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Reminder on Simulation

Simulation = model implementation

Based solely on equations

Abstraction of system as a set
of dependant actions and events
(fine- or coarse- grain)

Trapping and virtualization of low-level
application/system actions

less abstract

more abstract

Discrete-Event
Simulation

Simulation
Mathematical

Emulation

Boundaries above are more than blurred

.

Simulation can combine all paradigms at different levels. Today, we
will mainly talk about emulation though.
I Xen, User Mode Linux

I ModelNet, Emulab/DummyNet

I MicroGrid

I PlatetLab
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Operating System Emulation

Goal run many instances of operating systems on the same physical
machine.

Difficulties
I Performance Isolation (scheduling priority, memory demand,

network traffic, disk accesses).
I OS compatibility (full/partial virtualization)
I Performance overhead

Common Tools User Mode Linux, Vserver, VMware, Xen
An example: Xen

X
E
N

H/W (SMP x86, phy mem, enet, SCSI/IDE)

virtual 
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virtual 
blockdev

virtual 
x86 CPU

virtual 
phy mem

Control
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GuestOS
(XenoLinux)

GuestOS
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GuestOS
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User
Software
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Software
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Software
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Xeno−Aware
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Xen in a Nutshell

Application

CPU

Network
Doesn’t take communication
into account

Slow but hopefully
accurate

Xen

less abstract

more abstract

Discrete-Event
Simulation

Simulation
Mathematical

Emulation
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ModelNet

ModelNet is a UCSD/Duke project [VYW+02] lead by Amin Vahdat.
Applications are supported by emulation and virtualization: Actual
application code is executed on “virtualized” resources
A key tradeoff in ModelNet is scalability versus accuracy.
ModelNet accounts for network but not for CPU:

Resource gethostnames, sockets
are wrapped

CPU Plain mapping, slowdown is
not taken into account

Network one emulator running
FreeBSD, a gigabit LAN, some
host machines with IP aliasing
for the virtual nodes ; emula-
tion of heterogeneous links

Similar ideas have been used in other projects (Emulab [WLS+02],
DummyNet, Panda [KBM+02], . . . )
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MicroGrid

MicroGrid is a UCSD project [SLJ+00] lead by Andrew Chien.
Applications are supported by emulation and virtualization: Actual
application code is executed on “virtualized” resources
Microgrid accounts for CPU and network

Resource gethostnames, sockets,
GIS, MDS, NWS are wrapped

CPU Direct execution on a frac-
tion of physical CPU: find a
good mapping

Network Packet-level simulation
(parallel version of MaSSF)

Time Synchronize real time and
virtual time: find the good ex-
ecution rate

Virtual

Resources

Physical

Ressources

Application

MicroGrid
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MicroGrid in a Nutshell

Network

Application Slow but hopefully
accurate

CPU Can have high overheads
But captures the overhead!

Slow but hopefully
accurate

MicroGrid

less abstract

more abstract

Discrete-Event
Simulation

Simulation
Mathematical

Emulation
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PlanetLab

PlanetLab is an open platform for developping, deploying, and ac-
cessing planetary-scale services.

Planetary-scale 350 machines, 140 sites, 20 countries

Distribution Virtualization each user can get a slice of the platform.

Unbundled Management

I OS defines only local (per-node) behavior (global (network-
wide) behavior implemented by services)

I multiple competing services running in parallel (shared, un-
privileged interfaces)

Unstable like the real world Convenient to try P2P applications or
demonstrate the feasability of a middleware.
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Why Synthetic Platforms?

Two goals of simulations:

I Simulate platforms beyond the ones at hand

I Perform sensitivity analyses

Need: Synthetic platforms

I Examine real platforms

I Discover principles

I Implement “platform generators”
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Generation of Synthetic Platforms

Network Topology

I Graph

I Bandwidth and Latencies

Compute Resources And other re-
sources “Background” Conditions

I CPU capacity

I Load

I Failures

What is Representative and Tractable?
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Synthetic Network Topologies

The network community has wondered about the properties of the
Internet topology for years

I The Internet grows in a decentralized fashion with seemingly
complex rules and incentives

I Could it have a mathematical structure?

I Could we then have generative models?

Three “generations of graph generators”

I “Plain” Random

I Structural

I Degree-based
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Flat models

Brain-dead N dots are randomly chosen (using a uniform distribu-
tion) in a square. Then they are randomly connected with a
uniform probability α.

Waxman [Wax88] Dots are randomly placed on a square of side c
and are randomly connected with a probability P (u, v) = αe−d/(βL),
0 < α, β 6 1 where d is the Euclidean distance between u and v
and L = c

√
2.

The edge number increases with α and the edge
length heterogeneity increases with β.

Exponential Dots are randomly placed and are connected with a
probability P (u, v) = αe−d/(L−d).

Locality [ZCD97] This model is due to Zegura. Dots are randomly
placed and are connected with a probability

P (u, v) =

{
α if d < L× r

β if d > L× r
.
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Node placement

Uniform
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Node placement

Heavy Tailed
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What about hierarchy ?

Top-Down

N-level [ZCD97] Starting from a connected graph, at each step, a
node is replaced by another connected graph (Tiers, GT-ITM).

Transit-stub [ZCD97] 2-levels of hierarchy and some additional edges
(GT-ITM, BRITE).

Stub Domains

Multi-homed stubTransit Domains

Stub-Stub Edge
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node is replaced by another connected graph (Tiers, GT-ITM).

Transit-stub [ZCD97] 2-levels of hierarchy and some additional edges
(GT-ITM, BRITE).

AS-level Topology

Router Level

Edge
Connection
Method

Topologies

(1)

(2)

(3)

AS Nodes
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Power-Law : rank exponent

Faloutsos brothers [FFF99] have analyzed the topology at the AS
level and have established power-laws describing this topology.
The rank rv of a note v is its index in the order of decreasing degree.
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Power-Law : rank exponent

Faloutsos brothers [FFF99] have analyzed the topology at the AS
level and have established power-laws describing this topology.
The rank rv of a note v is its index in the order of decreasing degree.

Power Law (rank exponent).

Given a graph, the degree dv of a node v is propor-
tional to the rank of the node rv to the power of a
constant R.

dv ∝ rRv

Nov. 97 Apr. 98 Dec. 98 Router 95

R 0,81 0,82 0,74 0,48
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What about Power Laws ?

Incremental growth and affinity lead to Power Laws [BA99].

Nodes are incrementally added. The probability that v is connected
to u depends on du:

P (u, v) =
du∑
k dk
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Let us check two Power-Laws
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Let us check two Power-Laws
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Are these measurements meaningful?

We know network have structure AND power laws. Some projects
try to combine both (GridG [LD03]).
However, some of the power laws observed by the Faloutsos brothers
are correlated.

Power laws could be a measurement bias. What kind
of measurements can be used ?

I Expension

I Resilience

I Distortion

I Excentricity distri-
bution

I Eigenvalues distribu-
tion

I Set cover size, . . .

Observation [TGJ+02]:

I AS-level and router-level have similar characteristics

I Degree-based generators are significantly better at representing
large scale properties of the Internet than structural ones.

I Hierarchy seem to arise from degree-based generators.
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I’m lost. . . what should I do then?

I For a 10 000 nodes platform, degree-based generators seem to
give good results.

I For a 100 node platform, power laws do not make sense and
structural generators may be more appropriate.

We need some additional informations
(e.g. routing, bandwidth, latency, sharing capacity, . . . ).
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Bandwidths, latencies, traffic, etc.

Topology generators only produce a graph: We need link character-
istics as well

1 Model physical characteristics.
I Some “models” in topology generators
I Need to simulate background traffic
I No accepted model for generating background traffic
I Simulation can be very costly

2 Model end-to-end performance. Models ([LS01]) or Measure-
ments (NWS, ...). Go from path modeling to link modeling?

Turns out to be a difficult question (DARPA workshop on network
modeling).
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Bandwidths, latencies, traffic, etc.

Maybe none of this matters?

I Fiber inside the network mostly unused

I Communication bottleneck is the local link

I Appropriate tuning of TCP or better protocols should saturate
the local link

I Don’t care about topology at all!

I Maybe none of this matters for my application (no network
contention)
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Compute Resources

What resources do we put at the end- points?

“Ad-hoc” generalization Look at the TeraGrid. Generate new sites
based on existing sites

Statistical modeling

I Examing many production resources
I Identify key statistical characteristics
I Come up with a generative/predictive model
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Synthetic Clusters?

Many Grid resources are clusters. What is the “typical” distribution
of clusters?
“Commodity Cluster synthesizer” [KCC04a]

I Examined 114 production clusters (10K+ procs)
I Came up with statistical models

I Linear fit between clock-rate and release-year within a processor
family

I Quadratic fraction of processors released on a given year

I Validated model against a set of 191 clusters (10K+ procs)

I Models allow “extrapolation” for future configurations

I Models implemented in a resource generator
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Resource Availability / Workload

Probabilistic models

I Naive: experimental distributed availability and unavailabil-
ity intervals

I Sophisticated: Weibull distributions [NBW05]

Traces NWS, Desktop Grid resources [KCC04b]

Workload models e.g. batch schedulers

I Traces
I Models [LF03]: job inter-arrival times (Gamma), amount

of work requested (Hyper-Gamma), number of processors
requested: Compounded (2p, 1, ...)

I Adversary ?
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A Sample Synthetic Grid ?

I Generate a 5,000 node graph with BRITE

I Annotate latency according to BRITE’s Euclidian distance method
(scaling to obtain the desired network diameter)

I Annotate bandwidth based on a set of end-to-end NWS mea-
surements

I Pick 30% of the end-points

I Generate a cluster at each end-point according to Kee’s syn-
thesizer for Year 2006

I Model cluster load with Feitelson’s model with a range of pa-
rameters for the random distributions

I Model resource failures based on Inca measurements on Tera-
Grid
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