
Discrete Event Simulation
Master 2R SL module MD

Jean-Marc Vincent and Arnaud Legrand

Laboratory ID-IMAG
MESCAL Project

Universities of Grenoble
{Jean-Marc.Vincent,Arnaud.Legrand}@imag.fr

February 2, 2007

J.-M. Vincent and A. Legrand Discrete Event Simulation 1 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation 2 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 3 / 48



Large Scale Distributed Systems Research

Researchers often ask questions in the broad area of distributed com-
puting

I Which scheduling algorithm is best for this application on a
given Grid?

I Which design is best for implementing a distributed database?

I Which caching strategy is best for enabling a community of
users that to distributed data analysis?

I What are the properties of several resource management poli-
cies in terms of fairness and throughput?

I What is the scalability of my publish-subscribe system under
various levels of failures

I . . .

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 4 / 48



Analytical or Experimental?

Analytical research
I Some develop purely analytical / mathematical models.

I makes it possible to prove interesting theorems
I often too simplistic to convince practitioners
I but generally useful for understanding principles in spite of du-

bious applicability

I One often uncovers NP-complete problems anyway e.g., rout-
ing, partitioning, scheduling problems

I And one must run experiments

; Large Scale Distributed System research is based on experiments

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 5 / 48



LSDS as a science ?

You can tell you are a scientific discipline if

I You can read a paper, easily reproduce (at least a subset of)
its results, and improve

I You can tell to a grad student: “Here are the standard tools,
go learn how to use them and come back in one month”.

I You can give a 1-hour seminar on widely accepted tools that
are the basis for doing research in the area

We are not there today. . .

That is why you need to get familiar with most simulation issues.

Need for standard ways to run Large Scale Distributed System
(LSDS) experiments

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 6 / 48



Large Scale Distributed System Experiments

Real-world experiments are good I Eminently believable
I Demonstrates that proposed approach can be implemented

in practice

But...

Can be time-intensive Execution of “applications” for hours, days,
months, ...

Can be labor-intensive Entire application needs to be built and func-
tional (including all design / algorithms alternatives include all
hooks for deployment).
Is it a good engineering practice to build many full-fledge solu-
tions to find out which ones work best?

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 7 / 48



What experimental testbed?

My own little testbed well-behaved, controlled, stable, often not rep-
resentative of real Grids.

Real platforms I (Still) challenging for many researchers to ob-
tain

I Not built as a computer scientist’s playpen (other users may
disrupt experiments, other users may find experiments dis-
ruptive)

I Platform will experience failures that may disrupt the exper-
iments

I Platform configuration may change drastically while experi-
ments are being conducted

I Experiments are uncontrolled and unrepeatable: even if dis-
ruption from other users is part of the experiments, it pre-
vents back-to-back runs of competitor designs / algorithms

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 8 / 48



LSDS Experiments are Limited and Non Reproducible

; Difficult to obtain statistically significant results on an appropri-
ate testbed

And to make things worse...

Experiments are limited to the testbed I What part of the results
are due to idiosyncrasies of the testbed?

I Extrapolations are possible, but rarely convincing
I Must use a collection of testbeds...
I Still limited explorations of “what if” scenarios (what if the

network were different? what if we were in 2015? what if
we had a different workload?)

Difficult for others to reproduce results This is the basis for scien-
tific advances!

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 9 / 48



Simulation

Simulation can solve many (all) of these difficulties

I No need to build a real system

I Conduct controlled / repeatable experiments

I In principle, no limits to experimental scenarios

I Possible for anybody to reproduce results

I Does not cover all settings (wireless, high-performance net-
works, . . . )

Definition: Simulation.

Attempting to predict aspects of the behavior of some system by
creating an approximate (mathematical) model of it.

Simulation ≈ Imitation

Key question: Validation (correspondence between simulation and
real-world)

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 10 / 48



Simulation in Computer Science

Microprocessor Design A few standard “cycle-accurate” simulators
are used extensively

http://www.cs.wisc.edu/∼arch/www/tools.html

Possible to reproduce simulation results

Networking Network-guys are better at standards than we are... ,
I A few standard “packet-level” simulators NS-2, DaSSF, OM-

NeT++
I Well-known data-sets for network topologies
I Well-known generators of synthetic topologies
I SSF standard: http://www.ssfnet.org/
I Possible to reproduce simulation results

Large Scale Distributed Systems None of the above up until a few
years ago (most people built their own “ad-hoc” solutions).

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 11 / 48

http://www.cs.wisc.edu/~arch/www/tools.html


Simulation of Distributed Computing Platforms?

Simulation of parallel platforms used for decades. Most simulations
have made drastic assumptions

Simplistic platform model I Processors perform work at some fixed
rate (Flops)

I Network links send data at some fixed rate
I Topology is fully connected (no communication interference)

or a bus (simple communication interference)
I Communication and computation are perfectly overlappable

Simplistic application model I All computations are CPU inten-
sive

I Clear-cut communication and computation phases
I Application is deterministic

Straightforward simulation in most cases Just fill in a Gantt chart
with a computer rather than by hand. No need for a “simulation
standard”

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 12 / 48



LSDS Simulations?

Simple models are perhaps justifiable for a switched dedicated cluster
running a matrix multiply application.
They are hardly justifiable for grid or peer-to-peer platforms. . .

I Complex and wide-reaching network topologies (multi-hop net-
works, heterogeneous bandwidths and latencies, non-negligible
latencies, complex bandwidth sharing behaviors, contention with
other traffic)

I Overhead of middleware

I Complex resource access/management policies

I Interference of communication and computation

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 13 / 48



Grid Experiments

Recognized as a critical area

GRID 5000 A reconfigurable grid to enable reproducibility.

Grid eXplorer (GdX) project (INRIA) Build an actual scientific in-
strument

I Databases of “experimental conditions”
I 1000-node cluster for simulation/emulation
I Visualization tools

What simulation technology???

What kind of results in my paper?

I Results for a few “real” platforms

I Results for many synthetic platforms

Two main questions:

1 What does a “representative” Grid look like?

2 How does one do simulation on a synthetic representative Grid?

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 14 / 48



Types of simulation

Main types of simulation used to evaluate computer systems.

Emulation An emulator program is a simulation program that runs
on some exiting system to make that system appear to be some-
thing else. As the real code is run, such simulations capture many
overhead and are generally very precise.
It is a common belief that emulation are not concerned with
validation (correspondence between simulation and real-world).
However the relationship between virtual performances (the ones
measured on the virtual system) and expected real performances
(the ones that one would measure on the original system) is often
very unclear.

Discrete-event Simulation A discrete-event simulator is used to model
a system whose global state changes as a function of time.
The state may also be affected by events that are generated
externally to the simulator as well as those that are spawned
within the simulator by the processing of events. The global
state is appropriately updated every time some event occurs.

J.-M. Vincent and A. Legrand Discrete Event Simulation Simulation ? Why ? 15 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 16 / 48



Terminology

State variables The variables whose values define the state of the
system (length of the job queue, list of pieces of a file, amount
of computation performed for each task, . . . ). If a simulation
is stopped in the middle, it can be restarted later if and only if
values of all state variables are known.

Event A change in the system state (arrival of a job, beginning of
a new execution, departure of a job, failure of device, . . . ).

Continuous-Time vs. Discrete-Time Depends whether the system
state is defined at all times or not.

Continuous-state vs. Discrete-State Depending whether state vari-
ables are continuous (time spent by a packet in a queue) or dis-
crete (number of jobs in a queue), a model is called continuous-
or discrete-state model. Many models are hybrid.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 17 / 48



Terminology

Deterministic vs. Probabilistic It the outputs of a model can be pre-
dicted with certainty, it is a deterministic model. A probabilistic
model, on the other hand, may give a different result on repeti-
tions for the same set of input parameters.

Linear and Nonlinear Models If the output parameters are a linear
function of the input parameter, the model is linear.

Open vs. Closed If the input is external to the model and is in-
dependent of it, it is called an open model (packets entering a
system). In a closed model, there is no external input.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 18 / 48



Common structure

Each discrete-event simulator will require at least some of the fol-
lowing components:

I an event-scheduler,

I a global time variable and a method for updating this time,

I system state variables,

I event-processing routines,

I event-generation mechanisms,

I data-recording and summarization routines

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 19 / 48



The event-scheduler

I This is the heart of a d.-e. simulator. It generally maintains
a list of all pending events in their global time order (if possi-
ble). In some particular cases, it may be interesting to compute
completion times of events at the latest moment.

I It is the responsibility of the scheduler to process the next event
on the list by removing it from the list and dispatching the event
to the appropriate event-processing routine.

I The scheduler also inserts new events into the appropriate point
in the list on the basis of the time at which the event is supposed
to be executed. It also may have to reschedule or cancel events.

I This is one of the most frequently executed components of the
simulation. It should thus be carefully optimized.

I Updates to the global time variable are also coordinated by the
scheduler.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 20 / 48



The global time variable

The global time variable records the current simulation time. It can
be updated by the scheduler using one of two approaches.

fixed-increment The scheduler increments the global time variable
by some fixed amount. It then checks the pending events on
the event set. If the scheduled execution time for any of the
pending events matches the current time, all of these events are
dispatched for execution.
After all of the events scheduled for the current time have been
processed, the scheduler again increments the global time vari-
able.

event-driven the global time jumps to the value of the next event at
the head of the pending-event set. With this approach, the value
of the global time changes non-uniformly, sometimes jumping
by a large amount, sometimes not changing from one event to
another.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 21 / 48



Event Processing and Generation

Each event in the system will typically have its own event-processing
routine to simulate what happens when that event occurs in a real
system.
These routines may update the global state and may generate ad-
ditional events that must be inserted into the pending-event set by
the scheduler. Efficient management of the event set is thus crucial.
Event generation is generally classified with the following categories:

Execution driven somewhat similar to an emulation. The simulator
executes a benchmark program and uses its result. An emulation
is concerned only with producing the appropriate output from
the benchmark program whereas the execution-driven simulator
is also concerned with how the output is produced.
Such simulations are often considered the most accurate type
since they must model all of the details to actually execute a
program. It is however generally expensive both in terms of sim-
ulation time and in term of time required to develop and verify
the simulator.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 22 / 48



Event Processing and Generation

Trace driven A trace is a record of the sequence of events that oc-
curred when the system was traced. By using a trace, the sim-
ulator does not need to all of the functionality needed by the
program, as is required in an execution-driven simulation. We
will present more in details advantages and drawbacks of trace-
driven simulations in the next two slides.

Distribution driven similar to trace-driven simulation, except that
the input events are generated by the simulator itself to follow
some predefined probabilistic function (e.g., sending messages
over a communication networks would be modeled by using an
exponential distribution).
Since there is no assurance that any real application program
actually would produce this input sequence, the simulation should
be run many times with several different input sequence. The
outputs can then be averaged in some appropriate fashion.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 23 / 48



Traces: Advantages

Main advantages:

Credibility The results of trace-driven simulation are easy to sell
to other members of the design team. Traces have generally
much more credibility than random sequences using an assumed
distribution.

Easy Validation The first step is to monitor a real system to get the
trace. Performance characteristics of the system can be measured
at the same time and be used for comparison with the output of
the simulator.

Accurate workload A trace preserves the correlation and interfer-
ence effects in the workload. No simplification, such as those
needed in getting an analytical model of the workload, is required.

Detailed Trade-offs Due to the high level of detail in the workload,
it is possible to study the effect of small changes in the model or
algorithms.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 24 / 48



Traces: Advantages

Less Randomness A trace is a deterministic input, which reduces
the variance of output results or even leads to fully deterministic
outputs if all parts of the model are deterministic.

Fair Comparison A trace allows different alternatives to be com-
pared under the same input stream, which is a fairer comparison
than when random stream are used and are thus different for the
various alternatives being simulated (this can be avoided though).

Similarity to the actual implementation trace-driven models are gen-
erally very similar to the system being modeled. Thus one gets
a good feeling for the complexity of implementing a given algo-
rithm.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 25 / 48



Traces: Drawbacks

Complexity It generally requires a more detailed simulation of the
system. Sometimes, the complexity of the model overshadows
the algorithm being modeled.

Representativeness Traces taken on one system may not be repre-
sentative of the workload on another system. Workload may also
change over time and thus traces become obsolete faster than
other forms of workload models that can be adjusted with time.

Finiteness A trace is a long sequence. A detailed trace of a few
minutes of activity on a system may be enough to fill a disk
pack. A result based on those few minutes may not be applicable
to the activities during the rest of the day.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 26 / 48



Traces: Drawbacks

Single Point of Validation An algorithm that is the best for one
trace may not be the best for another. At least a few differ-
ent traces should be used to validate the results.

Detail Traces are generally very long sequences that have to be read
from the disk and fill your computer’s memory.

Trade-off The workload characteristics is difficult to change. It is
not possible to change a trace (a new trace for the changed
workload is required).

Bias Sometimes, the trace is the consequence of some part of the
system that is to be simulated. Studying and thus changing this
part of the system invalidates the trace.

J.-M. Vincent and A. Legrand Discrete Event Simulation Discrete-event Simulation 27 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Words on Data Structures 28 / 48



Array

As we have seen earlier, event management is crucial. Efficient
event-set algorithms may save a large amount of processing time.
This heavily depends on the kind of operations (and on the fre-
quency) to be performed:

I Finding the next (earliest) event.
I Removing the next (earliest) event.
I Inserting new events in the set.
I Removing a given event (e.g., for an execution time update).
I Finding events that occur at a given time.

Depending on the cost of these operations, some data-structures
may be more suited to a given usage than some others.
The simplest data-structure is an array or an ordered array.

Code for

Event 4

Code for

Event 3

Code for

Event 2

Code for

Event 1

Event 2
date2 date3

Event 3
date4
Event 4

date1
Event 1

Everything is O(n).
J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Words on Data Structures 29 / 48



Doubly linked-list

This is the most commonly used data-structure.

date2
Event 2

date n
Event n

date1
Event 1

Code for

Event 1

Code for

Event 2

Code for

Event n

head tail

Insertion is O(n), other operations are O(1). However, memory
access are non-uniform.

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Words on Data Structures 30 / 48



Indexed Linear List: Calendar

head tail

head tail

head tailT + ∆

T

T + k∆

Speeds up Insertion
and Search.

Many possible vari-
ations (non uniform
sampling, fixed-size
lists)

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Words on Data Structures 31 / 48



Tree structures

15

19

23 27

22

26

Most operations are
O(log n).

Many possible vari-
ations (non uniform
sampling, fixed-size
lists)

Often, mixtures of
data-structures are
needed.

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Words on Data Structures 32 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation
Recording and summarization of

data 33 / 48



Random thoughts

Nobody will notice the core of your simulator is super-optimized if
you spend 90% of your time collecting data or doing IO to store
them.
The same principles as in monitor design apply. Use the same tech-
niques as the ones you would use when designing a full-fledge mon-
itor.
Most data need to be recorded in buffers, hence buffer management
issues:

I buffer size is a function of input rate, input width and emptying
rate,

I larger number of buffers allows to cope with variations in filling
and emptying rates,

I buffer overflow management and tracking,
I data compression, on-line analysis,

Abnormal events should also be monitored and even handled at
higher priority (low probability ; low overhead, possibility to take
preventive action before the system becomes unavailable).

J.-M. Vincent and A. Legrand Discrete Event Simulation
Recording and summarization of

data 34 / 48



Summerization and Presentation

Once again, the same principles as in monitor design apply. You
should provide hooks so that end-users can easily get the informa-
tions they need.
This layer is closely tied to the applications for which the moni-
tor is used (performance monitoring, configuration monitoring, fault
monitoring,. . . ).

I Presentation frequency (for online monitors).

I Hierarchical representation/aggregation (space/time/states/values).

I Online vizualization of state variables.

I Alarm mode (thresholds, abnormal events).

J.-M. Vincent and A. Legrand Discrete Event Simulation
Recording and summarization of

data 35 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation Verification and Validation 36 / 48



Validation

Key question

How accurately does a simulation model reflects the actual system
being simulated?

I Are the assumptions reasonable?

I Are the input distributions a good representation of what would
be seen in practice?

I Are the outputs reasonable?

I Are the results explainable?

Different approaches:

Comparison with a real system run benchmarks.

Analytical results check that trends are correct.

Engineering judgment if you cannot explain why the simulator pro-
duces an unusual result, don’t believe it.

J.-M. Vincent and A. Legrand Discrete Event Simulation Verification and Validation 37 / 48



Verification

Key question

Is the simulator implemented correctly?

Different approaches:

Deterministic verification I Follow good software-engineering prac-
tices (structured programming, modular design, documenta-
tion, internal error checking, memory checking, ...).

I Step-by-step run to follow an execution and check that it
proceeds through all desired states.

I Consistency checks.
I Simulate the system for special cases (corner conditions).

Stochastic verification How do we check that a sequence of pseudo-
random numbers is “random enough”?. . .

J.-M. Vincent and A. Legrand Discrete Event Simulation Verification and Validation 38 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 39 / 48



Inappropriate level of detail

Simulation provides more detail than analytical modeling that relies
on several simplifications and assumptions. In a simulation model,
the level of detail is only limited by the time available for develop-
ment.
More detailed simulations:

I require more times,

I increase the likelihood of bugs (and the difficulty to spot them),

I increase the simulation time,

I requires more input that may not be available.

It is a common belief that the more detailed the simulation, the
more accurate the results.

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 40 / 48



FLASH vs. FLASH

FLASH vs. (Simulated) FLASH: Closing the Simulation Loop [GKOH00]

FLASH project at Stanford I building large-scale shared-memory mul-
tiprocessors
Went from conception, to design, to actual hardware (32-node)
Used simulation heavily over 6 years

I IThe authors went back and compared simulation to the real world! I

Simulation error is unavoidable(30% error in their case was not
rare; Negating the impact of “we got 1.5% improvement”)
One should focus on simulating the important things
A more complex simulator does not ensure better simulation

I II Simple simulators worked better than sophisticated ones, which were
unstable

I Simple simulators predicted trends as well as slower, sophisticated
ones

It is key to use the real-world to tune/calibrate the simulator

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 41 / 48



FLASH vs. FLASH

FLASH vs. (Simulated) FLASH: Closing the Simulation Loop [GKOH00]

IFLASH project at Stanford I building large-scale shared-memory mul-
tiprocessors
Went from conception, to design, to actual hardware (32-node)
Used simulation heavily over 6 years

I IThe authors went back and compared simulation to the real world! I

Simulation error is unavoidable(30% error in their case was not
rare; Negating the impact of “we got 1.5% improvement”)

One should focus on simulating the important things
A more complex simulator does not ensure better simulation

I II Simple simulators worked better than sophisticated ones, which were
unstable

I Simple simulators predicted trends as well as slower, sophisticated
ones

It is key to use the real-world to tune/calibrate the simulator

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 41 / 48



FLASH vs. FLASH

FLASH vs. (Simulated) FLASH: Closing the Simulation Loop [GKOH00]

IFLASH project at Stanford I building large-scale shared-memory mul-
tiprocessors
Went from conception, to design, to actual hardware (32-node)
Used simulation heavily over 6 years

I IThe authors went back and compared simulation to the real world! I

Simulation error is unavoidable(30% error in their case was not
rare; Negating the impact of “we got 1.5% improvement”)
One should focus on simulating the important things

A more complex simulator does not ensure better simulation

I II Simple simulators worked better than sophisticated ones, which were
unstable

I Simple simulators predicted trends as well as slower, sophisticated
ones

It is key to use the real-world to tune/calibrate the simulator

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 41 / 48



FLASH vs. FLASH

FLASH vs. (Simulated) FLASH: Closing the Simulation Loop [GKOH00]

IFLASH project at Stanford I building large-scale shared-memory mul-
tiprocessors
Went from conception, to design, to actual hardware (32-node)
Used simulation heavily over 6 years

I IThe authors went back and compared simulation to the real world! I

Simulation error is unavoidable(30% error in their case was not
rare; Negating the impact of “we got 1.5% improvement”)
One should focus on simulating the important things
A more complex simulator does not ensure better simulation

I II Simple simulators worked better than sophisticated ones, which were
unstable

I Simple simulators predicted trends as well as slower, sophisticated
ones

It is key to use the real-world to tune/calibrate the simulator

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 41 / 48



FLASH vs. FLASH

FLASH vs. (Simulated) FLASH: Closing the Simulation Loop [GKOH00]

IFLASH project at Stanford I building large-scale shared-memory mul-
tiprocessors
Went from conception, to design, to actual hardware (32-node)
Used simulation heavily over 6 years

I IThe authors went back and compared simulation to the real world! I

Simulation error is unavoidable(30% error in their case was not
rare; Negating the impact of “we got 1.5% improvement”)
One should focus on simulating the important things
A more complex simulator does not ensure better simulation

I II Simple simulators worked better than sophisticated ones, which were
unstable

I Simple simulators predicted trends as well as slower, sophisticated
ones

It is key to use the real-world to tune/calibrate the simulator

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 41 / 48



FLASH vs. FLASH

FLASH vs. (Simulated) FLASH: Closing the Simulation Loop [GKOH00]

IFLASH project at Stanford I building large-scale shared-memory mul-
tiprocessors
Went from conception, to design, to actual hardware (32-node)
Used simulation heavily over 6 years

I IThe authors went back and compared simulation to the real world! I

Simulation error is unavoidable(30% error in their case was not
rare; Negating the impact of “we got 1.5% improvement”)
One should focus on simulating the important things
A more complex simulator does not ensure better simulation

I II Simple simulators worked better than sophisticated ones, which were
unstable

I Simple simulators predicted trends as well as slower, sophisticated
ones

It is key to use the real-world to tune/calibrate the simulator

I

Conclusion
For FLASH, the simple simula-
tor was all that was needed. . .

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 41 / 48



Improper Language/Environment

Selecting a proper language is probably the most important step in the
process of developing a simulation model. An incorrect decision during
this step may lead to long development times, incomplete studies and
failures. There are three main choices:

A simulation language. SIMULA or SIMSCRIPT have built-in facilities for
time-advancing, event scheduling, entity manipulation, random-variable
generation, statistical data collection, report generation. You may not
have time to learn such languages though and thus prefer:

A general-purpose language. Gives more flexibility by allowing some short-
cuts prohibited in simulation languages.

A simulation package. The biggest advantage is the time savings that they
provide. Using such a package, you could develop a model, solve it and
get results in a few days. It takes generally several weeks (months ?)
to do it from scratch.

The main problem is their inflexibility. They provide only flexibilities
that were foreseen by their developers. In most practical situations, one
has either to hack the package or make simplifications or use it in a
tortured way.

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 42 / 48



Other very common mistakes

I Unverified Models (bugs)

I Invalid Models (incorrect assumptions in the model design)
All simulation model results should be suspected until confirmed
by analytical models, measurements, or intuition.

I Improperly handled initial conditions (is the input workload rep-
resentative of the modeled system ?)

I Too short simulations

I Poor random-number generators and improper selection of seeds

I Inadequate time estimate (are you going for a 1 week, a 1
month, a 1 year project?)

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 43 / 48



Simulation is art and a science

Simulation is art and a science
Do not get fooled by nice talks about portability,
modularity and nice GUIs. Ask about the simula-
tion core. If you can’t get answers, dive in the code
and read how the engine works.

J.-M. Vincent and A. Legrand Discrete Event Simulation Common Mistakes 44 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Examples 45 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Examples 46 / 48



Outline

1 Simulation ? Why ?

2 Discrete-event Simulation

3 A Few Words on Data Structures

4 Recording and summarization of data

5 Verification and Validation

6 Common Mistakes

7 A Few Examples
Queuing Network
SimGrid

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Examples 47 / 48



SimGrid

A few characteristics:

I SimGrid is a deterministic event-driven simulator.

I It uses hybrid state variables (discrete for process, continuous
for tasks and resources).

I It is both Execution and Trace driven.

I It uses hybrid data-structures for traces and event lists.

I It uses “just-in-time” event completion time computation.

I There is almost no data-recording nor summarization routines
as developers don’t like it and are not good at it.

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Examples 48 / 48



Jeff Gibson, Robert Kunz, David Ofelt, and Mark Heinrich.
FLASH vs. (simulated) FLASH: Closing the simulation loop.
In Architectural Support for Programming Languages and Op-
erating Systems, pages 49–58, 2000.

R. K. Jain.
The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and
Modeling.
John Wiley & Sons Canada, Ltd., 1 edition, 1991.

David J. Lilja.
Measuring Computer Performance: A Practitioner’s Guide -
David J. Lilja - Hardcover.
Cambridge University Press, 2000.

J.-M. Vincent and A. Legrand Discrete Event Simulation A Few Examples 48 / 48


	Simulation ? Why ?
	Discrete-event Simulation
	A Few Words on Data Structures
	Recording and summarization of data
	Verification and Validation
	Common Mistakes
	A Few Examples
	Queuing Network
	SimGrid


