
Work Stealing

Vincent Danjean, UJF, University of Grenoble

LIG laboratory, Vincent.Danjean@imag.fr

November 21, 2011

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing 1 / 18

Vincent.Danjean@imag.fr

Outline

1 Machine model and Work Stealing

2 Work Stealing Principle

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing 2 / 18

Outline

1 Machine model and Work Stealing

2 Work Stealing Principle

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Machine model and Work Stealing 3 / 18

Interactive parallel computation?

I Any application is “parallel”:
I composition of several programs/library procedures (possibly con-

current)
I each procedure written independently and also possibly parallel

itself

I Example:
I Interactive distributed simulation

3D-reconstruction, simulation, rendering
[B. Raffin & E. Boyer]

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Machine model and Work Stealing 4 / 18

New parallel supports

I Parallel chips & multi-core architectures:
I MPSoCs (Multi-Processor Systems on Chips)
I GPU : graphics processors
I Multi-core processors (Intel, AMD)
I Heterogeneous multi-cores: CPUs+GPUs+DSPs+FPGAs (Cell)

I Numa machines

I Clusters

I Grids

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Machine model and Work Stealing 5 / 18

The problem

To design a single algorithm that computes efficiently a function on
an arbitrary dynamic architecture

Best existing algorithms

I sequential

I parallel, p = 2

I parallel, p = 100

I parallel, p = max

How to choose the best one for:

I an heterogeneous cluster

I an multi-user SMP server

I an part (not dedicated) of an existing grid

Dynamic architecture is the key

non-fixed number of resources, variable speeds, etc.

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Machine model and Work Stealing 6 / 18

The graal : Processor-oblivious algorithms

Non-fixed number of resources, variable speeds, etc.
motivates the design of ¡¡processor-oblivious¿¿ parallel algorithm
that:

I is independent from the underlying architechture
I no reference to p nor to Πi(t) (speed of processor i at time t)

nor . . .

I on a given architecture, has performance guarantees
I behaves as well as an optimal (off-line, non-oblivious) one

In some cases, work-stealing can archive these goals

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Machine model and Work Stealing 7 / 18

Outline

1 Machine model and Work Stealing

2 Work Stealing Principle

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Principle 8 / 18

8

Processor speeds are assumed to change arbitrarily and adversarially:	

model [Bender,Rabin 02] Πi(t) = instantaneous speed of processor i at time t

 (in #unit operations per second)
 Assumption : Maxi,t { Πi(t) } < constant . Mini,t { Πi(t) }

Def: for a computation with duration T

•  total speed: Πtot = (Σi=0,..,P Σt=0,..,T Πi(t)) / T

•  average speed per processor: Πave = Πtot / P

Heterogeneous processors, work and depth

“Work” W = #total number operations performed

“Depth” D = #operations on a critical path

 (~parallel “time” on ∞ resources)

For any greedy maximum utilization schedule:
 [Graham69, Jaffe80, Bender-Rabin02]

 makespan

€

≤
W
p.Πave

+ 1− 1
p

⎛

⎝
⎜

⎞

⎠
⎟

D
 Πave

Courtesy of Jean-Louis Roch

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Principle 8 / 18

9

The work stealing algorithm

  A distributed and randomized algorithm that
computes a greedy schedule :
  Each processor manages a local task (depth-first execution)

P0 P2 P1 P3

Courtesy of Jean-Louis Roch

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Principle 8 / 18

10

P0 P2 P1 P3

  When idle, a processor steals the topmost task on a remote -non idle- victim processor
 (randomly chosen)

  Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

  #steals = O(p.D) and execution time

  Interest:
 if W independent of p and D is small, work stealing achieves near-optimal schedule

steal

The work stealing algorithm

  A distributed and randomized algorithm that
computes a greedy schedule :
  Each processor manages a local stack (depth-first execution)

€

≤
W
p.Πave

+O D
Πave

⎛

⎝
⎜

⎞

⎠
⎟

Courtesy of Jean-Louis Roch

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Principle 8 / 18

Back on greedy list scheduling (Coffman result)

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗
max(p) + p.C∗

max(p) = (2p− 1)C∗
max(p)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Principle 9 / 18

Back on greedy list scheduling (Coffman result)

Proof.

p

Cmax(σp)

By definition of D, w(Φ) ≤ D
Hence,

p.Cmax(σp) = Idle+ Seq 6 (p− 1)D +W

Tp 6
W

p
+O(D)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Principle 9 / 18

Warning: work-stealing is not greedy list scheduling

Even if the bound on execution time is the same, the hypothesis are
not the same:

I in WS, a processor can be idle (trying to steal)

I the result for WS is “with a high probability”

I WS also gives a bound on the number of steal:

#Steal requests = O (p.D) w.h.p.

I WS works with heterogeneous processors:

Tp ≤
W

p.Πave
+O

(
D

Πave

)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Principle 10 / 18

Outline

1 Machine model and Work Stealing

2 Work Stealing Principle

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Implementation 11 / 18

16

Work stealing implementation

Difficult in general (coarse grain)
But easy if D is small [Work-stealing]

 Execution time

 (fine grain)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

 (coarse grain)

Scheduling
efficient policy

(close to optimal)
control of the policy

(realisation)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path
of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,
 efficient local degeneration of the parallel program in a sequential execution

€

≤
W
p.Πave

+O D
Πave

⎛

⎝
⎜

⎞

⎠
⎟

Courtesy of Jean-Louis Roch

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Implementation 11 / 18

17
Work-stealing implementations following
the work-first principle : Cilk
  Cilk-5 http://supertech.csail.mit.edu/cilk/ : C extension

  Spawn f (a) ; sync (serie-parallel programs)
  Requires a shared-memory machine
  Depth-first execution with synchronization (on sync) with the end of a task :

-  Spawned tasks are pushed in double-ended queue
  “Two-clone” compilation strategy [Frigo-Leiserson-Randall98] :

•  on a successfull steal, a thief executes the continuation on the topmost ready task ;
•  When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

  won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

01 cilk int fib (int n)  
02 {  
03 if (n < 2) return n;  
04 else  
05 {  
06 int x, y;  
07  
08 x = spawn fib (n-1);  
09 y = spawn fib (n-2);  
10  
11 sync;  
12  
13 return (x+y);  
14 }  
15 }"

Courtesy of Jean-Louis Roch

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Implementation 11 / 18

18
Work-stealing implementations following
the work-first principle : KAAPI
  Kaapi / Athapascan http://kaapi.gforge.inria.fr : C++ library

  Fork<f>()(a, …) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)

  Supports distributed and shared memory machines; heterogeneous processors
  Depth-first (reference order) execution with synchronization on data access :

•  Double-end queue (mutual exclusion with compare-and-swap)
•  on a successful steal, one-way data communication (write&signal)

• 

  Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

 1 struct sum {  
 2 void operator()(Shared_r < int > a, "
 3 Shared_r < int > b, "
 4 Shared_w < int > r) "
 5 { r.write(a.read() + b.read()); }"
 6 } ;"
 7"
 8 struct fib {"
 9 void operator()(int n, Shared_w<int> r) "
 10 { if (n <2) r.write(n);"
 11 else "
 12 { int r1, r2;"
 13 Fork< fib >() (n-1, r1) ;"
 14 Fork< fib >() (n-2, r2) ;"
 15 Fork< sum >() (r1, r2, r) ;"
 16 } "
 17 } "
 18 } ;!

Courtesy of Jean-Louis Roch

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Implementation 11 / 18

19 Experimental results on SOFA
 [Allard 06]

[CIMIT-ETZH-INRIA]

Kaapi (C++, ~500 lines)	

 Cilk (C, ~240 lines)	

Preliminary results on GPU NVIDIA 8800 GTX	

•  speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz	

• 128 “cores” in 16 groups	

• CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads	

• Supports most operations available on CPU	

• ~2000 lines CPU-side + 1000 GPU-side	

Courtesy of Jean-Louis Roch

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Work Stealing Implementation 11 / 18

Outline

1 Machine model and Work Stealing

2 Work Stealing Principle

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 12 / 18

Algorithm Design

Tp ≤
W

p.Πave
+O

(
D

Πave

)
I from WS theorem, optimizing the execution time by building a

parallel algorithm with both:
I W = Tseq

and
I small depth D

I Double criteria
I minimum work W : ideally Tseq
I Small depthD: ideally polylog in the work: D = O

(
logO(1)W

)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 13 / 18

Cascading Divide & Conquer

I W (n) ≤ a.W
(
n
K

)
+ f(n) with a > 1

I if f(n)� nlogk a then W (n) = O
(
nlogk a

)
I if f(n)� nlogk a then W (n) = O (f(n))
I if f(n) = Θ

(
nlogk a

)
then W (n) = O (f(n) log n)

I D(n) = D
(
n
K

)
+ f(n)

I if f(n) = O
(
logi n

)
then D(n) = O

(
logi+1 n

)

I D(n) = D (
√
n) + f(n)

I if f(n) = O(1) then D(n) = O (log logn)
I if f(n) = O (log n) then D(n) = O (log n)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 14 / 18

Cascading Divide & Conquer

I W (n) ≤ a.W
(
n
K

)
+ f(n) with a > 1

I if f(n)� nlogk a then W (n) = O
(
nlogk a

)
I if f(n)� nlogk a then W (n) = O (f(n))
I if f(n) = Θ

(
nlogk a

)
then W (n) = O (f(n) log n)

I D(n) = D
(
n
K

)
+ f(n)

I if f(n) = O
(
logi n

)
then D(n) = O

(
logi+1 n

)
I D(n) = D (

√
n) + f(n)

I if f(n) = O(1) then D(n) = O (log log n)
I if f(n) = O (log n) then D(n) = O (log n)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 14 / 18

Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) =

I D(n) =

I Tp(n) =

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 15 / 18

Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) = 2W
(
n
2

)
+ Θ (n) =

I D(n) =

I Tp(n) =

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 15 / 18

Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) = 2W
(
n
2

)
+ Θ (n) = Θ (n log n)

I D(n) =

I Tp(n) =

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 15 / 18

Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) = 2W
(
n
2

)
+ Θ (n) = Θ (n log n)

I D(n) = D
(
n
2

)
+ Θ (n) =

I Tp(n) =

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 15 / 18

Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) = 2W
(
n
2

)
+ Θ (n) = Θ (n log n)

I D(n) = D
(
n
2

)
+ Θ (n) = Θ (n)

I Tp(n) =

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 15 / 18

Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) = 2W
(
n
2

)
+ Θ (n) = Θ (n log n)

I D(n) = D
(
n
2

)
+ Θ (n) = Θ (n)

I Tp(n) = Θ
(
n logn

p

)
+ Θ (n)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 15 / 18

Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) = 2W
(
n
2

)
+ Θ (n) = Θ (n log n)

I D(n) = D
(
n
2

)
+ Θ (n) = Θ (n)

I Tp(n) = Θ
(
n logn

p

)
+ Θ (n)

If m > log n, Tp is lead by the last merge in Θ (n)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 15 / 18

MergeSort with Parallel Merge

I more parallelism required (in Merge)
I we take the median element of the first array
I we look its position by dichotomy in the second array
I we merge in parallel the four sub-arrays (two by two)

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) =
I D(n) =

I Back in MergeSort
I D(n) =
I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) =
I D(n) =

I Back in MergeSort
I D(n) =
I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) =

I Back in MergeSort
I D(n) =
I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) = max (D (n1) , D (n2)) + Θ (log n) =

I Back in MergeSort
I D(n) =
I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) = max (D (n1) , D (n2)) + Θ (log n) = Θ

(
log2 n

)

I Back in MergeSort
I D(n) =
I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) = max (D (n1) , D (n2)) + Θ (log n) = Θ

(
log2 n

)
I Back in MergeSort

I D(n) =
I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) = max (D (n1) , D (n2)) + Θ (log n) = Θ

(
log2 n

)
I Back in MergeSort

I D(n) = D
(
n
2

)
+ Θ

(
log2 n

)
=

I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) = max (D (n1) , D (n2)) + Θ (log n) = Θ

(
log2 n

)
I Back in MergeSort

I D(n) = D
(
n
2

)
+ Θ

(
log2 n

)
= Θ

(
log3 n

)
I Tp(n) =

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) = max (D (n1) , D (n2)) + Θ (log n) = Θ

(
log2 n

)
I Back in MergeSort

I D(n) = D
(
n
2

)
+ Θ

(
log2 n

)
= Θ

(
log3 n

)
I Tp(n) = Θ

(
n logn

p

)
+ Θ

(
log3 n

)

I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) = W (n1) +W (n2) + Θ (log n) = Θ (n)
I D(n) = max (D (n1) , D (n2)) + Θ (log n) = Θ

(
log2 n

)
I Back in MergeSort

I D(n) = D
(
n
2

)
+ Θ

(
log2 n

)
= Θ

(
log3 n

)
I Tp(n) = Θ

(
n logn

p

)
+ Θ

(
log3 n

)
I Can be improved (D(n) = Θ (log n))

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Algorithm Design 16 / 18

Outline

1 Machine model and Work Stealing

2 Work Stealing Principle

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Conclusion 17 / 18

Conclusion

I Work Stealing concerns a wide-range of algorithms
I WS has some proven performances with weak hypothesis

I heterogeneous processors
but related speeds (WS model not valid for CPU/GPU)

I etc.

I Still, algorithms must be carefully designed
I how to split the work ?
I in how many parts (fraction ?, root square ?, etc.)

I Efficient implementation of WS is not trivial

V. Danjean (UJF-LIG) INRIA-MESCAL Work Stealing Conclusion 18 / 18

	Machine model and Work Stealing
	Work Stealing Principle
	Work Stealing Implementation
	Algorithm Design
	Conclusion

