On the Convergence of Cloud
Computing and Desktop Grids

Presented by Derrick Kondo

Many Slides by
Jeff Barr, Amazon Inc.

and Jeff Dean, Sanjay Ghemawat, Google, Inc.



Outline

= Cloud Computing
2 Background
2 Architecture
0 Map-Reduce

= Desktop Grids
0 Background & contract with clouds
2 Architecture
2 Prediction



Motivation

% 70% of Web Development Effort is “Muck”:

Data Centers
8 Bandwidth / Power / Cooling
8 Operations
e Staffing

Scaling is Difficult and Expensive:

8 Large Up-Front Investment

W# Invest Ahead of Demand
Load is Unpredictable

amazon
webservices"



amazon

Dream or Nightmare? R

w# Slashdot/Digg/TechCrunch Effect
%# Rapid, unexpected customer demand/growth

Daily Pageviews (per million) Same true for scientific workloads

20 B l' I ) ] I I I L L L ) I ]
15 F | -

10f | :

s B ;

0 [ 1 | I 1 1 1 | 1 1 g 1 .\'u'll;.""""l —_— --"'1"-4-"‘. _
Apr May Jun
@2006 Alexa 2006 Jun 21




amazon

Solution: Cloud Computing e

Scale capacity on demand
a7 Turn fixed costs into variable costs
a# Always available
Rock-solid reliability
Simple APIs and conceptual models
w# Cost-effective
% Reduced time to market
Focus on product & core competencies



What is a cloud?

= Cloud computing is Internet-based ("cloud") development
and use of computer technology ("computing"). --
Wikipedia

= A cloud is a distributed system where the user doesn't

care exactly what resources are used to carry out an
operation -- Prof. Douglas Thain

= "A Cloud is a type of parallel and distributed system consisting of
a collection of inter-connected and virtualized computers that are
dynamically provisioned and presented as one or more unified
computing resources based on service-level agreements
established through negotiation between the service provider dand
consumers.” -- Prof Raj Buyya



Cloud Providers

" Large-scale centralized systems

2 Low reliability, low-cost commodity
components

= Google
2 100,000 systems in 15 data centers [2005]

- Recent estimate: 500,000 systems in 30 data centers

i e s
_—s K 1,152 systems in 20x8x8 foot
- I container



Types of Clouds

= Platform-as-a-service
0 E.g. Amazon's EC2
= Applications-as-a-service

0 E.g. Google App Engine (DataStore/GQL,
MapReduce)



Google App Engine

= Run web applications (Python-based)

= APT for data store, google accounts, URL
fetching, image manip., email
» Web-based admin console

" Free with up to 500MB of storage and 5
million views



amazon
mb .

Infrastructure Services e

'4

Message




amazon

Infrastructure Services e

Elastic Compute
Cloud

'4h°

Message

Simple Queue
Service

Simple Storage
Service




amazon
b es

Amazon Simple Storage Service wosens

1B -5 GB/ object
Fast, Reliable, Scalable
Redundant, Dispersed
99.99% Availability
Goal
Private or Public
Per-object URLs & ACLs
BitTorrent Support



amazon

Pricing in Europe -

Storage
* $0.180 per GB - first 50 TB / month of storage used

* 50.170 per GB — next 50 TB / month of storage used
* 50.160 per GB — next 400 TB / month of storage used
* $0.150 per GB — storage used / month over 500 TB

Data Transfer
* $0.100 per GB - all data transfer in

* $0.170 per GB - first 10 TB / month data transfer out
* $0.130 per GB — next 40 TB / month data transfer out

* 50.110 per GB — next 100 TB / month data transfer out
* $0.100 per GB — data transfer out / month over 150 TB

Requests

* $0.012 per 1,000 PUT, COPY, POST, or LIST requests
* $0.012 per 10,000 GET and all other requests*



Amazon S3 Concepts

Objects:

W Opaque data to be stored (1 byte ... 5 Gigabytes)
W Metadata (attribute-value, up to 4KB)

Authentication and access controls

Buckets (like directories):
W Object container — any number of objects

-

W 100 buckets per account / buckets are “owned”

Keys:
Unique object identifier within bucket
Up to 1024 bytes long
Flat object storage model

Functionality

==

W - Simple put/get functionality

|

# - Limited search functionality

==

W - Objects are immutable, cannot be renamed

Standards-Based Interfaces:
W REST and SOAP

==

W URL-Addressability — every object has a URL

amazon
webservices"

2-level namespace



SmugMugb home | login | help Q v

Make your photos
come alive.

« Unlimited photos
» No ads or spam
- Gorgeous galleries

Learn more

i _ ..__,..,.,%"1.

Pro zone LELGERCITY! Pdpular photos

‘Thebest”  [THEWALLSTREETJOURNAL

M o

Elega Nnt" -- Walter Mossber
EDITORS' 9/14/05 g ; ;
IO “Best looking. Period.”

news = browse | keywords | communities | forum | wiki | gear @ prints & gifts = shopping cart | login
terms | privacy | aboutus | contact SmugMug | blogs | API | affiliates




©) S3 Firefox Organizer - Mozilla Firefox

File Edit View Go Bookmarks Tools

Help

B

<] v L> v [@ |: ) @ Il_] chrome:[{s3fox fcontents3foxWindow.xul

V‘ @ Go |[Q,1 hursley plfi compiler‘

‘BBloglines [looo H | ] Jeff Barr's... “ . Twitter

@ Manage Accounts | AWSDR W

H < Pageflake... H %) Digg | News H | ] How toins...

+® Home | Ub... H % official Lin... Hamazon Gooo H [ ] Amazon ... H’Kednos PL... | || s3Firefo... ‘

\ C:itemp ‘ Browse \5,\," s xX \ Jchessturk) l y l\ x| @
File Mame File Size{... Modified Time v B File Mame File Size{KB) Upload Time 7| B
(%) gestures.bmp 441 05/09/2007 11:05 PM ~ w|bb.gif 1 08/08{2006 01:50 AM in
«|gestures.GIF 21 05/09/2007 11:04 PM «w|bn.gif 2 08/08/2006 01:50 AM
[%45Gs.bmp 50 05/09/2007 09:50 PM bk, gif 2 08/05{2006 01:50 AM
&SS.bmp S0 05/09/2007 09:47 PM ﬂ:p.gif 1 08/08/2006 01:50 AM
[N ecz.bmp 50 05/09/2007 09:45 PM wlbg.gif 2 08/08/2006 01:50 AM
[@Jthumbs.db 60 05/08{2007 02:23 AM «br.aif 1 08/05{2006 01:50 AM
[%45M-00.bmp 757 05/08/2007 00:02 AM wInnc_lockup.gif 1 08/08/2006 01:50 AM
[%4sm-01.bmp 787 05/08{2007 00:01 AM lgolE. gif 3 08/05{2006 01:50 AM
[%)smugmug_1.bmp 3146 05/07/2007 11:47 PM wwb.gif 1 08/08/2006 01:50 AM
(%) smugmug_2.bmp 2606 05/07/2007 11:44 PM k. gif 2 08/08{2006 01:50 AM
ﬂyelx.JPG 10 05/02/2007 06:48 AM Q}Nn.gif 2 08/08/2006 01:50 AM
lredx.jpg 6 05/02/2007 06:32 AM @ wp.gif 1 08/08/2006 01:50 AM
wlraul_y_david.jpg 155 04/23{2007 07:50 AM wwq.gif 2 08/05{2006 01:50 AM D
B p007_Q1_Evangelism_Plan-Jeff ppt 16636 04/04/2007 07:54 PM . gif 1 08/08/2006 01:50 AM
|'__:=:| aws_blog.txt 1297 02/12/2007 00:10 AM 0 Eg]question.xml 1 08/08/2006 10:05 PM
@estate.png 188 02/05/2007 09:47 PM @commons-codec-l 3.jar 47 08/18/2006 01:35 AM
| )Snowbooks 0 05132007 09:56 PM [&)serializer jar 189 08/25{2006 11:32 PM
| ILL_Meeting u] 05/08/2007 02:23 AM @xalan.jar 3079 08/28/2006 11:32 PM
| )BarcelonaSmall i 05/08/2007 02:23 AM v @xerceslmpl.jar 1204 08/28/2006 11:33 PM v
K Clear
File Name Type From To Progress Status 8B
Done @ PageRank  Alexa @




webservices-

Amazon Elastic Compute Cloud

EC2



Amazon EC2

= Virtual environment for linux/windows
applications

0 Create Amazon Machine Image (AMI) with
app's, lib's, data, config settings,

2 Upload image to S3, then start/stop/monitor
images

17



amazon

Amazon EC2 Features s

e Elastic: can increase number of resources as needed
e Configurability: can configure hard resources (as instances)
or software stack: OS, lib’s, app’s with root access
e Reliability: 99.99%
e For applications
e Persistant storage (independant of life of instance)
e Multiple locations: availability zones
e Static IP addresses associated with account (not instance)
eCan remap IP addresses to another instance or
availability zone as needed



Amazon EC2 Concepts

an AMI
an 2 minutes
amatically

amazon
web

services”

R CONNECTION Commnty Recosesion | Gudetons | saiz| =2 | B

Solutions Cataleg | Co-marketing | Newsletter | Slog ——

Acaren Web Sevices * Deveieoer Cornecion * . ® Amatan Blagic Comuge Citud (Beta) » e
DEEASE weacome, Goest
Public AMis v koan
- £ Gt Zemoca
Sanron Catagory Go) Adxaoced Seacch | Tos
Gocuments in Category GotoPage: 8 21 et ]
Seby | Seleat v
] mml#ﬂlkmﬂ
weh wrking AM] 150l6 for wokume MG, DIATAGE ee o

sl msrage. antieehy o6k optimiand or Xan, & e a35tsonal acicnges o sade 3.
lmﬁmo".ﬂg oo "‘* N GOme MG PaNges.

) Virhasimn « Webenn on fedoes 4 e e e e R
A 2] TN 0N Do used St of The Daw Aor wed Nosteg. MAMNM

m B.O NV"W\ON‘. Creston of vtusl Somans

) Rghtmage fedora Core 6 ase, Verson 7

3 Aerny Porel Platiorm . [FedoraTomcatirec)
Uleray Portsl has been carefuly desgned with Aoh scelabity and robust
fertormance 5 hande the most emandeg sochcarcrs for comoares acrcss a1

mdustries. Adherence to JIEE standards means Léersy Portal can be desioyed n
mm-mm-mv-«uummnm coeranng system,
soshcasen server,

ewuqm Image: fedors Core § MDY Compute Mode with Pyfaon | aries
Thi A4l can Be used t0 o » smel becwol cuter 0n Amazen EC2 and parform
en-Semand paralel comoutations weh C, foriran, or Python.

mmo}(mmspmuwacmvm‘m‘wn e e e e e
e at

AFTesco is a0 GPan SOUTCe , Open Sandards , aNEATENEe Scale CONtant MaNagATANt
YRem Dhat chaes & MOGMM CONBATE TepOSRSrY, a0 Sut-of-Sha-box wab portal
Iramawork for Managng and usng Contant deEgned 13 work wieh standaerd portals,
80 8 CIFS intartoce t arovides H<roseh Windows e system compenby

Mo Meck Mastup - Yideo Comeraton Sanice AV e e ek
Thes 8 e subie. AMI refereniad 800 uied = The ARS arlucle “Monster Muck Mashuo
- Mo Vi ws",

) Dstian £1ch Base
Base Detnan EU0h etal wth AMI-Tools and The Mok-nen sptemsed Mrary (widaned
10"&0 m’/

GotoPagec [1 2| wext) B

Mave somathing you's Ve 10 see hace? Give us vour feadbeck RIS wton Fencbach |
Conamons of Use | Privacy Noics © 2006-2007 Amacon Web Senices LLC o £ 3Biates. Al ights 1esened




amazon

Standard Instances e

W Small Instance (Default) 1.7 GB of memory, 1 EC2
Compute Unit (1 virtual core with 1 EC2 Compute
Unit), 160 GB of instance storage, 32-bit platform

s Large Instance 7.5 GB of memory, 4 EC2 Compute
Units (2 virtual cores with 2 EC2 Compute Units
each), 850 GB of instance storage, 64-bit platform

W Extra Large Instance 15 GB of memory, 8 EC2
Compute Units (4 virtual cores with 2 EC2 Compute
Units each), 1690 GB of instance storage, 64-bit
platform

W EC2 Compute Unit (ECU) — One EC2 Compute Unit
(ECU) provides the equivalent CPU capacity of a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.



amazon

Large instances e

W# Instances of this family have proportionally
more CPU resources than memory (RAM)
and are well suited for compute-intensive
applications.

% High-CPU Medium Instance 1.7 GB of
memory, 5 EC2 Compute Units (2 virtual
cores with 2.5 EC2 Compute Units each),
350 GB of instance storage, 32-bit platform

% High-CPU Extra Large Instance 7 GB of
memory, 20 EC2 Compute Units (8 virtual
cores with 2.5 EC2 Compute Units each),
1690 GB of instance storage, 64-bit platform



amazon

Operating Systems and Software  #=

e Operating Systems

eRed Hat Enterprise Linux Windows Server 2003 Oracle
Enterprise Linux
e OpenSolaris openSUSE Linux Ubuntu Linux
eFedora  Gentoo Linux Debian
e Software
e Databases
eOracle 11g, MySQL Enterprise, Microsoft SQL Server Standard
2005
eBatch Processing
eHadoop, Condor
eeb Hosting

e Apache HTTP, IIS/Asp.Net o



amazon

Pricing e

w# Pay as you use
W Standard Instances
W Linux
wSmall (Default) $0.10 per hour
wiLarge $0.40 per hour
wExtra Large $0.80 per hour
% High CPU Instances
w Medium $0.20 per hour
W Extra Large $0.80 per hour
W Internet Data Transfer
w8 Data transfer in: $0.10 per GB
W Data transfer out: $0.17 per GB 23



Amazon EC2 At Work amazon

ing Tools:




Can Clouds Work for Science?

= Applications don't need durability,
availability, and access performance all

bundled together

CPU costs dominate
for scientific workflow
application called montage

Table 2. The resources needed to provide high performance
data access, high data availability and long data durability are

different
Characteristics Resources and techniques to provide
them
High- Geographical data (or storage) replication
performance to improve access locality, high-speed

data access

storage, fat networks

Data replication - possible at various

Durability levels: hardware (RAID), multiple
locations, multiple media; erasure codes

Server/service replication, hot-swap
Availability technologies, multi hosting, techniques to

increase availability for auxiliary services
(e.g., authentication, access control)

Table 3. Application classes and their associated requirements

Application |, | hility | Availability | TEh access
class speed
Cache No Depends Yes
Long-term Yes No No
archival
Onhn.e No Yes Yes
production
Batch No No Yes
production

25



MapReduce:
Simplified Data Processing on

These are slides from Dan Weld's class at U. Washington

(who in turn made his slides based on those by Jeff Dean, Sanjay
Ghemawat, Google, Inc.)



= An abstraction is a simple interface that
allows you to scale up well-structured
problems to run on hundreds or thousands
of computers at once.

0 -- Douglas Thain



Large-scale Management Issues

" How to parallelize

* Data distribution

= Scheduling

= Load balancing

* Failure management
= Deployment



MapReduce

= MapReduce provides
0 Automatic parallelization & distribution
2 Fault tolerance
0 T/0 scheduling
2 Monitoring & status updates



Map/Reduce

= Map/Reduce

2 Programming model from Lisp

2 (and other functional languages)
> state what you want to do not how to get it

= Many problems can be phrased this way
= Easy to distribute across nodes
= Nice retry/failure semantics



Map in Lisp (Scheme)



Map in Lisp (Scheme)

= (map f list [list, list; ..])



Map in Lisp (Scheme)

= (map f list [list, list=—7 - 0Qef°"°(
O




Map in Lisp (Scheme)

= (map f list [list, list=—7 - 0Qef°"°(
O




Map in Lisp (Scheme)

« (map f list [n/sf/nm
\)(\o.(‘\l

= (map square ‘(12 3 4))




Map in Lisp (Scheme)

= (map f list [list, list=—7) “ OQexd‘C’(
O

= (map square ‘(12 3 4)) xof

_—



Map in Lisp (Scheme)

= (map f list [list, list=—7) “ OQexd‘C’(
O

= (map square ‘(12 3 4)) xof

_—



Map in Lisp (Scheme)

[ (mGP f |iS'|' [|iS'|' |. cee ) \)“0.(‘\{ QQQX‘O

= (map square ‘(12 3 4))

_—




Map in Lisp (Scheme)

[ (mGP f |iS'|' [|iS'|' |. cee ) \)“0.(‘\{ QQQX‘O

= (map square ‘(12 3 4))

_—




Ma
pinLi
Lisp (Schem
e)

= (ma
p f 'isf[li/sf/ﬁrﬁ
i
\)(\(K“{ o®” o«

" (I’I\Cl
)
D (lp quare '(12 3 4
49 16) ))
%’\(\0"\{ *

" —




Ma
pinLi
Lisp (Schem
e)

= (ma
p f 'isf[li/sf/ﬁrﬁ
i
\)(\(K“{ o®” o«

" (I’I\Cl
)
D (lp quare '(12 3 4
49 16) ))
%’\(\0"\{ *

" —




Ma
pinLi
Lisp (Schem
e)

= (ma
p f 'is'r[li/s'f/ﬁfﬁ
i
\)(\(K“{ o®” o«

" (I’I\Cl
)
D (lp quare '(12 3 4
49 16) ))
g‘\(\o(“i *

))




Ma
pinlLi
isp (Schem
e)

| I

* (ma 4
psS
e 9quare (1
" 2 34))
%\Y\ON *

))

2 (+ 16
(+9(+41))
)




Map in Lisp (Scheme)

= (map f list [list, list=—7 - 0Qef°"°(
O

= (map square ‘(12 3 4))
- (1 49 16) %\(\O“\l oF

. (reduce("(14/916))

" (+16(+9(+41)))
2 30




Map/Reduce ala Google



Map/Reduce ala Google

= map(key, val) is run on each item in set
0 emits new key, val pairs

" reduce(key, vals) is run for each unique key
emitted by map()

2 emits final output



count words in docs



count words in docs

0 Tnput consists of (url, contents) pairs



count words in docs

2 Tnput consists of (url, contents) pairs

0 map(key=url, val=contents):

= For each word w in contents, emit (w, "1")



count words in docs

2 Tnput consists of (url, contents) pairs

0 map(key=url, val=contents):

= For each word w in contents, emit (w, "1")

1 reduce(key=word, values=uniq_counts):



count words in docs

2 Tnput consists of (url, contents) pairs

0 map(key=url, val=contents):

= For each word w in contents, emit (w, "1")

0 reduce(key=word, values=uniq_counts):
= Sum all "1"s in values list



count words in docs

2 Tnput consists of (url, contents) pairs

0 map(key=url, val=contents):

= For each word w in contents, emit (w, "1")

0 reduce(key=word, values=uniq_counts):
= Sum all "1"s in values list
= Emit result "(word, sum)"”



map(key=url, val=contents):
COUHT, For each word w in contents, emit (w, “1")
reduce(key=word, values=uniq_counts):

Sum all "1"s in values list

see bob throw
see spot run




map(key=url, val=contents):
COUHT, For each word w in contents, emit (w, "1")
reduce(key=word, values=uniq_counts):

Sum all "1"s in values list

see bob throw see L
see spot run ‘ bob :
run 1

sSee 1

spot 1

1

throw



map(key=url, val=contents):

Count,

For each word w in contents, emit (w, "1")

reduce(key=word, values=uniq_counts):

see bob throw

see spot run ‘

Sum all "1"s in values list

see
bob
run
see
spot
throw

T N T T | T O T

=

bob
run
see
spot
throw

_ = ) =



Grep



Grep

a2 Input consists of (url+offset, single line)
0 map(key=url+offset, val=line):



Grep

a2 Input consists of (url+offset, single line)

0 map(key=url+offset, val=line):
» If contents matches regexp, emit (line, "1")



Grep

a2 Input consists of (url+offset, single line)

0 map(key=url+offset, val=line):
» If contents matches regexp, emit (line, "1")

0 reduce(key=line, values=uniq_counts):



Grep

a2 Input consists of (url+offset, single line)

0 map(key=url+offset, val=line):
» If contents matches regexp, emit (line, "1")

0 reduce(key=line, values=uniq_counts):
* Don't do anything; just emit line



Model is Widely Applicable

1000 —

0 | T | T 1 | |
Mar May Jul Sep Nov Jan Mar May Jul Sep

2003 2004
Example uses:

distributed grep distributed sort web link-graph reversal
term-vector / host web access log stats inverted index construction

statistical machine

document clustering  machine learning :
translation



Implementation Overview

Typical cluster:

* 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory

Limited bisection bandwidth

Storage is on local IDE disks

GFS: distributed file system manages data (SOSP'03)

Job scheduling system: jobs made up of tasks,
scheduler assigns tasks to machines

Implementation is a C++ library linked into user programs



Execution Overview



Execution Overview

= How is this distributed?



Execution Overview

= How is this distributed?

1 Partition input key/value pairs into chunks,
run map() tasks in parallel



Execution Overview

= How is this distributed?

1 Partition input key/value pairs into chunks,
run map() tasks in parallel

2. After all map()s are complete, consolidate all
emitted values for each unique emitted key



Execution Overview

= How is this distributed?

1 Partition input key/value pairs into chunks,
run map() tasks in parallel

2. After all map()s are complete, consolidate all
emitted values for each unique emitted key

. Now partition space of output map keys, and
run reduce() in parallel



Execution Overview

= How is this distributed?

1 Partition input key/value pairs into chunks,
run map() tasks in parallel

2. After all map()s are complete, consolidate all
emitted values for each unique emitted key

. Now partition space of output map keys, and
run reduce() in parallel

= Tf map() or reduce() fails, reexecutel



Execution in more detail

User
Program
€)) fork.' 0 fo:rk (1) fork
@
2. assign
. as'sign reduée .
" map
Spl?t 0 (6) write output
split 1 (5) remote read file O
split 2 @) read (4) local write
. worker output
split 3 file 1
split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

39



Execution in more detail

MR lib splits input. User

Program
Starts master _
(1) fork .- . "
. . (1) fork
and worker processes . mfak D
. @
Q). assign
_assign reduce .
" map
split O .
: (6) write output
split 1 (5) remote read file O
Split 2 @) read K (4) local write
split 3 o output
file 1
split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

39



Execution in more detail

MR lib splits input.
Starts master frogram

(1) fork .- . .
and worker processes - ok O
. Master assigns
@ . M map tasks
_.assign reduce

o . "Rreduce tasks

output
file 1

split 3

split 4

worker

split 0 - - .

: (6) write output
split 1 (5) remote read file O
split 2 MO (4) local write

worker

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

39



Execution in more detail

MR lib splits input.
Starts master frogram

1) fork .*

(
and worker processes -

Worker reads chunk Master assigns
: . () .

(1) fork .’(1).f°fk

& passes <key,val> - e - M map tasks
. ; assion reduce . "
to map function e - ‘Rreduce tasks

split 0 - .

: (6) write output
split 1 (5) remote read file O
split 2 M‘O (4) local write

worker

output
file 1

split 3

split 4

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

39



Execution in more detail

MR lib splits input.
Starts master frogram

1) fork . ‘(1) fork

(
and worker processes .-

Worker reads chunk Master assigns
' ¢S E

& passes <key,val> = .- wien - M map tasks

. as'sign reduce .

to map function - - ~_"Rreduce tasks

(1) fork

i . . \ ©)write 1 gutput
lﬁé&i (3) read (4) local write

St( y, output
L split 3 T S
writtefto local disk periodically. ile

|§ )
SPItd |, .
Splitusing user-specified
partition functiohn.
LOC@ptlltOn Sent Q/@ka to ma§ntte§nr;diate files Reduce Output
files phase (on local disks) phase files

39



Execution in more detail

MR lib splits input.
Starts master Jrogram

(1) fork .- . "
and worker processes .- b fik fl?ff’fk
Worker reads chunk -
& passes <key,val> . .- s

. LV assion reduce .
to map function e g
split O
Intermediate pairs (5) remote read
St(lﬁé&i () read y (4) local write
| split 3 ’ o
writtento local disk periodically.

spht 4

Splitusing us ecified
partition fu t’reslﬁr

LOC@“O” Sent tR/@Ck to ma§termedlate files
files phase (on local disks)

cdiate|pairs|

Master assigns

" M map tasks
- "Rreduce tasks

ds

file 1

Sorts by key,
passes to reduce
function Resultin R
gitput files ormglobal
F§Aase %ﬁ)

39



Ing
Group

Y

Ke

)




Parallel Execution
Partition function hashes by key. E.g. hash(key) mod R.

| Map Task | _: :- Map Task 2 I Ir Map Task 3

| Lo b

| I b

| Lo b

| I b

| b b

| Lo b

I klwv klv k2w | | k3:v kd:v | kd:v k3 | | k4w kl:v k3w
| Partitioning Functlon | | Partitioning Function | | P'n’tltlonmg Function

Sort and Group Sort and Group
klwvvyy | k3:v

r
| | [

1| k2w | kd:v.v.v | ks | |

| | [

| ' |

| ' |

| | |

| ' |

| ' |

I I | Reduce Task 2




Fault Tolerance / Workers



Fault Tolerance / Workers

Task states
1 idle, in-progress, completed
Handled via re-execution



Fault Tolerance / Workers

Task states
2 idle, in-progress, completed
Handled via re-execution
0 Detect failure via periodic heartbeats



Fault Tolerance / Workers

Task states
1 idle, in-progress, completed
Handled via re-execution

0 Detect failure via periodic heartbeats
0 Re-execute completed + in-progress map tasks



Fault Tolerance / Workers

Task states
1 idle, in-progress, completed
Handled via re-execution

0 Detect failure via periodic heartbeats

0 Re-execute completed + in-progress map tasks
Why??? (Complete tasks on local disk)



Fault Tolerance / Workers

Task states
1 idle, in-progress, completed
Handled via re-execution

0 Detect failure via periodic heartbeats

0 Re-execute completed + in-progress map tasks
Why??? (Complete tasks on local disk)

0 Re-execute in progress reduce tasks



Fault Tolerance / Workers

Task states
1 idle, in-progress, completed
Handled via re-execution

0 Detect failure via periodic heartbeats

0 Re-execute completed + in-progress map tasks
Why??? (Complete tasks on local disk)

0 Re-execute in progress reduce tasks
0 Task completion committed through master



Fault Tolerance / Workers

Task states
1 idle, in-progress, completed
Handled via re-execution

0 Detect failure via periodic heartbeats

0 Re-execute completed + in-progress map tasks
Why??? (Complete tasks on local disk)

0 Re-execute in progress reduce tasks
0 Task completion committed through master
Robust: lost 1600/1800 machines once - finished ok



Fault Tolerance / Workers

Task states
1 idle, in-progress, completed
Handled via re-execution

0 Detect failure via periodic heartbeats

0 Re-execute completed + in-progress map tasks
Why??? (Complete tasks on local disk)

0 Re-execute in progress reduce tasks
0 Task completion committed through master
Robust: lost 1600/1800 machines once - finished ok

Semantics in presence of failures: see paper



Master Failure

" Could handle, ... ?

" But don't yet
A (master failure unlikely)

0 Could use VM mechanism to hide
master failure



Refinement:

Slow workers significantly delay completion time
0 Other jobs consuming resources on machine
0 Bad disks w/ soft errors transfer data slowly
0 Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup tasks
2 Whichever one finishes first "wins"

Dramatically shortens job completion time



Refinement
Skipping Bad Records

= Map/Reduce functions sometimes fail for
particular inputs

2 Best solution is to debug & fix
> Not always possible ~ third-party source libraries
2 On segmentation fault:

= Send UDP packet to master from signal handler

= Include sequence number of record being
processed

o0 Tf master sees two failures for same record:
= Next worker is told to skip the record



Other Refinements

= Sorting guarantees

2 within each reduce partition

= Compression of intermediate data

= Combiner
0 Useful for saving network bandwidth

= Local execution for debugging/testing
= User-defined counters



Performance

Tests run on cluster of 1800 machines:
0 4 GB of memory

2 Dual-processor 2 GHz Xeons with Hyperthreading
2 Dual 160 GB IDE disks

2 Gigabit Ethernet per machine
2 Bisection bandwidth approximately 100 Gbps

Two benchmarks:

MR_GrepScan 1010 100-byte records to extract records
matching a rare pattern (92K matching records)



MR_Gr'ep ?/ItFa{r;szp' overhead high as

ns tasks to workers.

Locality optimization helps: Time
= TInput stored on FS in 64GB chunks
2 Workers are spawned near corresponding chucks
= 1800 machines read 1 TB at peak ~31 GB/s
= W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs



MR_Sort

sort program sorts 1010 100-byte records (approximately 1 terabyte of data)
map: extract 10-byte sorting key. emit key and line as value

reduce: built-in identity function

input data split into 64-MB pieces (M=15000)

output data in 4000 files (R=4000)

Partition function uses initial bytes of key to place in one of R chunks

0 Local sort done for each R chunk by MR before the "reduce”

0 Map task send intermediate output to local disk before shuffling to
form partition

49



MR Sort

20000 — Done:
839 s

10000

Input (MB/s)

0 | ! | I ! I

0 200 400 600 800 10001200
20000

10000

Shuffle (MB/s)

0 I/Ikﬂi\l ! I !

0 200 400 600 80D 10001200
20000 —

10000

Output (MB/s)

0 I I T | I I
0 200 400 600 800 10001200

Seconds



MR Sort

Shuffle (MB/s)  Input (MB/s)

Output (MB/s)

Normal

20000 —

10000

Done:
839 s

0 | ! | I

0 200 400 600 B0
20000

10000

! I
10001200

0 |/I\'W\| I
0 200 400 600 80
20000 —

10000

0 I I T |

I !
10001200

I T

0 200 400 600 800 10001200

Seconds

No backup tasks

20000

10000

20000

10000

20000

10000

Done:
1235 s

I o

! I I I I I
200 400 600 300 1000124

<

0

| I I I I I
200 400 600 00 1000 12¢

<

0

T T T 1 1 I
200 400 600 300 10001200

Seconds

200 processes killed



MR Sort

Shuffle (MB/s)  Input (MB/s)

Output (MB/s)

20000 —

Normal

Done:
839 s

10000

0 | ! | I

0 200 400 600 B0
20000

10000

0 I/I\'W\I !

! I
10001200

0 200 400 600 B0
20000 —

10000

I !
10001200

0 I I T |

I I

0 200 400 600 800 10001200

Seconds

No backup tasks

20000

10000

20000

10000

20000

10000

Done:
1235 s

I o

! I I I I I
200 400 600 800 1000120

<

0

| I I I I I
200 400 600 800 1000120

<

0

T T T | 1 I
200 400 600 300 10001200

Seconds

200 processes killed

20000

10000

20000

10000

20000

10000

Done:
886 s

b,
TYY 1T T 1
200 400 600 300

<

I I
10001200

Ty T T 1
0 200 400 600 300

I I
10001200

I 1 I I
0 200 400 600 800

Seconds

I I
10001200



MR Sort

Normal No backup tasks 200 processes killed

= 20000 — Done:

B 839 s 20000 — Donhe: 20000 Done:

e 1235 s 886 s

£ 10000

o 10000 — 10000 —

=

- 0 YT T 1 T 1 0 N -

0 I I I I I I I 1' | I I I I

0 200 400 600 80p 10001200 0 200 400 600 800 10001240 0 200 400 600 B00|10001200

» 20000 20000 20000 —

&

=

o 10000 - 10000 - 10000 -

=

O

3

C-C/J 0 T T T T T T 0 I I I T T T 0 Ty T T T T T
0 200 400 600 80D 10001200 0 200 400 600 800 10001240 0 200 400 600 800|10001200
A 20000 — 20000 —

~. 20000

2

£

=~ 10000 10000 10000

+~

3

=

=] 0 T 1 T - 0 T T T T T T

o 0 B s e e e 0 200 400 600 80O 10001200 B 260 400 600 Bt 1001260
0 200 400 600 800 10001200 Seconds Serords

Seconds

= Backup tasks reduce job completion time a lot!
= System deals well with failures



MR Sort

0 200 400 600 800 10001200

Seconds

Normal No backup tasks 200 processes killed
10:-bw, < greg,since desired pattern uncommgon .
2 886 s
S
sort spends half of time wiiting outpiitto local digks

- 10000 10000

2

g, g
| I I B N | N 0 T T T T 7T 0 YY1 T T | T 1
0 200 400 600 8Ob 10001200 0 200 400 600 80O 10001200 0 200 400 600 80O|10001200

& 20000 20000 20000 -

o

>

o 10000 10000 10000

o

O

3

s 0 — 0 0 T 1
0 200 400 600 S0 O 200 400 600 800 10001200 0 200 400 600 80010001200

~ 20000 - 20000 20000

2

=

2 0000 10000 10000

=

3

Q.

.'E; 0 0 T T I

S 0 —— 0 200 400 600 8OO 10001200 0 200 400 600 800 10001200

Seconds

= Backup tasks reduce job completion time a lot!

= System deals well with failures



MR Sort

Normal No backup tasks 200 processes killed

10:-bw, < greg,since desired pattern uncommgon

Done:
2 886 s
S
sort spends half of time wiiting outpiitto local digks
- 10000 10000
2
- 0 R V.| L O 4——T—T—T1—T7 0 "(L\'III'_ T 11
0 200 400 600 0p 10001200 0 200 400 600 8OO 10001200 0 200 400 600 80O|10001200
B 20000 7 20000 20000 -
E Rate data send ;(om
o 10000 — 10(@0 10000
E map tasks to reduce
0 200 40080 0D 1000 1200 O 200 400 600 800 10001200 0 200 400 600 80010001200
~ 20000 20000 — 20000 —
2
=
= 10000 4 10000 — 10000 —
=
=
5 0 | I B I R 0 T T T T
o 0 T T I | T T 0 200 400 600 300 10001200 0 200 400 600 300 10001200
0 200 400 60O BOO 10001200 Seconds Seconds

Seconds

= Backup tasks reduce job completion time a lot!
= System deals well with failures



MR _Sort

Normal No backup tasks 200 processes killed

10:-bw, < greg,since desired pattern uncommgon

Sé((jtoo§;ﬁnds half of time w jﬁ:ng outputto IociLooclgﬁks ik

o Yy betw n first shuffling and start
50000 _0 200 400 600 80 10001200 20@! Wﬂt’fn‘) ﬁ)u@ to Sortlzmg ‘Polﬁt@'ﬂrﬁgﬂiate

Input

)
~
E Rate data sen 51[
10000 — 10000 10000
w
n map tasks to reduce
2 A
7 0 0 | N S B S — 0 T
0 200 400 BO 00 1000 1200 0 200 400 600 800 10001200 O 200 400 GO0 80010001200
— 20000 < 20000 — 20000
=
E 10000 — 10000
10000 —
+~
2
E . r—r—T1T—1T "1 "1 O +—F—r7T—7—"1 1
o 0 T T T | T T 0 200 400 600 800 10001200 0 200 400 600 800 10001200
0 200 400 600 BOO 10001200 Seconds Comone

Seconds

= Backup tasks reduce job completion time a lot!
= System deals well with failures



MR _Sort

Normal No backup tasks

200 processes killed

10:-bw, < greg,since desired pattern uncommgon

y betw

ce

! I I I I I
0 200 400 600 §00 10001200

reduce

sg)gmgﬁnds half of time w j\:ng out
2 10000
’_g‘- 0 | T T I

E Rate data sen
+™7  map tasks to're
- o hgsks—
20000 _0 200 4 C: 00 500 10001200 20000 —
3 First hump: 1700
£ 1000
. 7 tasks. 1 per host’
8 0 I I I | I I

0 200 400 600 800 10001200
Seconds

0 200 400 600 800 10001200
Seconds

*to local disks

10000

n first shy
i ZOQ(f W'I’It’l’ﬂ’ due to SOI’tIaB}@ ofintermiediate

10000

0

DUW 00 hosts 1004

Done:
886 s

ing and start

b

LS
0 200 400 600 800|10001200

| I I I I [ I
0 200 400 600 800 10001200

Seconds

= Backup tasks reduce job completion time a lot!
= System deals well with failures



MR _Sort

Normal No backup tasks 200 processes killed

10:-bw, < greg,since desired pattern uncommgon

S;wi:)(;got?.[ﬁnds half of time w j\:ng outputto Ioc%!md}ﬁks ik

o ybetw n first shuffling and start

i on(f W'I’It’l’ﬂ’ dure to sorting fintermediate
Rate data sen

10000 — 10000 10000

map tasks tor ce

0 0 T ;ﬁ\fH | I B 0 I
0 200 400 BO O 1000 1200 0 200 400 600 300 10001200 0 200 400 600 80010001200

20000 — 20000 —

First hump: 1700 reduce

1000

oo tasks. 1 per hos DUWOO hosts 1000%

Input

Shuffle (MB/s)

0
I I
0 0 200 400 600 800 10001200 0 200 400 600 800 10001200

Seconds

Output (MB/s)

o §§%§%1F§H°°hump remaifiiiig reduce tasks
= Backup tasks reduce job completion time a lot!

= System deals well with failures



Usage in Aug 2004



Usage in Aug 2004

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days



Usage in Aug 2004

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB

Output data written 193 TB



Usage in Aug 2004

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157

Average worker deaths per job 1.2



Usage in Aug 2004

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2

Average map tasks per job 3,351



Usage in Aug 2004

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351

Average reduce tasks per job 55



Usage in Aug 2004

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351

Average reduce tasks per job 55



Conclusions

= MapReduce proven to be useful abstraction
= Greatly simplifies large-scale computations
" Fun to use:

2 focus on problem,

2 let library deal w/ messy details



A major step backwards

http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-
back.html

A giant step backward in the programming paradigm for large-scale data
intensive applications

A sub-optimal implementation, in that it uses brute force instead of
indexing (hash / B-trees)

Not novel at all -- it represents a specific implementation of well known
techniques developed nearly 25 years ago

Missing most of the features that are routinely included in current DBMS

Incompatible with all of the tools DBMS users have come to depend on

53



Desktop Grids

® Use free compute, storage and network
resources in Internet and Intranet
environments

® Reuse existing (power,
resource)infrastructure

® Motivation

® High return on investment

® Savings often a factor 5 or |10 compared
to dedicated cluster

® Access to huge computational power and
storage resources




State of the Art

® 400 TeraFlops/sec, over one million hosts

powered by SORIIE)

e (@' LAME climateprediction.net PREDICTOR @ home
SE TR HUME

Loosely—coupled, Tightly—coupled,
single application, multiple applications,
without time constraints with time constraints

i L
e i

State of the art




Challenges

Volatility
® Resources are shared
® Mouse/keyboard activity, user processes
® Nondeterministic failures
o Often 50% failure rates
Heterogeneity
Accessibility
® Resources are behind NAT's, firewalls

Security




Outline

e BOINC
® XtremVVeb

® Prediction




BOINC

® Background
® |ed by David Anderson, UC Berkeley
e SETI@home
® Single astronomy application
® Joo many resources

® Goals of BOINC

® Ability to share resources among multiple
projects

® User autonomy

® Usability




BOINC Architecture

GENERATOR

PROJECT
BOOKKEEPING

|

—
S —

DATABASE

—

FILE

DATA REPOSITORY

SYSTEM

BOINC SERVER

DISPATCHER




BOINC Architecture

climateprediction.net

BOINC SERVER
BOINC SERVER T DISPATCHER

DISPATCHER

PREDICTOR @ home

powered by BORIIEH

——] BOINC SERVER

PROJ
BOOKKEEPING
|_SYSTEM ]
I DISPATCHER




BOINC Worker
Scheduling Problem

Workers have resource share (CPU)
allocation per project

Work units per project have a deadline

Goal: meet deadline and also resource share
allocations

Which project to schedule next on worker?




BOINC Scheduling Approach

® Use weighted round robin until a project
risks missing deadline

® If so, switch to earliest deadline first
scheduling

® N.B.:scheduling depends on many different
parameters (e.g., availability of the resources,
resource hardware, user preferences, task
deadlines, resource shares, estimates of task
completion time, number and characteristics

of projects )




XtremWeb

® |ed by Gilles Fedak (fedak@lri.fr), INRIA
Futurs

® Goals
® Support symmetric needs of users

® Allow any node to play any role (client,
worker)

® Fault tolerance

e Usability




XtremWVeb Architecture

— XTREMWEB SERVER

DATABASE
“ DISPATCHER

PROJECT FILE

BOOKEEPING SYSTEM I

SCHEDULER




Ensuring Collective Availability In
Volatile Resource Pools via

Forecasting
Artur Andrzejak Zuse-Institute Berlin (ZIB)
Derrick Kondo INRIA

David P. Anderson UC Berkeley




Motivation

e Goal: can we deploy serious services / apps over
unreliable resources?

e How unreliable?

- mostly non-dedicated PC's (used for other purposes)

- e.g. volunteer computing Grids such as SETI@home
— no control over availability, frequent churn

e What are "serious" services / apps?
— large scale service deployment
e examples: Amazon's EC2, TeraGrid, EGEE
— complex applications
e examples: DAG/message-passing applications
— high availability: around 99.999



How to do this?

e Difficult to get (many) hosts with high avail

e Instead, we strive for collective availability:

— def.: guarantee that with high probability, in a group of
R = N hosts, at least N remain available over time T

Time T




How to do this?

e Difficult to get (many) hosts with high avail

e Instead, we strive for collective availability:

— def.: guarantee that with high probability, in a group of
R = N hosts, at least N remain available over time T

Time T




How to do this?

e Difficult to get (many) hosts with high avail

e Instead, we strive for collective availability:

— def.: guarantee that with high probability, in a group of
R = N hosts, at least N remain available over time T

Time T

R=6,N=3 4 = N survived, col. availability achieved



Our Focus

e We use statistical and prediction methods to
answer the question:

— Given a pool of non-dedicated hosts and a request for N
hosts, how to select them such that the collective
availability is maximized?

e i.e. at least N among R hosts "survive" interval T

e Then deployment: | >

—

Initial Initial Usage Which Prediction Replacement Usage
prediction group over T failed? of next phase from pool over T



Availability Prediction

e We propose efficient and domain-adjusted
predictions of availability for individual hosts
— efficient:

o fast pre-selection of predictable hosts
e use simple and fast classification algorithm

— domain-adjusted

e analyze the factors of predictability and adjust our methods
to them

e Then we use these individual predictions to
achieve collective availability



Measurement Data

Availability traces for over 48,000 hosts
participating in SETI@home

Active in Dec 1st, 2007 to Feb 12th, 2008

Availability recorded by a BOINC client

- depends whether the machine was idle
— The definition of idle depends on user settings

Quantized to 1 hour intervals

- regarded as available only if uninterrupted avail for the
whole hour — quite conservative

For availability characterization, see:

— Derrick Kondo, Artur Andrzejak, David P. Anderson: On Correlated
Availability in Internet-Distributed Systems, 9th IEEE/ACM
International Conference on Grid Computing (Grid 2008), Tsukuba,
Japan, September 29-October 1, 2008



Prediction Process

Observe Host Availability

s

JL

Predict Individual Availability

, v

LSelect a High-Availability Group @

’ Filter by High Predictability

{Periodically Re-Evaluate this Group




Filtering Hosts By Predictability

e \We want to find out, for each host, whether its
availability predictions are likely to be accurate
e [.e. we want hosts with high predictability:

— def.: expected accuracy of predictions from a model
build on historical data

e To estimate it, we use indicators of predictability
— fast to compute (at least faster than a prediction model)
— use only training data

Training Data Test Data -

evaluating
building model model




Predictability Computation

e To assess the accuracy of predictability indicators, we have

to compute for each host the true accuracy of model-based
predictions

e To this end, we train a prediction model on the historical

availability data (4 weeks @ 1 hour), and then compute the
prediction error on the subsequent 2 weeks (1 hour =>
2*7%*24 predictions)

— This is only the "laboratory" scenario, not done in real
deployment

— The predictability indicators should tell us, for which hosts it is
not worth to build model / do predictions

Training Data Test Data —
— evaluating

building model model




Predictability Indicators

We have tested, among others:

Average length of an uninterrupted availability
segment

Size of the compressed availability trace

o traces with predictable patterns are likely to compress
better

Prediction error tested on a part of the training data
(as a "control indicator")

Number of availability state changes per week
(aveSwitches)

Evaluation:

correlation, scatter plots



And the winner is..

e Number of availability state changes per week: aveSwitches

Scatter plot

aveSwitches vs.
prediction error

Spearman's rank \

correlation coefficient
indicator vs.
prediction error

Prediction error

0.51

0.45F

04r -

0.35f

0 10

20

30

50

Number of availability state switches per week (pil = 2 hours)
pil|aveAva|aveAvaRun|aveNavaRun|aveSwitches|zipPred|modelPred
1 |-0.370 |-0.594 0.085 0.707 -0.654 [-0.724
2 1-0.275 |-0.486 -0.011 0.678 -0.632  |-0.690
4 1-0.119 |-0.303 -0.119 0.548 -0.502  |-0.640
8 [0.194 0.056 -0.245 0.195 -0.127  |-0.642
16 (0.211  [0.091 -0.185 0.057 0.062 -0.568




Why are AveSwitches good?

There are some "reasons" for data regularity —
high prediction accuracy
1. Periodic behavior, e.g. daily periodicities

2. Long runs of availability / non-availability
3.

We have studied which "reasons" are dominant:
— by using data preprocessing which "helps" either 1 or 2

results show that "reason” 2 is dominant
highest accuracy for a mixture of both "reasons”



Filtering by predictability

e We create two groups for further processing:
- low predictability, with aveSwitches = 7.47
- high predictability, with aveSwitches < 7.47

1

[72]

g 09 .................................................................................................. —
S : : :

Z 0.8 nuUM-values: 48873 - - RRRRTLLELE LR ILIRLE -
;; o T4 S mean,_é.1(3:0459 ........... ......................... ....................... .
o : : :

So06fy - median: 7:4667- - - S — R —— -
a : : :

"‘6 0_5 s sssesnnvns m1n:.0:. ........................ ......................... ....................... —
5 : : :

5 04fF--4-- max:- 165:9--------e e R ARARALILELLREERS SRRRRE LR LR RE R -
(44] - . .

LCL» O3 - ....................... -
= :

= :

= 0_2 L o e i e e et aiesssieieieiesiei st aatas e a e an e e ....................... -
= :

Q8 0L e . .

ob—M e R
0 50 100 15 200

Error Predictability (aveSwitches)



Prediction Background

> Def. of classifier: a

> Function inputs are called , in our study:
> Functions of availability represented as 01 binary string
> Time (e.g. hour in day), history bits (sum of recent k history bits)
is an element from some fixed set, in our study:

> {0,1} representing availability

Attribute, | ... | Attribute,
Example 1 [23,10] [21,5]
learn
Example k | [11,10] [5,0]
Prediction [1,7] [13,7] <— predict




Prediction

e We have used a simple and fast classifier
— haive Bayes

e The classifier takes examples i.e. vectors of
measured avail + preprocessed data over 30 days

e Predicts for each hour over two weeks

— starting now, will the host be available in the next k
hours

e this is prediction interval length, pil

1h 1h 1h 1h 1h

1—

now" prediction interval with pil = 4h




e Dependence upon

S 0.14
Lh
£ 0.1
2
3012
% 0.11
:
-

o
o ©°
O b

0.08r

oy :training days = 40

What drives accuracy?

— prediction interval length, pil
- training interval length
- host ownership type (private, school, work)

L T
Il t:aining days = 10
H I training days = 20
[Jtraining days = 30

[ training days = 50
M training days = 60

1 2 3
Prediction interval length pi/ (hours)

4

Averaged prediction error

o
(%]

4
-
0

o
-

0.05f

I -1
[work

I [Jschool

Bl Lhome

2 4
Prediction interval length pi/ (hours)

16




Simulation Approach

e For each host in the high-predictability group
make prediction at t, for pil time, and select

random R among those predicted as availiable

e R depends upon:

- N = the desired number of hosts (at least N should be
always available)

— the redundancy (R-N)/N

e Our simulations answer:

- given N and «, the desired availability level, what is the
necessary redundancy, i.e. necessary R?

- a little weaker: success rate: ratio (# experiments with
at least N hosts alive after time T) / (all experiments)



Success Rate

Necessary Redundancy

e High predictability group (pil=4)

0.2 0.3
Redundancy

(a) Complete range

Success Rate

0.995(
0.99H

0.985(

0.98

0.975f

0.97
0.965
0.96
0.955

0.95

# of hosts

—

--=4

i 64
— 256

1024 !

0.1 0.2 .
Redundancy

(b) Zoomed-in range




Necessary Redundancy

012 Ol.3
Redundancy
(a) Complete range

Success Rate

p— ; T T
rmm 16 ;

0.99H i iivui 64 o -
— )56 : : : :

0.975 .“A........AA.E..A“....A...“..E.A“...AA...“A.E.AAA...AA...AA,.;“A...“...“...;AA..“A...,...

0,96k reeerierer et e e b A e e e e e v

0.9&

predictability group (pil=4)

, # of hosts

0.485 0.49 0.495

Redundancy
(b) Zoomed-in range

47 0.475 0.48



Is this Redundancy too high?

e In high predictability group, we have required
redundancy of 35%

e However, we consider this dramatically low

— In comparison, SETI@home has 200% redundancy (also
used for result validation)

- In terms of absolute savings, that equates to 165
TeraFLOPS saved in a 1 PetaFLOPS system (such as
FOLDING@home) => significant power savings

e As a result, the BOINC consortium is interested in
potentially applying our prediction schema in
their job scheduling (preliminary talks)



Migration Overhead

e We also evaluated the overhead due to host
migration, service restart between slices of len T

e Threshold = a multiple of pil which describes the
total time (many T's) of running an app / service

e Turnover rate TR:
- let S be a set of hosts predicted to be available at t,

— for those we predict which ones become not available
after time pil, i.e. second prediction at t,+T

— TR is the fraction of hosts which change from avail to
non-avail

— essentially, the higher, the more migration needed



Turnover Rates

e about 2.5% for high predictability group
e about 12% for low predictability group

0.024

1Y) AESEEISY WEPSOR SUSISRNIPPINS SHSUSISRNUISS PSSSHANGS St
¢ 1V ’

0.022f
‘,

o
o
[N
—

Host Turnover Rate

0.017f

0.016

N A :
0.019}"

0.018H

0.0150

0.1 0.2 0.3 0.4 0.5
Redundancy

(a) High predictability

Host Turnover Rate

# of hosts

0.115

o
—

0.09

0 0.1 0.2 0.3 0.4 0.5

Redundancy

(b) Low predictability



Summary

e Given that host redundancy is not an issue

("cheap" resources), high collective availability is
achievable

- even with low migration costs

e Predictability assessment and filtering is essential
- improves accuracy
— avoids many "wasted" predictions

e Future work:

- hardest part: a new "application architecture" /
programming model for collective availability

— masking failures by virtualization and VM migration



References

e This work has been accepted at:

- 19th IFIP/IEEE Conference on Distributed Systems:
Operations and Management (DSOM 2008) (part of
Manweek 2008), Samos Island, Greece, September
22-26, 2008

e Pdf available on request, please send e mail
(derrick.kondo [at] inria.fr)



Reverse Web-Link Graph

" Map
2 For each URL linking to target, ...
0 Qutput <target, source> pairs
= Reduce
1 Concatenate list of all source URLs
0 Outputs: <target, list (source)> pairs



Inverted Index

" Map ()
2 emit <word, document ID>

" Reduce
2 emit <word, list (document ID)>



Job Processing

\ ] v ] \ /
i TaskTracker 0 TaskTracker 1  TaskTracker 2
JobTracker

] v ] \ /

TaskTracker 3 TaskTracker 4  TaskTracker 5




oooao

JobTracker
A

\\g rep"

Job Processing

TaskTracker 0 TaskTracker 1  TaskTracker 2

] \ ] \ /
TaskTracker 3 TaskTracker 4  TaskTracker 5

1. Client submits “grep” job, indicating code
and input files



Job Processing

\ / \ / \ /

—TaoKlracker 0 TaskTracker 1  TaskTracker 2

oooao

JobTracker —>

-\ A\ [
TaskTracker 3 TaskTracker 4  TaskTracker 5

1. Client submits “grep” job, indicating code
and input files

2. JobTracker breaks input file into k chunks,
(in this case 6). Assigns work to ttrackers.




Job Processing

\ \ / \ /

S TaskTracker 0 TaskTracker 1  TaskTiacker 2

JobTracker

A\ [
TaskTracker 3 TaskTracker 4  TaskTracker 5

1. Client submits “grep” job, indicating code
and input files

2. JobTracker breaks input file into k chunks,
(in this case 6). Assigns work to ttrackers.

3. After map(), tasktrackers exchange map-
output to build reduce() keyspace




Job Processing

\\_// \ / \ /
oooo /Mer 1 TaskTracker 2

JobTracker e | — —>

] \ ] \ /
TaskTracker 3 TaskTracker 4  TaskTracker 5

1. Client submits “grep” job, indicating code
and input files

2. JobTracker breaks input file into k chunks,
(in this case 6). Assigns work to ttrackers.

3. After map(), tasktrackers exchange map-
output to build reduce() keyspace

4. JobTracker breaks reduce() keyspace into m

chunks (in this case 6). Assigns work.




Job Processing

\\_// \ / \ /
oooo /Mer 1 TaskTracker 2

JobTracker e | — —>

] \ ] \ /
TaskTracker 3 TaskTracker 4  TaskTracker 5

1. Client submits “grep” job, indicating code
and input files

2. JobTracker breaks input file into k chunks,
(in this case 6). Assigns work to ttrackers.

3. After map(), tasktrackers exchange map-
output to build reduce() keyspace

4. JobTracker breaks reduce() keyspace into m

chunks (in this case 6). Assigns work.
5. reduce() output may go to NDFS




Task Granularity & Pipelining

" Fine granularity tasks: map tasks > machines
2 Minimizes time for fault recovery
2 Can pipeline shuffling with map execution
0 Better dynamic load balancing

= Often use 200,000 map & 5000 reduce tasks
" Running on 2000 machines

Process Time >

User Program |MapReduce() ... wait ...

Master Assign tasks to worker machines...
Worker | Map || Map 3
Worker 2 Map 2

Worker 3 Reduce 1
Worker 4 Reduce 2




Started: Fri Nov 7 02:51:07 2003 -- up 0 hr 00 mun 18 sec

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

323 workers; 0 deaths

Type |Shards Done Active Input(IVIB) Done(IVIB) Output(IVIB)
Map 13853 0| 323| 878934.6 13144 717.0
Shuffle 500 0 323 717.0 0.0 0.0
Reduce 500 0 0 0.0 0.0 0.0
100
90
80
B 70
-
LY
=2 60
<
S 50
-
§ do
c
S 30
20
10

cEENNENE NN

100

<
<
o~

Reduce Shard

300

400

500

Counters

Variable Minute
Mapped

QMEBfs) 72.5
Shuffle

(MB/s) 0.0
Output

(MB/s) 0.0
doc- d
indexhits 145825686 |
docs-

indexed S
dups-in-

index- 0
merge

nlr_

operator- 508192
calls

rrlr_

operator- 506631




Started: Fri Nowv 7 09:51:07 2003 -- up 0 hr 05 min 07 sec
1707 workers; 1 deaths

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Type |Shards Done Active Input(IMI[B) Done(IVIB) Output(IVIB)
Map 13853| 1857 1707| 878934.6| 191995.8 113936.6
Shuffle 500 0/ 500| 113936.6| 571137 571137
Reduce 500 0 0 571137 0.0 0.0
100
90
80
B 70
-
LY
2 60
S
S 50
-
§ 4o
c
8 3

20

10

0

Reduce Shard

Counters

Variable

Minute

Mapped
(MB/s)

699.1

Shuffle
(MB/s)

349.5

Output
(MB/s)

0.0

doc-
index-hits

5004411944

docs-
indexed

17290135

dups-in-
index-
merge

mr-
operator-
calls

17331371

mr-

" |operator-

outouts

17290135



Started: Fnn Nov 7 09:51:07 2003 -- up 0 hr 10 min 18 sec

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(MB) Output(IVIB)
Map 13853| 5354 1707| 878934.6| 406020.1 241058.2
Shuffle 500 0| 500| 241058.2| 196362.5 196362.5
Reduce| 500 0 0 196362.5 0.0 0.0
100
90
80
T 70
-
o
a3 60
]
© 50
-
§ o
c
& 30

20

10

0

100

o
<
o~

Reduce Shard

300

400

500

outputs

Counters

Variable Minute
Mapped

(MB/s) 7044
Shuffle

MB/s) 371.9
Qutput

(MB/s) 0.0
doc-

i dexhits 5000364228
docs-

indexed 17300709
dups-in-

index- 0
merge

mr_

operator-| 17342493
calls

mr_

operator-| 17300709



Started: Fri Nowv 7 09:51:07 2003 --up O hr 15 min 31 sec
1707 workers, 1 deaths

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Type Shards Done Active Input(MB) Done(MB) Output(IVIB)
Map 13853| 8841| 1707| 878934.6| 621608.5 369459.8
Shuffle 500 0| 500| 369459.8| 326986.8 326986.8
Reduce 500 0 0| 326986.8 0.0 0.0
100
90
80
B 70
-
o
a 60
<
© 50
-
§ 40
e
& 30

20
10

0

100

<
<
o

Reduce Shard

300

400

SO0

outputs

Counters

Variable Minute
Mapped

(MB/s) 706.5
Shuffle

QMB/s) 4192
Qutput

QMB/s) 0.0
doc-

indlex_bits 49823870667
docs-

indexed 17229926
dups-in-

index- 0
merge

mr_

operator-| 17272056
calls

mr_

operator-| 17229926



MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 29 min 45 sec
1707 workers; 1 deaths

Type Shards Done Active Input(VMB) Done(VMB) Output(VIB)
Map 13853|13853 0| 878934.6| 878934.6 523499.2
Shuffle 500 195 305 523499.2| 523389.6 523389.6
Reduce 500 0] 185 523389.6 2685.2 2742.6
100
90
80
B 70
-
o
a 60
<
S 50
-
§ 40
c
& 30

2

<

1

<

<

100

b=4
p=2
o~

Reduce Shard

300

400

RO0.

Counters
Variable Minute
Mapped
(MB/s) Le
Shuffle
(MB/s) L2
Output
QMB/S) 457
doc- P
indesc-hits 2313178|10:
docs-
indexed (25
dups-in-
mndex- 0
merge
mr-
merge- 1954105
calls
merge- 1954105
outputs




MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 31 min 34 sec
1707 workers; 1 deaths

[Type Shards Done Active’Input(l\/[B) Done(NlB)’Output(IV[B)
Map | 13853|13853 0| 8789346 8789346 5234992
Shufle | 500| 500 0| 523499.2| 5234995 5234995
Reduce| 500| 0 500| 5234995 133837.8| 136929.6

100

9

<

8

<

7

<

6

<

5

<

4

Percent Conpleted
<

3

<

2

<

1

<

=
100
200
300

Reduce Shard

400

R00

Counters
‘Variable | Minute|
Mapped

(MB/s) o
Shuffle 01
(MMB/s)

Output

(MB/s) 1238.8
doc-

index-hits e
docs- 0
indexed

dups-in-

index- 0
merge

rrlr_

merge- |51738599
calls

merge- |51738599
outputs




MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Now 7 09:51:07 2003 —- up 0 hr 33 min 22 sec

1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(MB) Output(MB)
Map | 13853|13853 0| 8789346 8789346 5234992
Shuffle | 500 500| 0| 5234992 5234995 5234995
Reduce| 500| 0| 500 5234995 2632833| 2693512
100
90
80
B 70
-
]
= 60
g
Q50
-
g a0
e
& 30

2

<

1

<

<

100
200

Reduce Shard

300

400

H00

Counters
Variable| Minute
Mapped
(MB/s) 0.0
Shuffle
(MB/s) 0.0
Output
QB/s) 1225.1
doc- 0
index-hits
docs- 0
indexed
dups-in-
index- 0
merge
mr_
merge- |51842100
calls
merge- |51842100
outputs




MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 35 min 08 sec
]707 qukers; 1 deaths , ’ ,
Type Shards{ Done[Active Input(MB) Done(MB) Output(IVIB)

Map | 13853/13853| 0 8789346 8789346 5234992
Shufle | 500] 500| 0 5234992 5234995 5234995
Reduce| 500| 0| 500| 523499.5| 390447.6| 3994572

100

9

<

8

<

7

<

6

<

5

<

4

Percent Conpleted
<

3

<

2

<

1

<

<

300

<
<
o~

Reduce Shard

100

Qutput
(MMB/fs)
doc-
index-hits
docs-
mdexed

Counters

Variable| Minute|

—Mapped

(MB/s) 0.0

Shuffle

(MMB/s) S

1222.0

0
0

dups-in-

index- 0

merge

n]r_

merge- |51640600

calls

merge- |51640600

outputs

10



MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fri Now 7 09:51:.07 2003 -- up 0 hr 37 rmun 01 sec
1707 workers; 1 deaths |
Type Shards Done Active Input(MB) Done(MB) Output(MB)

Map 13853 13853’ 0] 8789346 8?8934.6‘ 5234992

Shuffle 500 500’ 0] 5234992 520468.6‘ 520468.6

Reduce| 500 406| 94| 5204686| 5122652 5143733

100

9

<

g

o

7

<

6

<

5

o

4

Percent Conpleted
<

3

<

2

<

1

o

<

100

<
<
o~

Reduce Shard

300

400

R0O0

Counters
‘Variable| Minute
Mapped

(MB/s) it
Shuffle

(MB/s) AL
Output

QB/s) 849.5
doc- 0
index-hits

docs- 0
mndexed

dups-in-

ndex- 0
merge

nlr_

merge- |35083350
calls

merge- |35083350
outputs

1(




MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 38 min 56 sec

1707 workers; 1 deaths Counters
Type Shards Done Active Input(IVIB) Done(MB) Output(IVIB) Variable Minute
Map 13853]13853 0| 878934.6| 878934.6 523499.2 Mapped 0.0
Shuffle | 500 500 0| 523499.2| 519781.8| 519781.8 |(MB/s)
Reduce| 500 498 2| 519781.8| 5193947 5194407 =hufle 00
(MB/{s)
100 Output 94
30 (MB/s) '
80 doc-
< . index-hits 0[105¢
o ‘ : A
E docs- 0
g' g0 indexed
:—: 50 dups-in-
§ 40 index- 0
d'L'.’ 30 merge
20 S
merge- |394792
10 calls
OO < < < < < -
= & 8 s & merge- | 394792

Reduce Shard
outputs



MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 40 min 43 sec
1707 workers; 1 ‘deaths
Type Shards Done’Act:ive Input(MB) Done(MB) Output(IVIB)

Map 1385313853‘ 0| 878934.6| 878934.6 523499 2
Shuffle 500 500{ 0 5234992 5197743 5197743
Reduce 500 499’ 1| 5197743 5197352 519764.0
100
90
80
B 70
-
o
= 60
B
© 50
-
§ 40
e
& 30

2

<

1

<

=
100
200
300

Reduce Shard

< <
< <
- uw

Counters

Variable Minute

Mapped

(MB/s) 0.0
Shuffle

(MB/s) 0.0
Qutput 19
(MMB/fs) '
doc-

index-hits 2 ey
docs- 0
mdexed

dups-in-

index- 0
merge

I’m_

merge- 73442
calls

merge- 73442

outputs




Refinement:

" Master scheduling policy:
2 Asks GFS for locations of replicas of input file blocks

2 Map tasks typically split into 64MB (GFS block size)

2 Map tasks scheduled so GFS input block replica are on
same machine or same rack

= Effect

2 Thousands of machines read input at local disk speed
= Without this, rack switches limit read rate






CloudFront

106



Experience

Rewrote Google's production indexing
System using MapReduce

0 Set of 10, 14, 17, 21, 24 MapReduce
operations

0 New code is simpler, easier to understand
= 3800 lines C++ > 700

0 MapReduce handles failures, slow machines
2 Easy to make indexing faster



Related Work

Programming model inspired by functional
language primitives

Partitioning/shuffling similar fo many large-scale
sorting systems

1 NOW-Sort ['97]

Re-execution for fault tolerance

1 BAD-FS ['04] and TACC ['97]

Locality optimization has parallels with Active
Disks/Diamond work

a Active Disks ['01], Diamond ['04]

Backup tasks similar to Eager Scheduling in
Charlotte system

a Charlotte ['96]
Dynamic load balancing solves similar problem as



Cloud versus the Grid

" Geographically distributed
= Across multiple administrative domains

= App's need high-level programming
abstractions (e.g. workflow)

109



Steps

" Get Amazon account

0 http://www.amazonaws.com

Boot instance of AMI image
Log in with ssh
Start Apache

110



