMN:
dlaswp(); //

dtzsm();
dgemm () ;
update_progress();
case END:
for ()
dlaswp () ;
return;

DAG generation

Event Driven
Multithreading

Ideas not new.

Many papers use the

DAG approach.
Reorganizing

algorithms to use

22
this approach

Courtesy of Jack Dongarra
51 /111

HPC: Linear
Algebra
Challenges

DAG generation

Tile QR (&LU) Algorithms

oceont ousers ouwnra

N ﬁi_ A Sﬂi N S:H
Ll [L]
DTSQRT DSSRFB DSSRFB

=

N <QEE] <
DTSQRT DSSRFB DSSRFB
L

FORK = 0.TILES-1 . X
ALKIIK], TIKIIK] + DGRQRT(AIKI[K]) input matrix stored and processed by
FOR m = k+1.TILES-1 square tiles
AIKIIK], AmI(K], TIm]{k] - DTSQRT(AIKIIK], Alm]{k], TImllk})
FOR n = k+1.TILES-1
AIKI[n] « DLARFB(ALKIIK], TIKI[K], ATKI[n])
FOR m = k+1.TILES-1
AIKI{n), Alm]in] + DSSRFB(A[mILk], TImI(kl. AtKl(n], Alm(n)

complex DAG

Courtesy of Jack Dongarra
52 /111

HPC: Linear
Algebra
Challenges o)

< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks
of data

Colum‘n—Major

DAG generation

Courtesy of Jack Dongarra
53 /111

HPC: Linear
Algebra
Challenges o)

< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks
of data

Colum‘n—Major Blocked

DAG generation

=y

Courtesy of Jack Dongarra
54 /111

HPC: Linear
Algebra
Challenges o)

C PLASMA (Redesign LAPACK /ScaL APACK)

IcL:
Parallel Linear Algebra Software for Multicore Architectures

= Asychronicity
« Avoid fork-join (Bulk sync design)
* Dynamic Scheduling
BAE g = Out of order execution
= Fine Granularity
» Independent block operations
= Locality of Reference
= Data storage - Block Data Layout

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort
26

Courtesy of Jack Dongarra
55 /111

HPC: Linear
Algebra
Challenges

PLASMA Dynamic Task Scheduler

task
pool

DAG generation

® function .
task e arguments slice
o ... ‘__...._..-' e direction (IN, OUT, INOUT)
N I:-] e start address
o e end address
"o.,. © 5RAW writer
., * #WAR readers
® —child / descendant

...
= task — a unit of scheduling (quantum of work)

= slice — a unit of dependency resolution (quantum of data)
= Current version uses one core to manage the task pool

Courtesy of Jack Dongarra
56 /111

HPC: Linear
Algebra
Challenges o)

““If We Had A Small Matrix Problem

* We would generate the DAG,
find the critical path and
execute it.

« DAG too large to generate ahead
of time
= Not explicitly generate
= Dynamically generate the DAG as
we go
* Machines will have large
number of cores in a distributed
fashion
= Will have to engage in message
passing
= Distributed management
= Locally have a run time system

DAG generation

Courtesy of Jack Dongarra
57 /111

HPC: Linear
Algebra
Challenges

o)
< The DAGs are Large

* Here is the DAG for a factorization on a
20 x 20 matrix

DAG generation

» For a large matrix say O(108) the DAG is huge
Many challenges for the software 2

Courtesy of Jack Dongarra
58 /111

HPC: Linear
Algebra
Challenges o)

«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

300 tasks total
4100 task window

DAG generation

Courtesy of Jack Dongarra
59 /111

HPC: Linear
Algebra
Challenges o)

«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

300 tasks total
4100 task window

DAG generation oD

Courtesy of Jack Dongarra
60 /111

HPC: Linear
Algebra
Challenges o)

«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

300 tasks total
4100 task window

DAG generation

Courtesy of Jack Dongarra
61/111

HPC: Linear
Algebra
Challenges o)

«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

300 tasks total
4100 task window

DAG generation

Courtesy of Jack Dongarra
62 /111

HPC: Linear
Algebra
Challenges o)

«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

300 tasks total
4100 task window

DAG generation

Courtesy of Jack Dongarra
63 /111

HPC: Linear
Algebra
Challenges o)

«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

300 tasks total
4100 task window

DAG generation

Courtesy of Jack Dongarra
64 /111

HPC: Linear Need for rewriting all algorithms as DAGs ? How to do online (and
Algebra

Challenges distributed?) DAG generation?

© Bound the number of tasks and execute the sequential tasks with
fake kernel calls to obtain the dependencies.
Doing so you trade memory for scheduling opportunities. Al-
though this approach ensures that this will be compatible with
sequential execution on a semantic point of view, it also biases
the execution and forces it to be close to the sequential execution

[Quark/StarPU/MORSE]

D Clzeneration @ Put the compiler in. The compiler creates the DAG at compila-
tion time but in a compact symbolic way (i.e. a cyclic dependency
graph).

This allows to track for any task what are the child and ances-
tors. This helps for fault tolerance because this ensures one can
reproduce any data and track down what needs to be recomputed.

© Non-affine loops (e.g., a reduction) that do not fit in the polyhe-
dral model are written by hands.

65 /111

HPC: Linear
Algebra
Challenges

Gaussian Elimination

Standard Way

subtract a multiple of a row

DAG generation

-«

nb

02/21/2007

apply sequence to nb

LAPACK

LINPACK

apply sequence to a column

a,=L1a,
a;=ag-a,*a,

then apply nb to rest of matrix

CS267 Lecture DLAL Slide source: Dongarra 32

Courtesy of James Demmel
66 /111

HPC: Linear
Algebra
Challenges

Gaussian Elimination via a Recursive Algorithm

F. Gustavson and S. Toledo

LU Algorithm:
1: Split matrix into two rectangles (m x n/2)
if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part
3: Apply transformations to right part
DAG generation (triangular solve A;,= LA}, and

matrix multiplication Ay,=Az, -Ay* A,)

4: Apply LU Algorithm to right part

L Ar

AZI AZZ

Most of the work in the matrix multiply
Matrices of size n/2,n/4,n/8, ..

02/21/2007 CS267 Lecture DLAL 33

Slide source: Dongarra

Courtesy of James Demmel
67 /111

An ideal solution?

HPC: Linear
Algebra
Challenges

» Such dynamic/WS techniques always have trouble with data-
management. Although it is possible to estimate communication
costs and optimized computation kernels are stable, we end up
with a greedy strategy.

» Regarding data movement optimization, sometimes, we know stat-
ically that some subDAGs could be done in an efficient way.

DAG generation

» They're looking at how to deal with such things. Obviously when
it is recursive, adaptive computing is much easier but from clas-
sical sequential description it's more tricky.

68 /111

How to pick tile size ?

HPC: Linear
Algebra
Challenges

» When tiles are too small, bad efficiency but when too large, you
do not have enough tiles, hence not enough parallelism.

» Tile size depends on hardware but when having GPUs and CPUs,
this means that this choice should be done at runtime, making
opportunistic scheduling choices (MAGMA, StarPU, ...).

Granularity and
Hybrid
Computing

69 /111

HPC: Linear
Algebra
Challenges

£ Hybrid Computing

Match algorithmic requirements to architectural strengths of the hybrid
components

Multicore : small tasks/tiles

Accelerator: large data parallel tasks

Algorithms as DAGs Current hybrid CPU+GPU algorithms
(small tggks/tiles for multicore) (small tasks for multicores and large tasks for GPUs)

aPu

Granularity and :I ‘\I ITT

Hybrid ¥ I T T T
Computing L |

|

|

]}

e.g. split the computation into tasks; define critical path that “clears” the way

for other large data parallel tasks; proper schedule the tasks execution
Design algorithms with well defined “search space” to facilitate auto-tuning

@

°

Courtesy of Jack Dongarra
70 /111

HPC: Linear
Algebra
Challenges

Current Work: MAGMA

 Algorithms (in particular
Multicore + GPU systems

* Challenges
= How to split the computation
Granularity and = Software development

Hybrid
Computing [Tuning

LU) for

N-7nb

1Core + 1GPU 7Cores

Panel Trailing Trailing
factorization sub-matrix sub-matrix

Work splitting

(for single GPU + 8 cores host) .

Courtesy of Jack Dongarra
71/111

HPC: Linear
Algebra
Challenges

Performance ;. o precion

One-sided (LU)

Two-sided (Hessenberg)
& Multicore + GPU

100 “® Multicore + GPU - Multicore
Multicore
80 40
o] ®
T 60 T 30
S 2
° S
@ o
40, 20
Granularity and 20, 10
Hybrid —
Computing 0 o
12 3 4 5 6 7 8 12 3 4 5 6 7 8

Matrix size x 1,000

» Needed tuned parameters and tuned
DGEMM for “rectangular”” matrices

Matrix size x 1,000

GPU : GeForce GTX 280
(240 Cores @ 1.30 GHz)
Multicore : Intel Xeon
(2x4 Cores @ 2.33 GHz)

Courtesy of Jack Dongarra
72/111

QOutline

HPC: Linear
Algebra
Challenges

p— © Auto-tuning

73/111

HPC: Linear
Algebra
Challenges

Goal 3 — Automate Performance Tuning

* Widely used in performance tuning of Kernels
— ATLAS (PhiPAC) — BLAS - www.netlib.org/atlas
— FFTW — Fast Fourier Transform — www.fftw.org
— Spiral — signal processing - www.spiral.net
— OSKI — Sparse BLAS — bebop.cs.berkeley.edu/oski

Auto-tuning

Courtesy of Jack Dongarra
74 /111

HPC: Linear
Algebra
Challenges

Optimizing blocksizes for mat-mul

16

ko =1
2 4 6 8 10 12 14 16
m

Finding a Needle in a Haystack - So Automate

6

Auto-tuning

4

2

Courtesy of Jack Dongarra
75 /111

HPC: Linear
Algebra
Challenges

Goal 3 — Automate Performance Tuning

Widely used in performance tuning of Kernels
1300 calls to ILAENV() to get block sizes, etc.

— Never been systematically tuned

Extend automatic tuning techniques of ATLAS, etc.
to these other parameters

— Automation important as architectures evolve

Convert ScaLAPACK data layouts on the fly

— Important for ease-of-use too

Auto-tuning

Courtesy of Jack Dongarra
76 /111

HPC: Linear
Algebra
Challenges

0

2656

5312

7938

10532

13248

Auto-tuning

13804
18560

21216
0

The Difficulty of Tuning SpMV:

Sparse Matrix Vector Multiply

Matrix 02-raefsky3

2656 5312 7936 10592 13248 153904 18560 21216
1.43 million non-zeros

/'y <—— y + A*Xx
for all A(i,j):
y(i) += AGLD) * x@)

Courtesy of Jack Dongarra
77 /111

HPC: Linear
Algebra
Challenges

The Difficulty of Tuning SpMV

Marix 02-raetsky3

/'y <—— y + A*Xx
for all A(i,j):
y(i) += AGLD) * x@)

// Compressed sparse row (CSR)
for each row i:
t=0
for k=row[i] to row[i+1]-1:
t += ALK] * x[J[KI]
y[i] = t

Auto-tuning

Exploit 8x8 dense blocks

0 8 16 24 32 40 48 56 64 72 80
1792 ideal nz + 0 explicit zeros = 1792 nz

Courtesy of Jack Dongarra
78 /111

HPC: Linear
Algebra
Challenges

Speedups on Itanium 2:
The Need for Search

900 MHz Itanium 2, Intel C v& ref=275 Mflop/s

1120 Mflop/s (31.1%
Togg e)

1030
980
930
880
330
780
730
680
630
580
530
480
430
380
330
280 Mflopls (7.6%)

row block size (r)

Auto-tuning

Reference]

2 4
column block size (c)

Courtesy of Jack Dongarra
79 /111

HPC: Linear
Algebra
Challenges

Speedups on Itanium 2:
The Need for Search

900 MHz Itanium 2, Intel C v& ref=275 Mflop/s

1120 Mflop/s (31.1%
Togg e)

1030
980
930
880
330
780
730
680
630
580
530
480
430
380
330
280 Mflopls (7.6%)

Best: 4x2

Auto-tuning

row block size (r)

Reference]

2 4
column block size (c)

Courtesy of Jack Dongarra
80 /111

HPC: Linear
Algebra
Challenges 333 MHz Sun Ultra 2i, Sun C v6.0: ref=35 Mflop/s

900 MHz Ultra 3, Sun CC ve: ref=54 Mflop/s

52 109
60 s 104
58 99
. 56 . 94
c 54 z
@4 @4 89
o 52 N "
3 50 3
E 2 32 s 2 i
z z 74
3 8
i ;
40 B4
33 145 157 59
36 54
1 2 4 8 1 2 4 8
column block size (c) column block size (c)
2 GHz Pentium M, Intel C v8.1: ref=308 Mflop/s 1.4 GHz Opteron, gce 3.4.2: ref=308 Mflop/s
43 440
430
420
410
Auto-tuning =2 =3 400
2 2 300
@ @ 380
8 8 370
S: <e 360
2 2 350
340
330
320
310

2 4 8 1 2 4
column block size (c) column block size (c)

Courtesy of Jack Dongarra
81 /111

HPC: Linear
Algebra
Challenges 375 MHz Power3, IBM xlc v6: ref=145 Mflop/s

1.3 GHz Power4, IBM xlc v6: ref=577 Mflop/s

=

111 116

row block size (r)
row block size (r)

1.08 113

1.00 1.08 1.08

1 2 4 8
column block size (c) column block size (c)
800 MHz Itanium, Intel C v7: ref=146 Mflop/s 900 MHz Itanium 2, Intel C v8: ref=275 Mflop/s

Auto-tuning

s

a

o
&
3

@ @
N N
@ @
x x
S S
o o
) o
H H
e 2

v e ey T

SoONWO R AR ~EOO DO N
STSHEHSHENBRSTBHONSAS NS

2 4 2 4
column block size (c) column block size (c)
Courtesy of Jack Dongarra

82 /111

HPC: Linear
Algebra
Challenges

More Surprises tuning SpMV

3% 3 Register Blocking Example

- More complex example
EH safes’le
" Mk RERE S « Example: 3x3 blocking
oW — Logical grid of 3x3 cells
afE FRENEE Gk
wll | R s :
Auto-tuning i S
35 B33 BN
P i i
o RO TY
50 PR P
o 1 20 30 40 50

B88 true non—zeros

Courtesy of Jack Dongarra
83 /111

HPC: Linear
Algebra
Challenges

Extra Work Can Improve
Efficiency

3 3 Register Blocking Example

e More complex example

Example: 3x3 blocking

— Logical grid of 3x3 cells
— Pad with zeros

— “Fill ratio” = 1.5

Auto-tuning
40
® * On Pentium II:
st L : ! L : 1.5x speedup! (2/3 time)

30
(B56 true non-zeros) + (383 explich zeres) = 1071 ne

Courtesy of Jack Dongarra
84 /111

HPC: Linear
Algebra
Challenges

How to Deal with Complexity?

* Many parameters in the code needs to be
optimized.

» Software adaptivity is the key for
applications to effectively use available
resources whose complexity is
exponentially increasing

» Goal:

N = Automatically bridge the gap between the
application and computers that are rapidly
changing and getting more and more complex

» Non obvious interactions between
HW/SW can effect outcome

Courtesy of Jack Dongarra
85 /111

HPC: Linear |
Algebra

Sl Overtuning Can Destroy Performance Portability

L L L L
x

L

IBM Blue Gene/P runtime (s)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Auto-tuning

0.002 0004 0006 0008 0.010
Intel Nehalem runtime (s)

Each x denotes a DGEMM variant

a Wild — INRIA/ANL/UIUC Joint-lab worksHGgurtesy,pf Stefan Wild
86 /111

HPC: Linear |
Algebra

Chatenges Automating Empirical Performance Tuning

Given a computation kernel and transformation space:

code & tuning
specs

code ¢
de code. code .
compilation generation transformation

v

performance 3
Auto-tuning evaluation Sea rCh

high-performing
code

a Wild — INRIA/ANL/UIUC Joint-lab worksHGgurtesy,pf Stefan Wild
87 /111

HPC: Linear
Algebra

Chalienges Search in Autotuning
Alternatives:
¢ Complete enumeration
¢ Prohibitively expensive (10°°
¢ Unnecessary?

variants!)

< Pruning

¢ Careful balancing act (between aggressive and conservative
strategies)
Helpful (necessary?) precursors: The expert still plays a role!
< |dentify variable space (parameters to be tuned, ranges, constraints)
< Quantify measurement limitations and noise
< Incorporate known theoretical considerations (models)
Auto-tuning o

Construct meaningful objectives

— Reduce search space and/or number of variants that need to be examined

Design, implement, and analyze efficient optimization (=search) algorithms
... for tuning kernels in small computation budgets

a Wild — INRIA/ANL/UIUC Joint-lab worksHGgurtesy,pf Stefan Wild
88 /111

HPC: Linear |
Algebra

Chanenges Is a Sophisticated Search Algorithm Needed?

[Seymour, You, & Dongarra, Cluster Computing '08]: Random search performs
better than alternatives as the number of tuning parameters grows !

Depends on distribution of high-performing variants:

40 s
e ¢
820 g4

& &
Auto-tuning 10 2
0 0

0.00 0.01 0.02 0.03 0.001 0.002 0.003 0.004
Mean run-time (5) Mean run-time (5)

(5000 semantically equivalent variants each)

a Wild — INRIA/ANL/UIUC Joint-lab worksHGgurtesy,pf Stefgn Wild
89 /111

HPC: Linear |
Algebra

Chalienges Is a Sophisticated Search Algorithm Useful?

Depends on structure of the (modeled) search space:

100

Auto-tuning

e 2

0 40 50 0 80 9% 100 0 2 30 0 50 60
Both 2-dimensional problems have the same histogram

Must learn/model/exploit this structure to quickly find high-performing variants

a Wild — INRIA/ANL/UIUC Joint-lab worksHGgurtesy,pf Stefan Wild
90 /111

HPC: Linear \ |
A Formulation and Modeling: Optimization is Optimization

Challenges

Finding the best configuration is a mathematical optimization problem

m;n{f(x) cx = (z1,28,2¢) € D CR"}

2 multidimensional parameterization (compiler type, compiler flags,
unroll/tiling factors, internal tolerances, ...) for a code variant
f(x) empirical performance metric of = such as FLOPS, power, or run time
(requires a run)

D search domain (constraints for feasible transformation, no errors, ...)
A : bound: wnroll € [1,...,30]; RT = 2¢, i=[0,1,2,3]
MG known: (RTr x RTy < 150) (cheap); power consumption < 90 W

(expensive)
hidden: transformation errors (relatively cheap), compilation
(expensive), and run time (very expensive) failures

See [Balaprakash, Hovland, & W., iWAPT '11]

a Wild — INRIA/ANL/UIUC Joint-lab worksHGgurtesy,pf Stefan Wild
91/111

HPC: Linear U

Algebra

Challenges Optimization Challenges in Autotuning

min, {f(z) : z = (zz,28,2¢c) € D C R"}

- f noisy, expensive, black box

- Discrete = unrelaxable

- V. f unavailable/nonexistent

- “Cliffs", many distinct/local solutions?
Calls for Derivative-Free Optimization

} Integer Space: MM (MatMult)

x=t 2 =3

Auto-tuning

92 /111

HPC: Linear

Chatenges SPAPT: Orio-ready Implementation
< Extensible empirical tuning system
o < Allows inserting annotations as structured
comments

< Supports architecture independent and specific
[Norris, Hartono, & Gropp, '07] optimizations

/% AXPY Kermel x/
for (i=0; i<=n-1; i++)
y[il=y[i]+at*x1[i]+a2*x2[i]+a3*x3[i]+ad*x4[i];

1
/* Tuning specifications */ UF = {1,...,30}; PAR = {True, False}

Auto-tuning

/*@ begin Loop (
transform Unroll (ufactor=UF, parallelize=PAR)
for (i=0; i<=n-—1; i++)
yli]l=y[i]+al*x1[i]+a2*x2[i]+ad*x3[i]+adx*x4[i];

Qox/

a Wild — INRIA/ANL/UIUC Joint-lab workshdGourtesy, ¢f Stefan Wild
93 /111

HPC: Linear
e Classical Algorithms for Performance Tuning

Challenges

Local search

Global search

ES:

B!

< exploration and exploitation . .
< limited exploration

P < find the globally best” % find the locally best

< long search time .
< short search time

<O parameter sensitive X X
< risk of bad local solution

Hypothesis: customized local search algorithms are effective for short
computational budgets

a Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild
94 /111

HPC: Linear U

Algebra

Chatienges Previous Algorithms for Performance Tuning

[Seymour, You, & Dongarra, Cluster Computing '08] and [Kisuki, Knijnenburg, &
O’'Boyle, PACT '00] compared several global and local algorithms

¢ Random search outperforms a genetic algorithm, simulated annealing,
particle swarm, Nelder-Mead, and orthogonal search !

< Large number of high-performing parameter configurations — easy to
find one of them

[Norris, Hartono, & Gropp, Computational Science '07] used several global and
local algorithms but no comparison

< Nelder-Mead simplex method, simulated annealing, a genetic algorithm
Other local search algorithms without comparison to global search:
Auto-tuning < Orthogonal search in ATLAS [Whaley & Dongarra, SC '98]

< Pattern search in loop optimization [Qasem, Kennedy, & Mellor-Crummey
SC '06]

< Modified Nelder-Mead simplex algorithm in Active Harmony [Tiwari, Chen,
Chame, Hall, & Hollingsworth, IPDPS '09]

Y Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild

95 /111

HPC: Linear
(Yeplie Local Algorithms: Direct Search Methods

Challenges

See [Kolda, Lewis, & Torczon, SIREV '03]

Nelder-Mead

=

8

22 = 25 3 32 e 3

Easy to parallelize f evaluations Popularized by Numerical Recipes

Auto-tuning

© Rely on indicator functions: [f(z) +s) <’ f(zk)]

e Ignore valuable information on relative magnitudes of f(xx)

a Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild
96 /111

HPC: Linear |
Algebra

Chatienges Making the Most of Little Information on f

< f is expensive = can afford to make better use of points

< Overhead of the optimization routine is minimal (negligible?) relative to
cost of empirical evaluation

Bank of data, {z;, f(xz)}‘

i=1"

Auto-tuning

= Everything” known about f
Idea:

¢ Make use of growing bank as
optimization progresses

a Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefgn Wild
97 /111

HPC: Linear |
Algebra

Chatienges Making the Most of Little Information on f

< f is expensive = can afford to make better use of points

© Overhead of the optimization routine is minimal (negligible?) relative to
cost of empirical evaluation

Bank of data, {z;, f(z:)}

=il

10
Auto-tuning . N = Everything” known about f
o « ¢ ldea:
1 ‘5»\ . ~ 2 .
2T] © Make use of growing bank as
3 e . . .
e optimization progresses

Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefgn Wild
98 /111

HPC: Linear
ek Surrogate-Based Trust-Region Algorithms

Challenges
f expensive, no Vf

Substitute min {m(z) : z € By} for min f(z) m cheap, analytic
derivatives

Surrogate based on known f values st m ~ f in By

Time [CPU ms]
Bo v v ow p oo

Auto-tuning

2
1 .
Unroll Factor i 1 Unroll Factor j

Surrogates: predict improvement

a Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild
99 /111

OEGIlinear \ |
o Simultaneously Optimizing Multiple Objectives

Challenges

Ji(Z) = fi(a™) Vi,
fi(&) > f;(z") some j
< Seek Pareto front of
non-dominated points

@ « X §
© No a priori weights w; g
(3 wifi()) 5 g
¢ Dominated points Z: g »
Jz* € D with g
2
s
o

Auto-tuning

0.00 0.02 0.04 006 0.08 0.10 0.12

0.002 0.004 0.006 0.008 0.010
Intel Nehalem runtime (s)

o Wild — INRIA/ANL/UIUC Joint-lab workshdGourtesy, ¢f Stefan Wild
100 /111

HPC: Linear
Algebra
Challenges

Auto-tuning

Multiple Objectives: Time, Power,

320

Total Power (W)
nN N N w
B D =] o
[=) =] S, S

N
N
o

‘v 12GH:
v

Input Size

=v--small
- e-medium
A large 1

8 9
Time (s)

~ . 1AGHz 1P GHz
Jo Mg

¢ Tradeoffs in power do
not imply tradeoffs in
energy

Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild

101 /111

HPC: Linear
Algebra
Challenges

Auto-tuning

Multiple Objectives: Time, Power, Energy

adi

2800 VL2 GHz
A -
2600 .A‘"::°126Hz’ ¢ Tradeoffs in power do
' not imply tradeoffs in
- 2400 g energy
2 2200 1 © Objectives may not be
= conflicting: “Race to
S 2000 i _ g:
c idle
W 1800 1
)
°
'_ 1600) Input Size 1
1400 el v small]
vy - e - medium
1202_ 'Vv‘v' <A large i
4 5 7 10 11 12

8 9
Time (s)

Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild
102 /111

HPC: Linear
Algsbrs Multiple Objectives: Time, Power, Energy

Challenges

d‘Syl’Zk ‘ 260k

2800 Input Size]
2600. |- small | © Tradeoffs in power do
- -medium not imply tradeoffs in
& 2400) | 4" large s Raon energy
52200 © Objectives may not be
> F 7 . . “w
= conflicting: “Race to
2 2000} , idle
|
= -0
£ 1800 JPUCLIe FYST © Tradeoffs occur for
2 _e-” different sizes
Auto-tuning o x
16001 e_—°' v 126H 1
2.6 GHz e_o—o—’”— v
1400} ©°°°% _4-¥ 1
2.6{GH: "
'ivw"'—v’v
4 6
Time (s)
o Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild

103 /111

\ |
Multiple Objectives: Time, Power, Energy

Total Energy (Ws)

2.6 GHz SWim
o-
& ‘ ‘
126Hz 7 3
Time (s)

Tradeoffs in power do
not imply tradeoffs in
energy

Objectives may not be
conflicting: “Race to
idle

Tradeoffs occur for
different sizes

Tradeoffs occur at
different frequencies

Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild

104 /111

HPC: Linear
Algebra

Challenges Summary and Links

< Performance tuning increasingly necessary, not yet “automatic”

< Derivative-free optimization is a powerful, practical tool

When the available tuning time is limited:

< Global exploration less useful

< Problem formulation and starting point play important roles
Future work includes:

< Incorporation of models, binary parameters, constraints (from models or
otherwise), online restart strategies,role in full application codes, ...

—» always collecting new search/optimization problems
... especially those with structure

Auto-tuning

Some preprints http://mcs.anl.gov/~wild

I. http://trac.mcs.anl.gov/projects/performance/wiki/Orio

SPAPT http://trac --- /performance/browser/orio/testsuite/SPAPT.v.01

a Wild — INRIA/ANL/UIUC Joint-lab workshdpourtesy, @f Stefan Wild
105 /111

QOutline

HPC: Linear
Algebra
Challenges

Reproducibility
ELL]
Mixed-Precision

Methods © Reproducibility and Mixed-Precision Methods

106 /111

HPC: Linear
Algebra
Challenges

lterative Refinement: for speed

What if double precision much slower than
single?

— Cell processor in Playstation 3
« 256 GFlops single, 25 GFlops double

— Pentium SSEZ2: single twice as fast as double
Given Ax=b in double precision
— Factor in single, do refinement in double

Ry — If 1¢(A) < 1/ggjpgjes Funs at speed of single

Mixed-Precision
Methods

1.9x speedup on Intel-based laptop
Applies to many algorithms, if difference large

Courtesy of Jack Dongarra
107 /111

Reproducibility

HPC: Linear
Algebra
Challenges

» Reproducible numerical computations is already difficult for a sim-
ple reduce.

» The increase of PUs, dynamic scheduling and the use of hybrid
mixed-precision hardware makes it even harder.

» Changing algorithms may be particularly harmful.

Reproducibility
and
Mixed-Precision
Methods

108 /111

HPC: Linear
Algebra
Challenges

Fast Matrix Multiplication (1)

(Cohn, Kleinberg, Szegedy, Umans)

« Can think of fast convolution of polynomials p, q as
— Map p (q) into group algebra ; p; z' e C[G] of cyclic group G ={z'}
— Multiply elements of C[G] (use divide&conquer = FFT)
— Extract coefficients
¢ For matrix multiply, need non-abelian group satisfying triple
product property
— There are subsets X, Y, Z of G where xyz = 1 with
xeXyeY,zeZ = x=y=z=1
— Map matrix A into group algebra via Zxy Axy x1y,
Binto Zy’z By, y~1z.
Rty - Since x 1y y-1z = x1ziff y =y’ we get Zy Ayy Byz = (AB)yz
and

L e « Search for fast algorithms reduced to search for groups with
Methods certain properties

— Fastest algorithm so far is O(n?-38), same as Coppersmith/Winograd

Courtesy of Jack Dongarra
109 /111

MPI. Really ?

HPC: Linear
Algebra
Challenges

» Hybrid parallelism (MPI4-openMP) is tricky.
» MPI 3.0 introduces among other things neihborhood collective

communications, asynchronous collective operations, the ability
to hint the middleware about possible optimizations, ...

» MPI 3.0still considers MPI ranks as process and not as "end-
points”. :(

» MPI will have trouble going to exascale. Another approach is to

resort to data parallel languages to express data parallelism. HPF
removed power from power users compared to MPI, which is one

Reproducibility

i of the reason for the success of MPI.
Mixed-Precision

Methods

110/111

If you are wondering what’s beyond
ExaFlops

Mega, Giga, Tera,
Peta, Exa, Zetta ...

103
106
10°
1012
1015
1018
1021

kilo
mega
giga
tera
peta
exa
zetta

1024
1027
10830
1033
1036
1039
1042
1045
1048
1051
1054
1057
1060
1063

yotta
xona
weka
vunda
uda
treda
sorta
rinta
quexa
pepta
ocha
nenaN
minga
luma

Courtesy of Jack Dongarra

	Communication ``Avoiding'' Algorithms
	Cache oblivious algorithm
	Parallel Algorithm

	Synchronization-reducing algorithms
	DAG generation
	DAG generation
	Granularity and Hybrid Computing

	Auto-tuning
	Reproducibility and Mixed-Precision Methods

