
1

Parallel Algorithms

Design
and

Implementation

 Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA,
France

2

Overview

• Machine model and work-stealing
•Work and depth
• Fundamental theorem : Work-stealing theorem
• Parallel divide & conquer
• Examples

•Accumulate
•Monte Carlo simulations

• Part2: Work-first principle - Amortizing the overhead of parallelism
•Prefix/partial sum

•Sorting and merging

• Part3: Amortizing the overhead of synchronization and communications
•Numerical computations : FFT, marix computations; Domain decompositions

3

Interactive
Distributed
Simulation
3D-reconstruction
+ simulation
+ rendering
[B Raffin &E Boyer]
- 1 monitor
- 5 cameras,
- 6 PCs

Any application is “parallel”:
•composition of several programs / library procedures (possibly concurrent) ;
•each procedure written independently and also possibly parallel itself.

Interactive parallel computation?

4

 Parallel chips & multi-core architectures:
- MPSoCs (Multi-Processor Systems-on-Chips)
- GPU : graphics processors (and programmable: Shaders; Cuda SDK)
- MultiCore processors (Opterons, Itanium, etc.)
- Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)

 Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs

 Clusters:
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAs)

 Grids:
- Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

 Dedicated platforms: eg Virtual Reality/Visualization Clusters:
- Scientific Visualization and Computational Steering
- PC clusters + graphics cards + multiple I/O devices

(cameras, 3D trackers, multi-projector displays)

New parallel supports from small too large

Grimage platform

5

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, … but not only: SMP server in multi-users mode

The problem
To design a single algorithm that computes efficiently prefix(a) on

an arbitrary dynamic architecture

Sequential
algorithm

parallel
P=2

parallel
P=100

parallel
P=max

...

Multi-user SMP server GridHeterogeneous network

?Which algorithm
to choose ?

… …

6

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,….

 => motivates the design of «processor-oblivious» parallel algorithm that:

 + is independent from the underlying architecture:
no reference to p nor Πi(t) = speed of processor i at time t nor …

 + on a given architecture, has performance guarantees :
behaves as well as an optimal (off-line, non-oblivious) one

Processor-oblivious algorithms

7

2. Machine model and work stealing

 Heterogeneous machine model and work-depth framework
 Distributed work stealing

 Work-stealing implementation : work first principle

 Examples of implementation and programs:
Cilk , Kaapi/Athapascan

 Application: Nqueens on an heterogeneous grid

8Processor speeds are assumed to change arbitrarily and adversarially:
model [Bender,Rabin 02] Π i(t) = instantaneous speed of processor i at time t

 (in #unit operations per second)

 Assumption : Maxi,t { Π i(t) } < constant . Mini,t { Π i(t) }

Def: for a computation with duration T

• total speed: Π tot = (Σi=0,..,P Σt=0,..,T Π i(t)) / T

• average speed per processor: Πave = Π tot / P

Heterogeneous processors, work and depth

“Work” W = #total number operations performed

“Depth” D = #operations on a critical path

(~parallel “time” on ∞ resources)

For any greedy maximum utilization schedule:
 [Graham69, Jaffe80, Bender-Rabin02]

 makespan

€

≤ W

p.Π ave

+ 1−
1
p

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

D

 Π ave

9

The work stealing algorithm

 A distributed and randomized algorithm that
computes a greedy schedule :
 Each processor manages a local task (depth-first execution)

P0 P2P1 P3

10

P0 P2P1 P3

 When idle, a processor steals the topmost task on a remote -non idle- victim processor
(randomly chosen)

 Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

 #steals = O(p.D) and execution time

 Interest:
 if W independent of p and D is small, work stealing achieves near-optimal schedule

steal

The work stealing algorithm

 A distributed and randomized algorithm that
computes a greedy schedule :
 Each processor manages a local stack (depth-first execution)

€

≤ W

p.Π ave

+ O
D

Π ave

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

Proof

 Any parallel execution can be
represented by a binary tree:
 Node with 0 child = TERMINATE instruction

- End of the current thread

 Node with 1 son = sequential instruction
 Node with 2 sons: parallelism = instruction that

- Creates a new (ready) thread
• eg fork, thread_create, spawn, …

- Unblocks a previously blocked thread
• eg signal, unlock, send

11

Proof (cont)
 Assume the local ready task queue is stored in an

array: each ready task is stored according to its depth
in the binary tree

 On processor i at top t :
 Hi(t) = the index of the oldest ready task

 Prop 1: When non zero, Hi(t) is increasing

 Prop 2: H(t) = Min(i active at t){ Hi(t) } is increasing

 Prop 3: Each steal request on i makes
Hi strictly increase (i.e. Hi(t+1) H≥ i(t) + 1).

 Prop 4: For all i and t: Hi(t) Height(Tree)≤
 Corollary: if at each steal, the victim is a processor i

with minimum Hi(t) then
#steals (p-1).Height(tree) (p-1).D≤ ≤

12

Proof (randomized, general case)
 Group the steal operations in blocks of

consecutive steals: [Coupon collector problem]
 Consider p.log p consecutive steals requests after top t,

Then with probability > ½, any active processor at t have
been victim of a steal request.

- Then Mini Hi has increased of at least 1

 In average, after (2.p.log p.M) consecutive
steals requests, Mini Hi M ≥
 Thus, in average, after (2.p.log p.D) steal requests,

the execution is completed !
 [Chernoff bounds] With high probability (w.h.p.),

 #steal requests = O(p.log p.D)

13

Proof (randomized, additional hyp.)

 With additional hypothesis:
- Initially, only one active processor
- When several steal requests are performed on a same

victim processor at the same top,
only the first one is considered (others fail)

 [Balls&Bins] Then #steal requests = O(p.D) w.h.p.

 Remarks:
 This proof can be extended to

- asynchronous machines (synchronization = steal)
- Other steal policies then steal the “topmost=oldest”

ready tasks, but with impact on the bounds on the
steals

14

Steal requests and execution time

 At each top, a processor j is
 Either active: performs a “work” operation

- Let wj be the number of unit work operations by j

 Either idle: performs a steal requests
- Let sj be the number of unit steal operations by j

 Summing on all p processors :

Execution time

15

€

≤ W

p.Π ave

+ O
D

Π ave

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

16

Work stealing implementation

Difficult in general (coarse grain)
But easy if D is small [Work-stealing]

 Execution time

 (fine grain)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

 (coarse grain)

Scheduling
efficient policy

(close to optimal)

control of the policy
(realisation)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path
of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,
 efficient local degeneration of the parallel program in a sequential execution

€

≤ W

p.Π ave

+ O
D

Π ave

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

17

Work-stealing implementations following
the work-first principle : Cilk
 Cilk-5 http://supertech.csail.mit.edu/cilk/ : C extension

 Spawn f (a) ; sync (serie-parallel programs)
 Requires a shared-memory machine
 Depth-first execution with synchronization (on sync) with the end of a task :

- Spawned tasks are pushed in double-ended queue
 “Two-clone” compilation strategy [Frigo-Leiserson-Randall98] :

• on a successfull steal, a thief executes the continuation on the topmost ready task ;
• When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

 won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

http://supertech.csail.mit.edu/cilk/
http://bradley.csail.mit.edu/~bradley/hpcc06/

18

Work-stealing implementations following
the work-first principle : KAAPI
 Kaapi / Athapascan http://kaapi.gforge.inria.fr : C++ library

 Fork<f>()(a, …) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)

 Supports distributed and shared memory machines; heterogeneous processors
 Depth-first (reference order) execution with synchronization on data access :

• Double-end queue (mutual exclusion with compare-and-swap)
• on a successful steal, one-way data communication (write&signal)

•

 Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

 1 struct sum {
 2 void operator()(Shared_r < int > a,
 3 Shared_r < int > b,
 4 Shared_w < int > r)
 5 { r.write(a.read() + b.read()); }
 6 } ;
 7
 8 struct fib {
 9 void operator()(int n, Shared_w<int> r)
 10 { if (n <2) r.write(n);
 11 else
 12 { int r1, r2;
 13 Fork< fib >() (n-1, r1) ;
 14 Fork< fib >() (n-2, r2) ;
 15 Fork< sum >() (r1, r2, r) ;
 16 }
 17 }
 18 } ;

http://kaapi.gforge.inria/
http://www-id.imag.fr/Laboratoire/Membres/Gautier_Thierry/TG/KAAPI%20winner%20of%20plugtest%202006.html

19Experimental results on SOFA
[Allard 06]

[CIMIT-ETZH-INRIA]

Kaapi (C++, ~500 lines) Cilk (C, ~240 lines)

Preliminary results on GPU NVIDIA 8800 GTX
• speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz

•128 “cores” in 16 groups
•CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads
•Supports most operations available on CPU
•~2000 lines CPU-side + 1000 GPU-side

Algorithm design
 Execution time

 From work-stealing theorem, optimizing
the execution time by building a parallel
algorithm with both

- W = Tseq

and
- small depth D

 Double criteria
- Minimum work W (ideally Tseq)

- Small depth D: ideally polylog in the work: = logO(1) W

20

€

≤ W

p.Π ave

+ O
D

Π ave

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

Examples

 Accumulate

 => Monte Carlo computations

21

22

Example: Recursive and Monte Carlo
computations

 X Besseron, T. Gautier, E Gobet, &G Huard won the nov. 2008 Plugtest-
Grid&Work’08 contest – Financial mathematics application (Options pricing)

 In 2007, the team won the Nqueens contest; Some facts [on on Grid’5000, a grid
of processors of heterogeneous speeds]

- NQueens(21) in 78 s on about 1000 processors
- Nqueens (22) in 502.9s on 1458 processors
- Nqueens(23) in 4435s on 1422 processors [~24.1033 solutions]
- 0.625% idle time per processor
- < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
- 15% of improvement of the sequential due to C++ (template)

N
-Q

ue
en

s(
23

)

G
ri

d’
50

00
 f

re
e

C
om

pe
ti

to
r

Z

C
om

pe
ti

to
r

Y

C
om

pe
ti

to
r

X

CPU

6 instances Nqueens(22)

Network

Grid’5000 utilization
during contest

Algorithm design
 Cascading divide & Conquer

 W(n) a.W(n/K) + f(n) with a>1≤
- If f(n) << n^{logK a} => W(n) = O(n^{logK a})

- If f(n) >> n^{logK a} => W(n) = O(f(n))

- If f(n) = (n^{logΘ K a} => W(n) = O(f(n) log n)

 D(n) = D(n/K) + f(n)
- If f(n) = O(logi n) => D(n) = O(logi+1 n)

 D(n) = D(sqrt(n)) + f(n)
- If f(n) = O(1) => D(n) = O(loglog n)
- If f(n) = O(log n) => D(n) = O(log n) !!

23

Examples

 Accumulate

 Monte Carlo computations

 Maximum on CRCW
 Matrix-vector product – Matrix multiplication --

Triangular matrix inversion

 Exercise: parallel merge and sort
 Next lecture: Find, Partial sum, adaptive parallelism,

communications

24

Algorithm design
 Execution time

 From work-stealing theorem, optimizing
the execution time by building a parallel
algorithm with both

- W = Tseq

and
- small depth D

 Double criteria
- Minimum work W (ideally Tseq)

- Small depth D: ideally polylog in the work: = logO(1) W

25

€

≤ W

p.Π ave

+ O
D

Π ave

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

26

Parallel Algorithms

Design
and

Implementation

Lecture 2 – Processor oblivious algorithms

 Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA, France

27

Lecture 2
 Remind: Work W and depth D :

 With work-stealing schedule:
- #steals = O(pD)
- Execution time on p procs = W/p + O(D) w.h.p.
- Similar bound achieved with processors with changing

speed or multiprogrammed systems.

 How to parallelize ?
 1/ There exists a fine-grain parallel algorithm that

is optimal in sequential
- Work-stealing and Communications

 2/ Extra work induced by parallel can be amortized
 3/ Work and Depth are related

- Adaptive parallel algorithms

First examples

 Put overhead on the steals :
 Example Accumulate

 Follow an optimal sequential algorithm:
 Example: Find_if

28

23/52

Adaptive coupling: Amortizing synchronizations
(parallel work extraction)

Example : STL transform STL : loop with n independent computations

αlog(n1)

ni=l-fi

αlog(n2)

f1
 lf2

size

T
im

e
[s

]Machine :
AMD Opteron Opteron 875

2,2 Ghz,
Compiler gcc, option –O2

Amortizing Parallel Arithmetic overhead:
example: find_if

 For some algorithms:
 Wseq unknown prior to execution
 Worst case work W is not precise enough: we may have W >> Wseq

 Example: find_if : returns the index of the first element that verifies a predicate.

P0 P1 P2 P3

Index of the matching element

 Parallel time= time of the last processor to complete: here, on 4 processors: T4 = 6

 Sequential time is Tseq = 2

24/52

 To adapt with provable performances (Wpar ~Wseq) : compute in parallel no more
work thant the work performed by the sequential algorithm

(Macro-loop [Danjean, Gillard, Guelton, Roch, Roche, PASCO’07]),
Amortized scheme similar to Floyd’s algorithm

n_cur elts n_cur / log(n_cur)

25/52

 Example : find_if

B1 B2 B3

P0, P1, P2 P0, P1, P2 P0, P1, P2

Amortizing Parallel Arithmetic overhead:
example: find_if

 Example : find_if STL
 Comparison with find_if parallel MPTL [Baertschiger 06]

26/52

Machine :
AMD Opteron (16 cœurs);

Data: doubles;
Array size: 106;

Position element: 105;

TimeSTL : 3,60 s;
Predicate time 36≈ μ

Speed-down (speed-up < 1)

Amortizing Parallel Arithmetic overhead:
example: find_if [Daouda Traore 2009]

 Example : find_if STL
 Speed-up w.r.t. STL sequential tim and the position of the matching element.

#processors

Sp
ee

d-
up

27/52

Machine :
AMD Opteron (16 cœurs);

Data: doubles;
Size Array: 106;

Predicate time≈ 36μ

Amortizing Parallel Arithmetic overhead:
example: find_if [Daouda Traore 2009]

34

Overview

• Introduction : interactive computation, parallelism and processor oblivious

• Overhead of parallelism : parallel prefix

• Machine model and work-stealing

• Scheme 1: Extended work-stealing : concurently sequential and parallel

35

3. Work-first principle and adaptability

• Work-first principle: -implicit- dynamic choice between two executions :
• a sequential “depth-first” execution of the parallel algorithm (local, default) ;
• a parallel “breadth-first” one.

• Choice is performed at runtime, depending on resource idleness:
rare event if Depth is small to Work

• WS adapts parallelism to processors with practical provable performances
• Processors with changing speeds / load (data, user processes, system, users,
• Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, …])

• The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:

• Parallel Divide&Conquer computations

• …

-> But, this may not be general in practice

36

• General approach: to mix both
• a sequential algorithm with optimal work W1

• and a fine grain parallel algorithm with minimal depth D = critical time W∞

• Folk technique : parallel, than sequential
• Parallel algorithm until a certain « grain »; then use the sequential one
• Drawback : W∞ increases ;o) …and, also, the number of steals

• Work-preserving speed-up technique [Bini-Pan94] sequential, then parallel Cascading [Jaja92] :
Careful interplay of both algorithms to build one with both

 W∞ small and W1 = O(Wseq)

• Use the work-optimal sequential algorithm to reduce the size
• Then use the time-optimal parallel algorithm to decrease the time
• Drawback : sequential at coarse grain and parallel at fine grain ;o(

How to get both optimal work W1 and D=W∞ small?

37

Extended work-stealing: concurrently sequential and parallel

SeqCompute

Extract_par
LastPartComputation

SeqCompute

Based on the work-stealing and the Work-first principle :
Instead of optimizing the sequential execution of the best parallel algorithm,

let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead
⇒ parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:
• - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)

38

Based on the work-stealing and the Work-first principle :
Instead of optimizing the sequential execution of the best parallel algorithm,

let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead
⇒ parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:
• - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)

SeqCompute

SeqCompute

preempt
SeqCompute_main

SeqCompute

merge/jump

complete

Seq

Note:

• merge and jump operations to ensure non-idleness of the victim

• Once SeqCompute_main completes, it becomes a work-stealer

Extended work-stealing : concurrently sequential and parallel

39

Overview

• Introduction : interactive computation, parallelism and processor oblivious

• Overhead of parallelism : parallel prefix

• Machine model and work-stealing

• Scheme 1: Extended work-stealing : concurently sequential and parallel

• Scheme 2: Amortizing the overhead of synchronization (Nano-loop)

40

Extended work-stealing and granularity

 Scheme of the sequential process : nanoloop
While (not completed(Wrem)) and (next_operation hasn’t been stolen)

{

 atomic { extract_next k operations ; Wrem -= k ; }

 process the k operations extracted ;

}

 Processor-oblivious algorithm
 Whatever p is, it performs O(p.D) preemption operations (« continuation faults »)

-> D should be as small as possible to maximize both speed-up and locality

 If no steal occurs during a (sequential) computation, then its arithmetic work is optimal
to the one Wopt of the sequential algorithm (no spawn/fork/copy)

-> W should be as close as possible to Wopt

 Choosing k = Depth(Wrem) does not increase the depth of the parallel algorithm
while ensuring O(W / D) atomic operations :
 since D > log2 Wrem , then if p = 1: W ~ Wopt

 Implementation : atomicity in nano-loop based without lock
 Efficient mutual exclusion between sequential process and parallel work-stealer

 Self-adaptive granularity

41

Anytime Algorithm:
• Can be stopped at any time (with a result)
• Result quality improves as more time is allocated

In Computer graphics, anytime algorithms are common:
Level of Detail algorithms (time budget, triangle budget, etc…)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm:
On p processors with average speed Πave, it outputs in a fixed time T
 a result with the same quality than
a sequential processor with speed Πave in time p.Πave.

Example: Parallel Octree computation for 3D Modeling

Interactive application with time constraint

42

3D Modeling :
build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps)

Parallel 3D Modeling

…

…

A classical recursive anytime 3D modeling algorithm.

Standard algorithms with time control:

At termination: quick test to decide all grey cubes time control

Octree Carving [L. Soares 06]

State of a cube:
- Grey: mixed => split
- Black: full : stop
- White: empty : stop

Depth first
+ iterative deepening

Width first

44

Well suited to work-stealing
-Small critical path, while huge amount of work (eg. D = 8, W = 164 000)
- non-predictable work, non predictable grain :

For cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / ”parallel recursive split-half”

Octree needs to be “balanced” when stopping:
• Serially computes each level (with small overlap)
• Time deadline (30 ms) managed by signal protocol

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm:
- goes at most one level deeper : | ds - dp | ≤ 1 ;
- computes at most : ns ≤ np + O(log ns) .

Width first parallel octree carving

Unbalanced Balanced

45
- 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms
- 8 cores: about 100 steals (167 000 grey cells)

Results

8 cameras, levels 2 to 10 64 cameras, levels 2 to 7
re

su
lt

:
C

P
U

s+
G

P
U

-
1

G
P

U
 +

 1
6

C
P

U
s

-
G

P
U

 p
ro

gr
am

m
ed

 in
 O

pe
nG

L
-

ef
fic

ie
nt

 c
ou

pl
in

g
til

l 8
 b

ut

 d
oe

s
no

t s
ca

le

log (T
im

e (m
s))

[L. Soares 06]

46

Overview

• Introduction : interactive computation, parallelism and processor oblivious

• Overhead of parallelism : parallel prefix

• Machine model and work-stealing

• Scheme 1: Extended work-stealing : concurently sequential and parallel

• Scheme 2: Amortizing the overhead of synchronization (Nano-loop)

• Scheme 3: Amortizing the overhead of parallelism (Macro-loop)

47

Adaptive scheme : extract_seq/nanoloop // extract_par
• ensures an optimal number of operation on 1 processor
• but no guarantee on the work performed on p processors

Eg (C++ STL): find_if (first, last, predicate)
locates the first element in [First, Last) verifying the predicate

This may be a drawback (unneeded processor usage) :
• undesirable for a library code that may be used in a complex application,
 with many components
• (or not fair with other users)
• increases the time of the application :

•any parallelism that may increase the execution time should be avoided

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)

4. Amortizing the arithmetic overhead
of parallelism

48

Similar to nano-loop for the sequential process :
• that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough :
• Either w.r.t the -useful- work already performed
• Or with respect to the - useful - work yet to performed (if known)
• or both.

Eg : find_if (first, last, predicate) :
• only the work already performed is known (on-line)
• then prevent to assign more than α(Wdone) operations to work-stealers
• Choices for α(n) :

• n/2 : similar to Floyd’s iteration (approximation ratio = 2)
• n/log* n : to ensure optimal usage of the work-stealers

4. Amortizing the arithmetic overhead
of parallelism (cont’d)

49

Results on find_if [S. Guelton]

N doubles : time predicate ~ 0.31 ms

With no amortization macroloop

With amortization macroloop

50

Parallel algorithm based on :

- compute-seq / extract-par scheme

- nano-loop for compute-seq

- macro-loop for extract-par

5. Putting things together
processor-oblivious prefix computation

51

• Prefix problem :
• input : a0, a1, …, an
• output : π1, …, πn with

 Parallelism induces overhead :
 e.g. Parallel prefix on fixed architecture

• Tight lower bound on p identical processors:
Optimal time Tp = 2n / (p+1)
but performs 2.n.p/(p+1) ops

[Nicolau&al. 1996]

Parallel
requires
twice more
operations
 than
sequential !!

 performs only n operations
• Sequential algorithm :

• for (π[0] = a[0], i = 1 ; i <= n; i++) π[i] = π[i – 1] * a [i] ;

Critical time = 2. log n
but performs 2.n ops

[Ladner-
Fisher-81]

• Fine grain optimal parallel algorithm :

52

Lower bound(s) for the prefix

Prefix circuit of depth d
 ⇓ [Fitch80]
 #operations > 2n - d

53

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Work-
stealer 1

Main
Seq.

 Work-
stealer 2

S
te

al
 r

eq
ue

st

π1

time

P-Oblivious Prefix on 3 proc.

54

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

 Work-
stealer 2

π1

 a5 a6 a7 a8 a9 a10 a11 a12

2

 π2

α6

3

α7

 π3

αi=a5*…*ai

Ste
al r

equ
est

time

P-Oblivious Prefix on 3 proc.

55

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

 Work-
stealer 2

π1

 a5 a6 a7 a8

2

 π2

α6

3

α7

 π3

 βi=a9*…*ai

 a9 a10 a11 a12

αi=a5*…*ai

π4Preempt α8

 α8 π4

α8

β10

4

time

P-Oblivious Prefix on 3 proc.

56

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

 Work-
stealer 2

π1

a5 a6 a7 a8

2

 π2

α6

3

 π3

 βi=a9*…*ai
a9 a10 a11 a12

αi=a5*…*ai

 π4

β10

4

α7π5

 β11

5

 π8

π6

π8
Preempt

π9

β11

 π11

6

time

P-Oblivious Prefix on 3 proc.

57

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

 Work-
stealer 2

π1

a5 a6 a7

2

 π2

α6

3

 π3

 βi=a9*…*ai
a9 a10

αi=a5*…*ai

 π4

4

π5

5

 π8

π6

π9

 π11

6

π10

π7

 π12

7

time

P-Oblivious Prefix on 3 proc.

58

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

 Work-
stealer 2

π1

a5 a6 a7

2

 π2

α6

3

 π3

 βi=a9*…*ai
a9 a10

αi=a5*…*ai

 π4

4

π5

5

 π8

π6

π9

 π11

6

π10

π7

 π12

7

Implicit critical path on the sequential process Tp = 7 Tp
*
 = 6

time

P-Oblivious Prefix on 3 proc.

59

Analysis of the algorithm

 Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

 Sequential: (optimal) number of operations S on one processor

 Extract_par : work stealer perform X operations on other processors
- dynamic splitting always possible till finest grain BUT local sequential

• Critical path small (eg : log X with a W= n / log* n macroloop)
• Each non constant time task can potentially be splitted (variable speeds)

 Algorithmic scheme ensures Ts = Tp + O(log X)

=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal

Lower bound

Execution time

60

 Results 1/2 [D Traore]

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
 - close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processors :

Optimal off-line on p procs

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)
T

im
e

(s
)

#processors

Pure sequential

Single user context

61

Results 2/2

External charge
 (9-p external processes)

Off-line parallel algorithm for p processors

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

T
im

e
(s

)

#processors

Multi-user context :

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
 15% benefit over a parallel algorithm for p processors with off-line schedule,

[D Traore]

62

Conclusion
 Fine grain parallelism enables efficient execution on a small number of

processors
 Interest : portability ; mutualization of code ;
 Drawback : needs work-first principle => algorithm design

 Efficiency of classical work stealing relies on work-first principle :
 Implicitly defenerates a parallel algorithm into a sequential efficient ones ;
 Assumes that parallel and sequential algorithms perform about the same amount of

operations

 Processor Oblivious algorithms based on work-first principle
 Based on anytime extraction of parallelism from any sequential algorithm (may

execute different amount of operations) ;
 Oblivious: near-optimal whatever the execution context is.

 Generic scheme for stream computations :
 parallelism introduce a copy overhead from local buffers to the output

gzip / compression, MPEG-4 / H264

63

FlowVR (flowvr.sf.net)
• Dedicated to interactive applications
• Static Macro-dataflow
• Parallel Code coupling

Kaapi

 Thank you !

Kaapi (kaapi.gforge.inria.fr)
• Work stealing / work-first principle
• Dynamics Macro-dataflow :

partitioning (Metis, …)
• Fault Tolerance (add/del resources)

[E Boyer, B Raffin 2006]

64

Back slides

65

The Prefix race:
sequential/parallel fixed/ adaptive

Race between 9 algorithms (44 processes) on
an octo-SMPSMP

0 5 10 15 20 25

1

2

3

4

5

6

7

8

9

Execution time (seconds)

Série1

Adaptative 8 proc.

Parallel 8 proc.

Parallel 7 proc.

Parallel 6 proc.
Parallel 5 proc.

Parallel 4 proc.

Parallel 3 proc.

Parallel 2 proc.

Sequential

On each of the 10 executions, adaptive completes first

66Adaptive prefix : some experiments

 Single user context
Adaptive is equivalent to:

 - sequential on 1 proc
 - optimal parallel-2 proc. on 2 processors
 - …
 - optimal parallel-8 proc. on 8 processors

External charge

Parallel

Adaptive

Parallel

Adaptive

Prefix of 10000 elements on a SMP 8 procs (IA64 / linux)

#processors
T

im
e

(s
)

T
im

e
(s

)

#processors

Multi-user context
Adaptive is the fastest

15% benefit over a static grain algorithm

67

With * = double sum (r[i]=r[i-1] + x[i])

Single user Processors with variable speeds

Remark for n=4.096.000 doubles :
- “pure” sequential : 0,20 s
- minimal ”grain” = 100 doubles : 0.26s on 1 proc

and 0.175 on 2 procs (close to lower bound)

Finest “grain” limited to 1 page = 16384 octets = 2048 double

68

The Moais Group

Interactivity

Coupling

Scheduling

Adaptive
Algorithms

Execution
Control

69

Moais Platforms
 Icluster 2 :

- 110 dual Itanium bi-processors with Myrinet network

 GrImage (“Grappe” and Image):
- Camera Network
- 54 processors (dual processor cluster)
- Dual gigabits network
- 16 projectors display wall

 Grids:
- Regional: Ciment
- National: Grid5000

• Dedicated to CS experiments

 SMPs:
- 8-way Itanium (Bull novascale)
- 8-way dual-core Opteron + 2 GPUs

 MPSoCs
- Collaborations with ST Microelectronics on STB7100

70

Parallel Interactive App.
 Human in the loop
 Parallel machines (cluster) to enable large interactive applications
 Two main performance criteria:

- Frequency (refresh rate)
• Visualization: 30-60 Hz
• Haptic : 1000 Hz

- Latency (makespan for one iteration)
• Object handling: 75 ms

 A classical programming approach: data-flow model
- Application = static graph

• Edges: FIFO connections for data transfert
• Vertices: tasks consuming and producing data
• Source vertices: sample input signal (cameras)
• Sink vertices: output signal (projector)

 One challenge:
Good mapping and scheduling of tasks on processors

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70

