
Outlines

HPC 101 (cont.)

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais

November, 12th 2012
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Goals of the two next lectures

Learn and understand low-level software in HPC

Understand the internal of HPC programming model
implementations

Limitation of mixing HPC programming models
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What is OpenMP?

An API to parallelize a program
explicitly, with threads, with shared memory

Contents of OpenMP
compiler directives
runtime library routines
environment variables

OpenMP abbreviation
Short version Open Multi-Processing
Long version Open specifications for Multi-Processing via

collaborative work between interested parties from the
hardware and software industry, government and
academia.
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What is not OpenMP?

not designed to manage distributed memory parallel
systems
implementation can vary depending on the vendor
no optimal performance guarantee
not a checker for data dependencies, deadlock, etc.
not a checker for code correction
not a automatic parallelization tool
not designed for parallel I/O

More information
https://computing.llnl.gov/tutorials/openMP/
http://openmp.org/wp/

https://computing.llnl.gov/tutorials/openMP/
http://openmp.org/wp/
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Goals of OpenMP
Standardization

target a variety of shared memory architectures/platforms
supported by lots of hardware and software vendors

Lean and Mean (less pertinent with last releases)
simple and limited set of directives
3 or 4 directives enough for classical parallel programs

Ease of Use
allows to incrementally parallelize a serial program
allows both coarse-grain and fine-grain parallelism

Portability (API in C/C++ and Fortran)
public forum for API and membership
most major platforms have been implemented
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C/C++ general code structure

#include <omp.h>
main () {

int var1, var2, var3;
Serial code
// Beginning of parallel section. Fork a team of threads.
// Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
{

Parallel section executed by all threads
Other OpenMP directives
Run-time Library calls
All threads join master thread and disband

}
Resume serial code

}
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C/C++ for Directive Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main() {

int i, chunk;
float a[N], b[N], c[N];
/* Some initializations */
for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

# pragma omp parallel shared(a,b,c,chunk) private(i)
{

# pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

} /* end of parallel section */
}
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Parallel Programming with GPU

GPGPU: General Purpose Graphic Processing Unit

very good ratio GFlops/price and GFlops/Watt
GPU Tesla C2050 from NVidia : about 300 GFlops in
double precision
specialized hardware architecture:
classical programming does not work

Two leading environments

Cuda specific to NVidia, can use all the features of
NVidia cards. Works only with NVidia GPU.

OpenCL norm (not implementation) supported by different
vendors (AMD, NVidia, Intel, Apple, etc.) Target
GPUs but also CPUs.

Very similar programming concepts



OpenMP
OpenCL and Cuda

An API is not an implementation

Presentation
Examples

Cuda and OpenCL bases

Part 1: device programs

C code with restriction and extension (memory model,
vector types, etc.)
run in parallel by lots of threads on the targeted hardware
functions to be run are called kernels

Part 2: host programs

API in C/C++
manage memory transfers
manage kernel launches (compilations and runs)
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CUDA architecture model
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OpenCL device program

Classical program
void vector_add_cpu (const float* src_a,

const float* src_b, float* res, const int num)
{

for (int i = 0; i < num; i++)
res[i] = src_a[i] + src_b[i];

}

OpenCL program
__kernel void vector_add_gpu (

__global const float* src_a,
__global const float* src_b,
__global float* res, const int num) {

const int idx = get_global_id(0);
if (idx < num)

res[idx] = src_a[idx] + src_b[idx];
}



OpenMP
OpenCL and Cuda

An API is not an implementation
Linux POSIX Threads Libraries

Outlines: Low-level API in HPC (cont.)

2 OpenMP

3 OpenCL and Cuda

4 An API is not an implementation
Linux POSIX Threads Libraries



OpenMP
OpenCL and Cuda

An API is not an implementation
Linux POSIX Threads Libraries

Linux POSIX Threads Libraries: history

LinuxThread (1996) : kernel level, Linux standard thread
library for a long time, not fully POSIX compliant

GNU-Pth (1999) : user level, portable, POSIX
NGPT (2002) : mixed, based on GNU-Pth, POSIX, not

developed anymore
NPTL (2002) : kernel level, POSIX, current Linux

standard thread library
PM2/Marcel (2001) : mixed, POSIX compliant, lots of

extensions for HPC (scheduling control, etc.)
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Mutex, etc. implementation

From signals. . .

communication base of the linuxthread library
the only support from the kernel at this time
one ’manager’ hidden thread
race conditions and error prone
not really efficient

. . . to futex
synchronization in userspace (no system call) if no
contention
allow synchronization between processes
specific support from the kernel
used in nptl
kernel support improved for specific needs
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Optimizing communication methods

Low-level libraries sometimes prefer using the processor in
order to guaranty low latencies

Depending on the message size
PIO for small messages
Pipelined copies with DMA for medium messages
Zero-copy + DMA for large messages

Example: limit medium/large is set to 32 KB for MX
sending messages from 0 to 32 KB cannot overlap
computations
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Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

It depends on
The underlying network with driver performance

latency
PIO and DMA performance
Gather/Scatter feature
Remote DMA feature
etc.

Multiple network cards ?

But also on
memory copy performance
I/O bus performance

Efficient AND portable is not easy
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An experimental project: the Madeleine interface

Goals
Rich interface to exchange complex message while keeping the
portability

Characteristics
incremental building of messages with internal
dependencies specifications

the application specify dependencies and constraints
(semantics)
the middle-ware automatically choice the best strategy

multi-protocols communications
several networks can be used together

thread-aware library
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An experimental project: the Madeleine interface

Message building

Sender
begin_send(dest)

pack(&len, sizeof(int))

,
r_express)

pack(data, len)

,
r_cheaper)

pack(data2, len,
r_cheaper)

end_send()

Receiver
begin_recv()

unpack(&len, sizeof(int))

,
r_express)

data = malloc(len)
unpack(data, len)

,
r_cheaper)

data2 = malloc(len)
unpack(data2, len,

r_cheaper)

end_recv()
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An experimental project: the Madeleine interface

How to implement optimizations ?

Using parameters and historic

sender and receiver always take the same (deterministic)
decisions
only data are sent

Using other information

allow unordered communication (especially for short
messages)

can required controls messages

allow dynamically new strategies (plug-ins)
use “near future”

allow small delays or application hints



  

Optimisations « Just-in-
Time »

Courtesy of Olivier Aumage
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Optimizing communication methods
An experimental project: the Madeleine interface

Why such interfaces ?

Portability of the application
No need to rewrite the application when running on an other
kind of network

Efficiency
local optimizations (aggregation, etc.)
global optimizations (load-balancing on several networks,
etc.)

But non standard interface
rewrite some standard interfaces on top of this one

some efficiency is lost
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Optimizing communication methods
An experimental project: the Madeleine interface

Still lots of work

What about
equity wrt. optimization ?
finding optimal strategies ?

still an open problem in many cases

convincing users to try theses new interfaces
managing fault-tolerance
allowing cluster interconnections (ie high-speed network
routing)
allowing connection and disconnections of nodes
etc.
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Mixing threads and communications

Message Passing Interface

Characteristics
Interface (not implementation)
Different implementations

MPICH
LAM-MPI
OpenMPI
and all closed-source MPI dedicated to specific hardware

MPI 2.0 begins to appear
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Mixing threads and communications

Several Ways to Exchange Messages with MPI

MPI_Send (standard)
At the end of the call, data can be reused immediately

MPI_Bsend (buffered)
The message is locally copied if it cannot be send
immediately

MPI_Rsend (ready)
The sender “promises” that the receiver is ready

MPI_Ssend (synchronous)
At the end of the call, the reception started
(similar to a synchronization barrier)
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Mixing threads and communications

Non Blocking Primitives

MPI_Isend / MPI_Irecv (immediate)

MPI_request r;

MPI_Isend(..., data, len, ..., &r)

// Calculus that does not modify
’data’
MPI_wait(&r, ...);

These primitives must be used as much as possible
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MPI example
Mixing threads and communications

About MPI Implementations

MPI is available on nearly all existing networks and
protocols!

Ethernet, Myrinet, SCI, Quadrics, Infiniband, IP, shared
memory, etc.

MPI implementation are really efficient
low latency (hard), large bandwidth (easy)
optimized version from hardware manufacturers (IBM, SGI)
implementations can be based on low-level interfaces

MPICH/Myrinet, MPICH/Quadrics

BUT these “good performance” are often measured with
ping-pong programs. . .
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Mixing threads and communications

Asynchronous communications with MPI

Problem
The process does other
things when the ACK
occurs

Solutions
Using threads within MPI
(MPICH/Madeleine)
Implementing part of the
protocol in the network
card (MPICH/GM)
Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s
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Mixing threads and communications

Asynchronous communications with MPI
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MPI example
Mixing threads and communications

Asynchronous communications

Problems: asynchronous communications required
progression of asynchronous communications (MPI)
remote PUT/GET primitives
etc.

Solutions
Using threads
Implementing part of the protocol in the network card
(MPICH/GM)
Using remote memory reads
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MPI example
Mixing threads and communications

Multithreading

A solution for asynchronous communications
computations can overlap communications
automatic parallelism

But disparity of implementations
kernel threads

blocking system calls, SMP
users threads

efficient, flexible

mixed model threads



Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Difficulties of threads and communications

Different way to communicate
active polling

memory read, non blocking system calls
passive polling

blocking system calls, signals

Different usable methods
not always available
not always compatible

with the operating system
with the application
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MPI example
Mixing threads and communications

An experimental proposition: an I/O server

Requests centralization
a service for the application
allow optimizations

aggregation of requests

Portability of the application
uniform interface

effective strategies (polling, signals, system calls) are
hidden to the application

application without explicit strategy
independence from the execution plate-form
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MPI example
Mixing threads and communications

I/O server linked to the thread scheduler

Threads and polling

difficult to implement
the thread scheduler can help to get guarantee frequency
for polling

independent with respect to the number of threads in the
application

instead of
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MPI example
Mixing threads and communications

Illustration of such an interface

Registration of events kinds
IO_handle=IO_register(params)

call-back functions registration
used by communication libraries at initialization time

Waiting for an event
IO_wait(IO_handle, arg)

blocking function for the current thread
the scheduler will use the call-backs

communications are still manged by communication
libraries
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MPI example
Mixing threads and communications

Example with MPI

Registration
IO_t MPI_IO;
...
IO_register_t params = {
.blocking_syscall:=NULL,
.group=&group_MPI(),
.poll=&poll_MPI(),
.frequency=1

};

MPI_IO=
IO_register(&params);

...

Communication
MPI_Request request;
IO_MPI_param_t param;
...
MPI_Irecv(buf, size,

..., &request);
param.request=&request;
IO_wait(MPI_IO, &param);
...
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MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

A

MPI call

threads scheduler
User level

Application

library

MPI
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MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

Callback functions:

Frequency
- poll
- group

init_server()

A

MPI call

threads scheduler
User level

Application

library

MPI
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MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

Req2

ev_wait()

ev_wait()

B
C

Req1

A

MPI call

threads scheduler
User level

Application

library

MPI
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MPI example
Mixing threads and communications

Running the scrutation server

}
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B
C
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21

requests
Aggregated

A

MPI call
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User level

Application
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MPI
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Mixing threads and communications

Running the scrutation server
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MPI example
Mixing threads and communications

Key points

High level communication libraries needs multithreading
allow independent communication progression
allow asynchronous operations (puts/gets)

Threads libraries must be designed with services for
communication libraries

allow efficient polling
allow selection of communication strategy
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Towards more and more 
hierarchical computers

● SMT

(HyperThreading)

● Multi-Core
● SMP
● Non-Uniform Memory 

Access (NUMA)

P P P P

P P P P

P P P P

P P P P

M

M

M

M

Courtesy of Samuel Thibault
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Hagrid, octo-dual-core

M

MM

M

M

M M

M

R� seau, disque, etc.

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15
● AMD Opteron
● NUMA factor 

1.1-1.5

Courtesy of Samuel Thibault
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Aragog, dual-quad-core

M

P1 P5 P3 P7

P0 P2P4 P6

● Intel
● Hierarchical cache levels 

Courtesy of Samuel Thibault
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How to run applications
on such machines?

Courtesy of Samuel Thibault
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How to program
parallel machines?

● By hand
– Tasks, POSIX threads, explicit context switch

● High-level languages
– Processes, task description, OpenMP, HPF, 

UPC, ...

● Technically speaking, threads

● How to schedule them efficiently?

Courtesy of Samuel Thibault

Optimizing communications
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Hierarchical plate-forms and efficient scheduling
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How to schedule efficiently?

● Performance
– Affinities between threads and memory taken into 

account

● Flexibility
– Execution easily guided by applications

● Portability
– Applications adapted to any new machine

Courtesy of Samuel Thibault

Optimizing communications
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Predetermined approaches

● Two phases
– Preliminary computation of

● Data placement [Marather, Mueller, 06]
● Thread scheduling

– Execution
● Strictly follows the pre-computation

● Example: PaStiX [Hénon, Ramet, Roman, 00]

✔Excellent performances

✗ Not always sufficient or possible: strongly 
irregular problems...

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion
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Opportunistic approaches

● Various greedy algorithms
– Single / several [Markatos, Leblanc, 94] /

a hierarchy of task lists [Wang, Wang, Chang, 00]

● Used in nowaday's operating systems
– Linux, BSD, Solaris, Windows, ...

✔Good portability

✗ Uneven performances
– No affinity information...

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion
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Negotiated approaches

● Language extensions
– OpenMP, HPF, UPC, ...

✔Portability (adapts itself to the machine)

✗ Limited expressivity (e.g. no NUMA support)

● Operating System extensions
– NSG, liblgroup, libnuma, ...

✔Freedom for programmers

✗ Static placement, requires rewriting placement 
strategies according to the architecture

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion
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Issues

● Negotiated approach seems promising, but
– Which scheduling strategy?

● Depends on the application

– Which information to take into account?
● Affinities between threads?
● Memory occupation?

– Where does the runtime play a role?

● But there is hope!
– Programmers and compilers do have some clues to give

– Missing piece: structures

Courtesy of Samuel Thibault
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BubbleSched
Guiding scheduling through bubbles

Courtesy of Samuel Thibault

Optimizing communications
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Idea:
Structure to better schedule

Bridging the gap between programmers and 
architectures

● Grab the structure of the parallelism
– Express relations between threads, memory, I/O, ...

● Model the architecture in a generic way
– Express the structure of the computation power

● Scheduling is mapping
– As it should just be!

– Completely algorithmic

– Allows all kinds of scheduling approaches

Courtesy of Samuel Thibault
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Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault
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Runqueues to model
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Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

Courtesy of Samuel Thibault
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Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

Some can be stronger

Courtesy of Samuel Thibault
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Examples of thread and
bubble repartitions

Courtesy of Samuel Thibault
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Implemented schedulers

● Full-featured schedulers
– Gang scheduling

– Spread
● Favor load balancing

– Affinity
● Favor affinities (Broquedis)
● Memory aware (Jeuland)

● Reuse and compose
– Work stealing

– Combined schedulers (time, space, etc.)

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion



60

Conclusion
A new scheduling approach

Structure & conquer!
● Bubbles = simple yet powerful abstractions

– Recursive decomposition schemes
● Divide & Conquer
● OpenMP

● Implement scheduling strategies for hierarchical 
machines
– A lot of technical work is saved

● Significant benefits
– 20-40%

Courtesy of Samuel Thibault
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High-performance parallel programming is difficult

High-performance parallel programming is difficult

Need of efficiency
lots of efficient hardware available (network, processors, etc.)
but lots of API

Need of portability
applications cannot be rewritten for each new hardware
use of standard interfaces (pthread, MPI, etc.)

On the way to the portability of the efficiency
very difficult to get: still lots of research
require very well designed interfaces allowing:

the application to describe its behavior (semantics)
the middle-ware to select the strategies
the middle-ware to optimize the strategies
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High-performance parallel programming is difficult

Three examples from research projects
Madeleine: an efficient and portable communication library

optimization of communication strategies
Marcel: an I/O server in a thread scheduler

efficient management of threads with communications
BubbleSched: a scheduler for hierarchical plate-forms

efficient scheduling on hierarchical machines

Three efficient middlewares for specific aspects

lots of criteria to optimize in real applications
scheduling, communication, memory, etc.

multi-criteria optimization is more than aggregation of
mono-criteria optimization
other high-level interface programming for parallel
applications ? (work-stealing, etc.)



Part VI

Programming for HPC



Matrix multiplication in MPI

How to write such a program?
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