
On the Convergence of Cloud
Computing and Desktop Grids

Presented by Derrick Kondo

Many Slides by
Jeff Barr, Amazon Inc.
and Jeff Dean, Sanjay Ghemawat, Google, Inc.

Outline
§ Cloud Computing

q Background
q Architecture
q Map-Reduce

§ Desktop Grids
q Background & contrast with clouds
q Architecture
q Prediction

Motivation

70% of Web Development Effort is “Muck”:
 Data Centers
 Bandwidth / Power / Cooling
 Operations
 Staffing

Scaling is Difficult and Expensive:
 Large Up-Front Investment
 Invest Ahead of Demand
 Load is Unpredictable

operations = billing

Dream or Nightmare?

Slashdot/Digg/TechCrunch Effect
Rapid, unexpected customer demand/growth

Same	
 true	
 for	
 scien/fic	
 workloads

same true for scientific workloads

Solution: Cloud Computing

Scale capacity on demand
Turn fixed costs into variable costs
Always available
Rock-solid reliability
Simple APIs and conceptual models
Cost-effective
Reduced time to market
Focus on product & core competencies

AWS will use commercially reasonable efforts to make Amazon EC2 available with an Annual Uptime Percentage (defined below) of at
least 99.95% during the Service Year. In the event Amazon EC2 does not meet the Annual Uptime Percentage commitment, you will
be eligible to receive a Service Credit as described below.

Service Commitments and Service Credits
If the Annual Uptime Percentage for a customer drops below 99.95% for the Service Year, that customer is eligible to receive a
Service Credit equal to 10% of their bill (excluding one-time payments made for Reserved Instances) for the Eligible Credit Period. To
file a claim, a customer does not have to have wait 365 days from the day they started using the service or 365 days from their last
successful claim. A customer can file a claim any time their Annual Uptime Percentage over the trailing 365 days drops below
99.95%.

What is a cloud?
§ Cloud computing is Internet-based ("cloud") development

and use of computer technology ("computing"). --
Wikipedia

§ A cloud is a distributed system where the user doesn't
care exactly what resources are used to carry out an
operation -- Prof. Douglas Thain

§ "A Cloud is a type of parallel and distributed system consisting of
a collection of inter-connected and virtualized computers that are
dynamically provisioned and presented as one or more unified
computing resources based on service-level agreements
established through negotiation between the service provider åand
consumers.” -- Prof Raj Buyya

6

globus : push model for accessing resources

Cloud Providers
§ Large-scale centralized systems

q Low reliability, low-cost commodity
components

§ Google
q 100,000 systems in 15 data centers [2005]

– Recent estimate: 500,000 systems in 30 data centers

7

!"#$ %&'()*+*,-.*$ /0*)$ (-'-#,0+$ /##)"#'-1$ /$./'()2.)1"0-$

1-*&3#$,4/,$,4-+$50/#$,)$4/6-$(-/1+$&#$,4-$*"..-($)7$899:;$$<4-&($

/55()/'4$4/*$./#+$*&.&0/(&,&-*$,)$,4-$)#-$1-*'(&=-1$4-(-$>?&3"(-$

@A;$ <4-$ '"((-#,$!"#$ 5(),),+5-$ &*$ =/*-1$ "5)#$ /$ 8927)),$ *4&55$

')#,/&#-($B&,4$ 8C8$ *+*,-.*;$ $ <4&*$ &*$ ()"340+$ 4/07$,4-$ 1-#*&,+$)7$

,4-$D/'E/=0-$1-*&3#F$B&,4$&,*$GFG@8$*+*,-.*$&#$/$C927)),$')#,/&#-(;$$

$

$

!"#$%&'()'*$+',"-%./0/1&2/'345-6'3.7'

$

H"($ /55()/'4$ ="&01*$)#$,4-$B)(E$ 1-*'(&=-1$ /=)6-$ &#$,4-$<-0')F$

5)B-($ 3-#-(/,&)#F$ /#1$ 1/,/$ *,)(/3-$ 1)./&#*$ /#1$ /550&-*$ &,$,)$

.)1"0/($ 1/,/$ '-#,-($ ')#*,("',&)#$ /#1I)($ -J,-#*&)#*;$K))30-$./+$

/0*)$4/6-$(-0/,-1$B)(E$"#1-(B/+$/,$,4-&($L/0&7)(#&/$4-/1M"/(,-(*F$

=",$1-,/&0*$#-6-($=--#$(-0-/*-1;$ $<4&*$B)(E$(-./&#*$"#')#7&(.-1$

/#1$)#0+$ (-5)(,-1$=+$/#$/",4)($5"=0&*4$"#1-($,4-$5*-"1)#+.$

D)=-(,$N;$L(-+$O@P;$

$

(8! 9:*;<=';,>?;@AB;C=*'A=9'!DBDE:'

FCEG'
<4-$ (-'-#,$ B)(E$)7$ D/'E/=0-$!+*,-.*$ /#1$!"#$ %&'()*+*,-.*$

"33-,*$,4/,$,4&*$ ')#,/&#-(2=/*-1$ *+*,-.*$ /55()/'4$./+$ =-$

')..-('&/00+$ 7-/*&=0-;$ $ %"'4$ 4/(1B/(-$ /#1$ *)7,B/(-$ B)(E$

(-./&#*$,)$ =-$ 1)#-$ &#$ (-7&#$,4-$ 1/,/$ '-#,-($ 1-*&3#$ 5)&#,;$$

!5-'&7&'/00+F$ /(-$,4-$#)#27&-012*-(6&'-/=0-$')#,/&#-(*$5()5)*-1$ &#$

,4&*$5/5-($/$5(/',&'/0$1-*&3#$5)&#,Q$R/*&'/00+F$'/#$/$')#,/&#-($=-$

/**-.=0-1$ /,$,4-$ 7/',)(+$B&,4$ -#)"34$ (-1"#1/#'+$,)$("#$ 7)($,4-$

7"00$ S2+-/($ 50"*$ /.)(,&T/,&)#$ '+'0-$B&,4)",$ (-M"&($*-(6&'-Q$ $ U7$

,4-$ #)#27&-01$ *-(6&'-/=0-$ 1-*&3#$ /55()/'4$ &*$ ')*,$ -77-',&6-F$,4-#$

."'4$4&34-($1-#*&,&-*$/(-$5)**&=0-$ *&#'-$/&*0-$ *5/'-$ &*$#)$ 0)#3-($

#--1-1$ /#1$.)(-$,&34,0+$ &#,-3(/,-1$ '))0$ *+*,-.$ 1-*&3#*$ /(-$

5(/',&'/0;$$K-#-(/00+F$*+*,-.$*-(6&'-$')#*,(/&#,*$./E-$1&(-',$0&M"&1$

'))0$1&77&'"0,$,)$"*-$&#$/$7&-012*-(6&'-/=0-$1-*&3#;$$D/'E/=0-$&*$

,/E$/$*,-5$&#$,4&*$1&(-',&)#$=+$50/'$.&#&2LDVL$"#&,*$=-*&1-$

-/'4$ (/'E;$ $ W)B-6-(F$,4-+$ *,&00$ "*-$ /&(2,)2B/,-($ '))0$ &#$,4-&($

/55()/'4;$

$

!-6-(/0$ 6-#1)(*$ '"((-#,0+$)77-($.)(-$ 5)B-(2-77&'&-#,$ 1-*&3#*;$$

D/,4-($,4/#$ 4/6$ /#$ &#-77&'&-#,$ *B&,'4$ 5)B-($ *"550+$ B&,4$

-/'4$ *+*,-.F$ /$ (-',&7&-(I,(/#*7)(.-($ "#&,$ &*$ 5()6&1-1$ /,$,4-$ (/'E$

0-6-0$/#1$XL$5)B-($ &*$1&*,(&=",-1$,)$/00$*+*,-.*$B&,4&#$,4-$(/'E;$$

<)$ /6)&1$ 0)**-*$)#$,4-$ B/+$,)$,4-$ (/'EF$ 4&34$ 6)0,/3-$ VL$ &*$

1&*,(&=",-1F$ B&,4$ CY9ZVL$ =-$ /$ ')..)#$ '4)&'-;$ [*$

-77&'&-#,$ XL$,(/#*7)(.-(*$)#$ -/'4$ *+*,-.$ ')"50-1$ B&,4$ 4&34$

-77&'&-#'+$ (/'E20-6-0$ VL$,)$ XL$ (-',&7&-(I,(/#*7)(.-(*$ +&-01*$

&3#&7&'/#,$5)B-($/6*;$U#$/11&,&)#$,)$=-$.)(-$-77&'&-#,F$,4&*$

/55()/'4$4/*$5()6-#$,)$=-$.)(-$(-0&/=0-$&#$7&-01$"*/3-$/*$B-00;$

$

<4-$ 1-*&3#$)7$ =($ 4&34$ 6)0,/3-$ VL$,)$,4-$ (/'E$ /#1$,4-#$

1&*,(&=",$0)B$6)0,/3-XL,)$-/'4$*+*,-.$4/*$1(/B=/'E*;$\&,4-($

XL$ 0)**-*$,)$,4-$ *+*,-.$."*,$=-$,)0-(/,-1$)($,4-$ *&T-$)7$,4-$="*$

=/(*$'/((+$,4-XL."*,$=-$&#'(-/*-1;$$[*$4&34-($6)0,/3-XL

1&*,(&=",&)#$)#$,4-$(/'E$4/*$*).-$5),-#,&/0$3/&#$=",F$/*$,4-$6)0,/3-$

'0&.=*F$ *)$ 1)-*$,4-$ (&*E$,)$)5-(/,&)#*$ 5-(*)#/0;$ $ U7$ *+*,-.*$ '/#$

)#0+$=-$*/7-0+$.)6-1$=+$-0-',(&'&/#*F$')*,*$-*'/0/,-$,)$,4-$5)&#,$)7$

')#*".$ /#+$ 5),-#,&/0$ */6*;$ $ U#$ /$ #)#27&-012*-(6&'-/=0-$

')#,/&#-(F$ 4)B-6-(F$ 4&34-($ 6)0,/3-$ 0-6-0*$ ')"01$ =-$ -.50)+-1$

B&,4)",$,4&*$1)B#*&1-$')*,;$$]4/,$5)B-($1&*,(&=",&)#$&##)6/,&)#*$

/(-$5)**&=0-$&7$,4-$7&-01$*-(6&'-$')*,$')#*,(/&#,$&*$(-.)6-1Q$

$

U#$,4-$ 1-*&3#$ 1-*'(&=-1$ 4-(-F$,4-$1/,/$ '-#,-($ ="&01$=0)'E$ &*$ /$

B-/,4-(5())7$ *4&55$')#,/&#-($/#1$,4-*-$'/#$=-$*,/'E-1S,)$@$

4&34;$$]4/,$&*$,4-$&1-/0$1/,/$'-#,-($1-*&3#$B&,4$,4&*$.)1-0Q$$L/#$

B-$ 3)$ B&,4$ /$ *./00$ '-#,(/0$ #-,B)(EF$ 5)B-(F$ '))0F$ /#1$

-'"(&,+$7/'&0&,+$"(()"#1-1$=+$*,/'E-1$')#,/&#-(*Q$ $H($ &*$&,$')*,2

^"*,&7&-1$,)$E--5$,4-$')#,/&#-(*$&#$/$="&01Q$$L"((-#,$1/,/$'-#,-($

1-*&3#$,4-)(+$ 7/6)(*$,4-$ G9$,)$ 892.-3/B/,,$ (/#3-$ /*$,4-$ &1-/0$

7/'&0&,+$ *&T-;$ $ W)B$ 1)-*$,4-$.)1"0/($ 1/,/$ '-#,-($ '4/#3-$,4&*$

1-*&3#$5)&#,Q$$$

$

_)B-($1&*,(&=",&)#$/#1$-M"&5.-#,$')*,*$-J'--1$C9`$)7$,4-$')*,$)7$

/$,+5&'/0$ 1/,/$ '-#,-(F$ B4&0-$,4-$ ="&01$ &,*-07$ ')*,*$ ^"*,$)6-($

G@`S;$ $ V*$ /$ (-*"0,F$ /$ 1&77&'"0,$,(/1-2)77$."*,$ =-$./1-$ B4-#$

-0-',$ 5)B-($ 1-#&,+;$ $ U7$,4-$ 1/,/$ '-#,-($ &*$ 5()6&*&)#-1$,)$

"55)(,$ 6-(+$ 4&34$ 5)B-($ 1-#&,&-*$ >4&34$ 5)B-($,)$ 70))($ *5/'-$

(/,&)A$,4-$ (&*E$ &*$,4/,$ *).-$)7$,4-$ 5)B-($ B&00$ 3)$ "#"*-1$ &7$,4-$

/',"/0$(/'E*$,4/,$/(-$&#*,/00-1$')#*".-$0-**$5)B-(I*M"/(-$7)),$,4/#$

,4-$1/,/$'-#,-($1-*&3#$5)&#,;$ $<4&*$B)"01$B/*,-$-J5-#*&6-$5)B-($

-M"&5.-#,;$ $H#$,4-$),4-($ 4/#1F$ &7$,4-$1/,/$ '-#,-($ &*$ 5()6&*&)#-1$

B&,4$ /$ 0)B-($ 5)B-($ 1-#*&,+F$,4-$ (&*E$ &*$,4/,$ 70))($ *5/'-$ B&00$ =-$

B/*,-1;$ $]/*,-1$ 70))($ *5/'-$ &*F$ 4)B-6-(F$."'4$ '4-/5-($,4/#$

B/*,-1$ 5)B-($ '/5/'&,+;$ $ R-'/"*-$,4&*$,(/1-2)77$ &*$ 4/(1$,)$ 3-,$

-J/',0+$ ')((-',F$.)*,$ 7/'&0&,&-*$ -(($,)B/(1*$5()6&*&)#$,)$ 0)B-($

5)B-($ 1-#*&,&-*$ *&#'-$ /$.&*,/E-$ &#$,4&*$ 1&(-',&)#$ &*$."'4$ 0-**$

')*,0+$,4/#$ 5()6&1$.)(-$ 5)B-($,4/#$ '/#$ =-$ "*-1;$ $ V*$ /$

')#*-M"-#'-F$.)*,$ 7/'&0&,&-*$ /(-$5)B-($=)"#1$B&,4$."'4$B/*,-1$

70))($ *5/'-;$ $ <4&*$ &*$ /#$ "##-'-**/(+$ ')*,$,4/,$ /0*)$ #-3/,&6-0+$

&.5/',*$'))0$/#1$5)B-($1&*,(&=",&)#$-77&'&-#'+;$$ U#$/$.)1"0/($

1-*&3#F$B-$'/#$-/*&0+$/1^"*,$1/,/$'-#,-($a70))($*5/'-b$,)$./,'4$,4-$

5)B-($ *"550+$ /#1$ 1&*,(&=",&)#$ '/5/=&0&,&-*$)7$,4-$ '-#,-(;$ $ W)B$

1)-*$,4&*$(-1"',&)#$&#$')#*,(/&#,*$&.5/',$1/,/$'-#,-($1-*&3#Q$

$

<4-$.)1"0/($ 1/,/$ '-#,-($)5-#*$ "5$,4-$ 5)**&=&0&,+$)7$./**&6-0+$

1&*,(&=",-1$ *-(6&'-$ 7/=(&'*;$ $ D/,4-($,4/#$ ')#'-#,(/,-$ /00$,4-$

(-*)"('-*$ &#$/$ *./00$#".=-($)7$ 0/(3-$1/,/$'-#,-(*$B&,4$G9$,)$892

.-3/B/,,$ 5)B-($ /55-,&,-*$ /#1$ 5()1&3&)"*$ #-,B)(E$

(-M"&(-.-#,*F$'/#$B-$1&*,(&=",-$,4-$').5",$'0)*-($,)$B4-(-$&,$&*$

$$ $$$$$$$$$$$$$$$$$$$$$$$$$

S$])B*$c&6-$H5-(/,&)#*$')*,$1/,/;$

1,152 systems in 20x8x8 foot
container

from hamilton paper:
container to reduce shipping, packaging, and deployment costs

racks consist of 2-way SMP’s

Types of Clouds
§ Platform-as-a-service

q E.g. Amazon’s EC2

§ Applications-as-a-service
q E.g. Google App Engine (DataStore/GQL,

MapReduce)

8

While others allow for the installation and configuration of nearly any *NIX compatible software,
AppEngine requires developers to use Python as the programming language and "Datastore" – a version
of Google's proprietary BigTable – for data persistence.

App Engine can only execute code called from an HTTP request.

Google App Engine
§ Run web applications (Python-based)
§ API for data store, google accounts, URL

fetching, image manip., email
§ Web-based admin console
§ Free with up to 500MB of storage and 5

million views

9

Infrastructure Services

Compute

Store Message

Elas/c	
 Compute
Cloud

Simple	
 Storage	

Service

Simple	
 Queue
Service

Amazon Simple Storage Service

•	
 1	
 B	
 –	
 5	
 GB	
 /	
 object
•	
 Fast,	
 Reliable,	
 Scalable
•	
 Redundant,	
 Dispersed
•	
 99.99%	
 Availability	

Goal
•	
 Private	
 or	
 Public
•	
 Per-­‐object	
 URLs	
 &	
 ACLs
•	
 BitTorrent	
 Support

In computer security, an access control list (ACL) is a list of permissions attached to an object. The list specifies who or what is allowed to access the
object and what operations are allowed to be performed on the object. In a typical ACL, each entry in the list specifies a subject and an operation: for
example, the entry (Alice, delete) on the ACL for file WXY gives Alice permission to delete file WXY.

Pricing in Europe
Storage

	
 	
 	
 	
 *	
 $0.180	
 per	
 GB	
 –	
 first	
 50	
 TB	
 /	
 month	
 of	
 storage	
 used

	
 	
 	
 	
 *	
 $0.170	
 per	
 GB	
 –	
 next	
 50	
 TB	
 /	
 month	
 of	
 storage	
 used
	
 	
 	
 	
 *	
 $0.160	
 per	
 GB	
 –	
 next	
 400	
 TB	
 /	
 month	
 of	
 storage	
 used
	
 	
 	
 	
 *	
 $0.150	
 per	
 GB	
 –	
 storage	
 used	
 /	
 month	
 over	
 500	
 TB

Data	
 Transfer

	
 	
 	
 	
 *	
 $0.100	
 per	
 GB	
 –	
 all	
 data	
 transfer	
 in

	
 	
 	
 	
 *	
 $0.170	
 per	
 GB	
 –	
 first	
 10	
 TB	
 /	
 month	
 data	
 transfer	
 out
	
 	
 	
 	
 *	
 $0.130	
 per	
 GB	
 –	
 next	
 40	
 TB	
 /	
 month	
 data	
 transfer	
 out
	
 	
 	
 	
 *	
 $0.110	
 per	
 GB	
 –	
 next	
 100	
 TB	
 /	
 month	
 data	
 transfer	
 out
	
 	
 	
 	
 *	
 $0.100	
 per	
 GB	
 –	
 data	
 transfer	
 out	
 /	
 month	
 over	
 150	
 TB

Requests

	
 	
 	
 	
 *	
 $0.012	
 per	
 1,000	
 PUT,	
 COPY,	
 POST,	
 or	
 LIST	
 requests
	
 	
 	
 	
 *	
 $0.012	
 per	
 10,000	
 GET	
 and	
 all	
 other	
 requests*

internal transfers free

Amazon S3 Concepts

Objects:
Opaque data to be stored (1 byte … 5 Gigabytes)
Metadata (attribute-value, up to 4KB)

Authentication and access controls

Buckets (like directories):
Object container – any number of objects
100 buckets per account / buckets are “owned”

Keys:
Unique object identifier within bucket
Up to 1024 bytes long
Flat object storage model

Functionality

– Simple put/get functionality
– Limited search functionality
– Objects are immutable, cannot be renamed

Standards-Based Interfaces:
REST and SOAP
URL-Addressability – every object has a URL

2-­‐level	
 namespace

REST strictly refers to a collection of network architecture principles which outline how resources are defined and addressed. The term is often used in a
looser sense to describe any simple interface which transmits domain-specific data over HTTP without an additional messaging layer such as SOAP or
session tracking via HTTP cookies.

SOAP, originally defined as Simple Object Access Protocol, is a protocol specification for exchanging structured information in the implementation of
Web Services in computer networks. It relies on Extensible Markup Language (XML) as its message format and usually relies on other Application Layer
protocols, most notably Remote Procedure Call (RPC) and HTTP for message negotiation and transmission. SOAP forms the foundation layer of the
web services protocol stack providing a basic messaging framework upon which abstract layers can be built.

Amazon Elastic Compute Cloud

EC2

Amazon EC2
§ Virtual environment for linux/windows

applications
q Create Amazon Machine Image (AMI) with

app’s, lib’s, data, config settings,
q Upload image to S3, then start/stop/monitor

images

17

Amazon EC2 Features

•Elas/c:	
 can	
 increase	
 number	
 of	
 resources	
 as	
 needed
•Configurability:	
 can	
 configure	
 hard	
 resources	
 (as	
 instances)	

or	
 so`ware	
 stack:	
 OS,	
 lib’s,	
 app’s	
 with	
 root	
 access
•Reliability:	
 99.99%
•For	
 applica/ons
•Persistant	
 storage	
 (independant	
 of	
 life	
 of	
 instance)	

•Mul/ple	
 loca/ons:	
 availability	
 zones
•Sta/c	
 IP	
 addresses	
 associated	
 with	
 account	
 (not	
 instance)
•Can	
 remap	
 IP	
 addresses	
 to	
 another	
 instance	
 or	

availability	
 zone	
 as	
 needed

Amazon EC2 Concepts

Amazon Machine Image (AMI):
Bootable root disk
Pre-defined or user-built
Catalog of user-built AMIs

Instance:
Running copy of an AMI
Launch in less than 2 minutes
Start/stop programmatically

Network Security Model:
Explicit access control
Security groups

Inter-service bandwidth is free

Standard Instances

 Small Instance (Default) 1.7 GB of memory, 1 EC2
Compute Unit (1 virtual core with 1 EC2 Compute
Unit), 160 GB of instance storage, 32-bit platform
 Large Instance 7.5 GB of memory, 4 EC2 Compute
Units (2 virtual cores with 2 EC2 Compute Units
each), 850 GB of instance storage, 64-bit platform
 Extra Large Instance 15 GB of memory, 8 EC2
Compute Units (4 virtual cores with 2 EC2 Compute
Units each), 1690 GB of instance storage, 64-bit
platform
EC2 Compute Unit (ECU) – One EC2 Compute Unit
(ECU) provides the equivalent CPU capacity of a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

20

Large instances

Instances of this family have proportionally
more CPU resources than memory (RAM)
and are well suited for compute-intensive
applications.
 High-CPU Medium Instance 1.7 GB of
memory, 5 EC2 Compute Units (2 virtual
cores with 2.5 EC2 Compute Units each),
350 GB of instance storage, 32-bit platform
 High-CPU Extra Large Instance 7 GB of
memory, 20 EC2 Compute Units (8 virtual
cores with 2.5 EC2 Compute Units each),
1690 GB of instance storage, 64-bit platform21

Operating Systems and Software

22

•Opera/ng	
 Systems	
 	
 	
 	
 	
 	

•Red	
 Hat	
 Enterprise	
 Linux	
 	
 Windows	
 Server	
 2003	
 	
 Oracle	

Enterprise	
 Linux
•OpenSolaris	
 	
 openSUSE	
 Linux	
 	
 Ubuntu	
 Linux
•Fedora	
 	
 Gentoo	
 Linux	
 	
 Debian

•So`ware
•Databases
•Oracle	
 11g,	
 MySQL	
 Enterprise,	
 Microso`	
 SQL	
 Server	
 Standard	

2005

•Batch	
 Processing
•Hadoop,	
 	
 Condor

•eb	
 Hos/ng
•Apache	
 HTTP,	
 IIS/Asp.Net	
 	
 	
 	

Pricing

Pay as you use
Standard Instances

Linux
Small (Default) $0.10 per hour
Large $0.40 per hour
Extra Large $0.80 per hour

High CPU Instances
Medium $0.20 per hour
Extra Large $0.80 per hour

Internet Data Transfer
Data transfer in: $0.10 per GB
Data transfer out: $0.17 per GB 23

Amazon EC2 At Work

Startups
Cruxy – Media transcoding
GigaVox Media – Podcast Management

Fortune 500 clients:
High-Impact, Short-Term Projects
Development Host

Science / Research:
Hadoop / MapReduce
mpiBLAST

Load-Management and Load Balancing Tools:
Pound
Weogeo
Rightscale

Usage

25

http://www.jackofallclouds.com/2009/12/state-of-the-cloud-
december-2009/

The input dataset was QuantCast’s top site index. We took the top 500,000 sites listed and ran them through our scanning tools to build an index of the

websites which are hosted on Amazon EC2. So, how many of the world’s top websites are placing their gateway to the world and, in many cases, their

entire business – in the hands of Amazon’s cloud?

Usage

26

http://www.jackofallclouds.com/2009/10/amazon-
usage-estimates-and-updates/
220m annual revenue. http://cloudscaling.com/blog/cloud-
computing/amazons-ec2-generating-220m-annually

Can Clouds Work for Science?
§ Applications don’t need durability,

availability, and access performance all
bundled together

27

!"##$%&'() '")*&+!$++) ',-).//0&!.1&0&'()"2)$'&0&'() +'"3.4-)+(+'-#+)

+$!,).+)56)2"3)',3--)3-.+"%+7)

8&3+'9) +'"3.4-) $'&0&'&-+) ,.:-) /3":-%) /"/$0.3) 2"3) !"%+$#-3+) .%*)

+#.00) 1$+&%-++-+) .%*) !"%'&%$-) '") -:"0:-) 3./&*0(7) ;-&%:&4"3.'&%4)

',-) *&+!$++&"%) "%) "/'&#.0) +'"3.4-) $'&0&'() *-+&4%) <&00) .22-!') ',-)

-+&4%)"2)2$'$3-)+'"3.4-)$'&0&'()+-3:&!-+)',.')'.34-')',-)%--+)"2)',-)

+!&-%!-)!"##$%&'(7)

5-!"%*9) !"#/$'&%4) !-%'-3+) ,.:-) !,.%4-*) 2"!$+) 23"#) +$//"3'&%4)

&+"0.'-*) /3"=-!'+) '") +$//"3'&%4) -%'&3-) $+-3) !"##$%&'&-+) 43"$/-*)

.3"$%*) !"##"%) +!&-%'&2&!) 4".0+) >-7479) ?-3.@3&*) ABCDE7) F3":&*&%4)

+'"3.4-).+).)$'&0&'() &+)#"3-)./') '") +$//"3')$+-3)!"00.1"3.'&"%).%*)

&%'-43.'&"%) <&',) .//0&!.'&"%+) .%*) 2&'+) ',-) #.%*.'-) "2) -G&+'&%4)

!"#/$'&%4) !-%'-3+) .%*) 0.34-) +!.0-) !(1-3) &%23.+'3$!'$3-)

*-/0"(#-%'+7)

8&%.00(9) *.'.H&%'-%+&:-) +!&-%'&2&!) .//0&!.'&"%+) !"%'&%$-) '") +/$3H&%)

%-<)/3"*$!'&"%H#"*-)!"00.1"3.'&"%+7)I+)+$!,9)-!"%"#&-+)"2)+!.0-)

1-!"#-) .) +&4%&2&!.%') &%!-%'&:-) 2"3) 1"',) +'"3.4-) !"%+$#-3+) .%*)

/3":&*-3+)'").*"/')',-)$'&0&'()#"*-07)

?,-) 3-+') "2) ',&+) +-!'&"%) *&+!$++-+) /"++&10-) .3!,&'-!'$3.0) .%*)

2$%!'&"%.0&'() !,.%4-+) '") &#/3":-) ',-) +$&'.1&0&'()"2)56) '") +$//"3')

+!&-%!-).//0&!.'&"%+7)

!"#! $%&'%()*%+,-./01/23%4.,563/347./*87*48,
J'&0&'() +-3:&!-+) +,"$0*) .&#) '") /3":&*-) !"#/.3.10-) /-32"3#.%!-)

<&',) &%H,"$+-) +-3:&!-+) .%*) -G/0"&') -!"%"#&-+) "2) +!.0-) '") 3-*$!-)

!"+'+7) K-'9) <-) -+'&#.'-) ',.'9) '"*.(9) <,&0-) 56)#.() "22-3) +&#&0.3)

/-32"3#.%!-)'").%)&%H,"$+-)+-3:&!-9)&')*"-+)%"')"22-3).)!"#/-00&%4)

!"+').*:.%'.4-7)

L-) 1-0&-:-) ',.') ',-) +"0$'&"%) '") 3-*$!-) +'"3.4-) !"+'+) &+) '")

$%*-3+'.%*) .%*) 3-+/"%*) '") .//0&!.'&"%) 3-M$&3-#-%'+7) N"3-)

+/-!&2&!.00(9) 56) 1$%*0-+) .') .) +&%40-) /3&!-) /"&%') ',3--) +'"3.4-)

+(+'-#) !,.3.!'-3&+'&!+O) &%2&%&'-) *.'.) *$3.1&0&'(9) ,&4,) .:.&0.1&0&'(9)

.%*)2.+')*.'.).!!-++7)N.%().//0&!.'&"%+9),"<-:-39)*")%"')%--*).00)

',-+-) ',3--) !,.3.!'-3&+'&!+) 1$%*0-*) '"4-',-3) P) ',$+) Q$%1$%*0&%4R)

1()) "22-3&%4) #$0'&/0-) !0.++-+) "2) +-3:&!-) '.34-'-*) 2"3) +/-!&2&!)

.//0&!.'&"%)%--*+)#.()0-.*)'")3-*$!-*)!"+'+).%*)',$+)0"<-3)$'&0&'()

/3&!-+7)?,-)3-+')"2)',&+)+-!'&"%)/3-+-%'+).**&'&"%.0).34$#-%'+)',.')

$%1$%*0&%4) !.%) 3-*$!-) !"+'+) 2"3) +/-!&2&!) !0.++-+) "2) .//0&!.'&"%+)

.%*).34$-+)',.')&')&+)'-!,%&!.00()2-.+&10-7)

!"#$"%&'"() *+$&%) ,-%$*-) *+./.7) I+) ?.10-) S) +,"<+9) -.!,) "2) ',-)

',3--) +.0&-%') /3"/-3'&-+) ',.') !,.3.!'-3&T-) .) +'"3.4-) +(+'-#) >*.'.)

$3.1&0&'(9).:.&0.1&0&'(9).%).!!-++H/-32"3#.%!-E)3-M$&3-+)*&22-3-%')

3-+"$3!-+) .%*) -%4&%--3&%4) '-!,%&M$-+7) 8"3) -G.#/0-9) I#.T"%)

!"$0*)"22-3).)!0.++)"2)+-3:&!-)',.')"22-3+)*$3.1&0&'()1$')*.'.)#.()1-)

$%.:.&0.10-)2"3)$/)'")U)*.(+)-:-3()#"%',V)+$!,).)+-3:&!-)#&4,')1-)

!,-./-3)2"3)I#.T"%)',.%)&'+)!$33-%')"22-3&%47)

!"#$"%&'"()*0")#-)-12&+'/-%)#3)022&'*0/'+".7)I)+&4%&2&!.%')+-')"2)

+-3:&!-+)3-M$&3-+)+'"3.4-)',.')"22-3+),&4,H/-32"3#.%!-)"%0()"%)"%-)

"3) '<") "2) ',-) .1":-) /-32"3#.%!-) *&3-!'&"%+) >?.10-) 6E7) 8"3)

-G.#/0-9) .%) .3!,&:.0) +'"3.4-) +-3:&!-) ',.') /$'+) .) /3-#&$#) "%)

$3.1&0&'()!.%)+$3:&:-)0&#&'-)/-3&"*+)<,-3-)*.'.)&+)%"').:.&0.10-7)

W%)XY-3"9) ',-) 0.34-) +,.3-)"2)*.'.) ',.') &+) &%23-M$-%'0()$+-*)!"$0*)

1-)<-00)+'"3-*)"%)'./-)'")3-*$!-)!"+'+7)5&#&0.30(9)*&+'3&1$'-*)*.'.)

!.!,&%4)*-#.%*+)2.+').!!-++)1$')%"'),&4,)*$3.1&0&'(7)

)

93&).,:",96.,/.81'/4.8,%..(.(,71,;/1<*(.,6*+6,;./01/23%4.,

(373,344.88=,6*+6,(373,3<3*)3&*)*7>,3%(,)1%+,(373,('/3&*)*7>,3/.,

(*00./.%7,

563/347./*87*48,
?.81'/4.8,3%(,7.46%*@'.8,71,;/1<*(.,

76.2,

Z&4,H

/-32"3#.%!-)

*.'.).!!-++)

@-"43./,&!.0)*.'.)>"3)+'"3.4-E)3-/0&!.'&"%)

'")&#/3":-).!!-++)0"!.0&'(9),&4,H+/--*)

+'"3.4-9)2.')%-'<"3[+)

X$3.1&0&'()

X.'.)3-/0&!.'&"%)H)/"++&10-).'):.3&"$+)

0-:-0+O),.3*<.3-)>;IWXE9)#$0'&/0-)

0"!.'&"%+9)#$0'&/0-)#-*&.V)-3.+$3-)!"*-+)

I:.&0.1&0&'()

5-3:-3\+-3:&!-)3-/0&!.'&"%9),"'H+<./)

'-!,%"0"4&-+9)#$0'&),"+'&%49)'-!,%&M$-+)'")

&%!3-.+-)).:.&0.1&0&'()2"3).$G&0&.3()+-3:&!-+)

>-7479).$',-%'&!.'&"%9).!!-++)!"%'3"0E)

)

93&).,A",B;;)*437*1%,4)388.8,3%(,76.*/,38814*37.(,/.@'*/.2.%78,

B;;)*437*1%,

4)388,
C'/3&*)*7>, B<3*)3&*)*7>,

D*+6,344.88,

8;..(,

].!,-) ^") X-/-%*+) K-+)

_"%4H'-3#)

.3!,&:.0)
K-+) ^") ^")

`%0&%-)

/3"*$!'&"%)
^") K-+) K-+)

a.'!,)

/3"*$!'&"%)
^") ^") K-+)

)

W%)+!&-%'&2&!)3-+-.3!,)',-)!"+').++"!&.'-*)<&',)0"+&%4)*.'.)*-/-%*+)

"%)<,-',-3)',-)*.'.)&+)3.<)*.'.)"3)*-3&:-*)*.'.)"1'.&%-*)23"#)3.<)

.'.) ',3"$4,)/3"!-++&%47)X-3&:-)*.'.)!.%).0<.(+)1-)3-/3"*$!-*)

.+)%-!-++.3()1.+-*)"%).3!,&:-*)3.<)*.'.7)J+-3+)!"$0*)1-).00"<-*)

'") !,""+-) ',-)1-+') !"+') '3.*-"22)1-'<--%) +'"3&%4)*-3&:-*)*.'.)"%)

,&4,0() *$3.10-) +'"3.4-) .%*) +'"3&%4) &') "%) !,-./-39) 0-++) 3-0&.10-)

+'"3.4-)',.')#&4,')3-+$0')&%)*.'.)0"++).%*)',-)%--*)'")3-!"#/$'-*)

0"+')*.'.).+)%-!-++.3(7)

L-) %"'-) ',.') .) /"++&10-) .34$#-%') .4.&%+') #$0'&/0-) !0.++-+) "2)

+-3:&!-)&+)',.')',-()#.()&%'3"*$!-)%"%'3&:&.0)#.%.4-#-%')!"+'+).')

',-) $'&0&'() +-3:&!-) /3":&*-3) >&%) '-3#+) "2) 3-+"$3!-) #.%.4-#-%'9)

1&00&%4) !0&-%'+9) .%*) -*$!.'&%4) .//0&!.'&"%) *-:-0"/-3+) '") ,.3%-++)

',-#E7)) W%) 2.!'9) .) +&#&0.3) .34$#-%'),.+)1--%)#.*-) 3-4.3*&%4) ',-)

&%'3"*$!'&"%)"2)M$.0&'()"2)+-3:&!-)&%)',-)W%'-3%-')ASbD)ASBD7))L,&0-)

<-).43--)',.')',-+-)!"+'+)!.%)1-)%"%'3&:&.09)<-)1-0&-:-)',.')2$'$3-)

3-+-.3!,) &%) ',&+) .3-.) !.%) 3-*$!-) ',-+-) !"+'+) ',3"$4,) .$'"#.'&"%)

.%*)#.[-)*&22-3-%'&.'-*)+'"3.4-)+-3:&!-+) ',3"$4,)$%1$%*0&%4).%*)

.//-.0&%4).0'-3%.'&:-7)

!":! E%4/.38*%+,F).G*&*)*7>,
`$3) 56) -G/-3&-%!-) .00"<+) $+) '") 3-!"##-%*) /3&#&'&:-+) ',.')<&00)

-G'-%*)',-)20-G&1&0&'()"22-3-*)1()%":-0)+'"3.4-)&%23.+'3$!'$3-+)',.')

!.'-3)'")',-)*-#.%*+)"2)*.'.H&%'-%+&:-)+!&-%!-).//0&!.'&"%+7)?,-+-)

3-!"##-%*.'&"%+) !"$0*) .0+") /3":-) :.0$.10-) '") 0.34-) @3&*)

-/0"(#-%'+) 0&[-) ?-3.@3&) "3)L-+'@3&*) ASSD) <,&!,) .3-)#":&%4)

'"<.3*+) "22-3&%4) &%23.+'3$!'$3-) +-3:&!-+) 2"3) +!&-%!-9) +&#&0.3) &%)

4".0+) '") ',"+-) "22-3-*) 1()I#.T"%R+) 56) .%*)c]S) '") !"##-3!&.0)

.//0&!.'&"%+7)

CPU costs dominate
for scientific workflow
application called montage

First, we note that, for batch processing with little or no
interactive user input, the relatively slow access S3 provides to
individual data items does not have a significant impact on user
observed performance as long as jobs are specified in advance and
S3 is able to provide data at an overall rate faster than the rate at
which it can be processed. To this end, an efficient system using

MapReduce:
Simplified Data Processing on

These are slides from Dan Weld’s class at U. Washington
(who in turn made his slides based on those by Jeff Dean, Sanjay

Ghemawat, Google, Inc.)

§ An abstraction is a simple interface that
allows you to scale up well-structured
problems to run on hundreds or thousands
of computers at once.
q -- Douglas Thain

 * A cluster is a distributed system that consists of a number of identical machines owned by a single entity, usually stacked up in a closet or a machine
room. Clusters became the most common form of high performance computing in the 1990s and are the type of system now dominating the Top 500 List
of supercomputers.
 * A grid is a distributed system that enables people to access computing resources from different institutions over the wide area. The term grid
computing was coined by Ian Foster and Carl Kesselman in the late 1990s to describe easy access to large scale computational power. Examples of
grids include TeraGrid and the Open Science Grid.
 * A cloud is a distributed system where the user doesn't care exactly what resources are used to carry out an operation; this is virtualization in the
most abstract sense. There exist commercial clouds such as Amazon EC2, as well proprietary clouds found in nearly any industrial scale web site.

Large-scale Management Issues

§ How to parallelize
§ Data distribution
§ Scheduling
§ Load balancing
§ Failure management
§ Deployment

MapReduce

§ MapReduce provides
q Automatic parallelization & distribution
q Fault tolerance
q I/O scheduling
q Monitoring & status updates

Map/Reduce
§ Map/Reduce

q Programming model from Lisp
q (and other functional languages)
▫ state what you want to do not how to get it

§ Many problems can be phrased this way
§ Easy to distribute across nodes
§ Nice retry/failure semantics

Map in Lisp (Scheme)
§ (map f list [list2 list3 …])

§ (map square ‘(1 2 3 4))
q (1 4 9 16)

§ (reduce + ‘(1 4 9 16))
q (+ 16 (+ 9 (+ 4 1)))
q 30

Unary operator

Binary operator

Map/Reduce ala Google
§ map(key, val) is run on each item in set

q emits new key, val pairs

§ reduce(key, vals) is run for each unique key
emitted by map()
q emits final output

map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

count words in docs
q Input consists of (url, contents) pairs

q map(key=url, val=contents):
▫ For each word w in contents, emit (w, “1”)

q reduce(key=word, values=uniq_counts):
▫ Sum all “1”s in values list
▫ Emit result “(word, sum)”

Count,
map(key=url, val=contents):

For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

input set: set of words in document specified by url

Grep
q Input consists of (url+offset, single line)
q map(key=url+offset, val=line):
▫ If contents matches regexp, emit (line, “1”)

q reduce(key=line, values=uniq_counts):
▫ Don’t do anything; just emit line

input set: set of lines
Offset specifies line in document

Example uses:
distributed grep distributed sort web link-graph reversal

term-vector / host web access log stats inverted index construction

document clustering machine learning statistical machine
translation

...

Model is Widely Applicable

Reverse Web-Link Graph: The map function outputs
⟨target, source⟩ pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
target, l ist(source)

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of ⟨word, f requency⟩ pairs. The
map function emits a ⟨hostname, term vector⟩
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
hostname, term vector pair.

InvertedIndex: Themapfunctionparseseachdocu-
ment, andemitsasequenceof
⟨word,documentID⟩

pairs. Thereducefunctionacceptsall pairsforagiven
word,sortsthecorrespondingdocumentIDsandemitsa
⟨word,list(documentID)⟩pair. Thesetofalloutput
pairsformsasimpleinvertedindex. Itiseasytoaugment
thiscomputationtokeeptrackofwordpositions.

DistributedSort: Themapfunctionextractsthekey
fromeachrecord,andemitsa
⟨key,record⟩pair. The
reducefunctionemitsallpairsunchanged. Thiscompu-
tationdependsonthepartitioningfacilitiesdescribedin
Section4.1andtheorderingpropertiesdescribedinSec-
tion4.2.

 Typical cluster:

• 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
• Limited bisection bandwidth
• Storage is on local IDE disks
• GFS: distributed file system manages data (SOSP'03)
• Job scheduling system: jobs made up of tasks,
 scheduler assigns tasks to machines

 Implementation is a C++ library linked into user programs

Implementation Overview

Execution Overview
§ How is this distributed?

1. Partition input key/value pairs into chunks,
run map() tasks in parallel

2. After all map()s are complete, consolidate all
emitted values for each unique emitted key

3. Now partition space of output map keys, and
run reduce() in parallel

§ If map() or reduce() fails, reexecute!

16-64MB chuncks

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Execution in more detail

41

MR lib splits input.
Starts master
and worker processes

Master assigns
M map tasks
R reduce tasks

Worker reads chunk
& passes <key,val>
to map function

Intermediate pairs
stored in memory,
written to local disk periodically.
Split using user-specified
 partition function.
Location sent back to master

Given location from
Master, Worker reads
intermediate pairs,
sorts by key,
passes to reduce
function. Result in R
output files on global
FS

num reduce tasks dependent on split function set by user

http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html

The basic idea of MapReduce is straightforward. It consists of two programs that the user writes called map and reduce plus a framework for executing a possibly large number of instances of each program on a compute
cluster.

The map program reads a set of "records" from an input file, does any desired filtering and/or transformations, and then outputs a set of records of the form (key, data). As the map program produces output records, a
"split" function partitions the records into M disjoint buckets by applying a function to the key of each output record. This split function is typically a hash function, though any deterministic function will suffice. When a
bucket fills, it is written to disk. The map program terminates with M output files, one for each bucket.

In general, there are multiple instances of the map program running on different nodes of a compute cluster. Each map instance is given a distinct portion of the input file by the MapReduce scheduler to process. If N nodes
participate in the map phase, then there are M files on disk storage at each of N nodes, for a total of N * M files; Fi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ M.

The key thing to observe is that all map instances use the same hash function. Hence, all output records with the same hash value will be in corresponding output files.

The second phase of a MapReduce job executes M instances of the reduce program, Rj, 1 ≤ j ≤ M. The input for each reduce instance Rj consists of the files Fi,j, 1 ≤ i ≤ N. Again notice that all output records from the map
phase with the same hash value will be consumed by the same reduce instance -- no matter which map instance produced them. After being collected by the map-reduce framework, the input records to a reduce instance
are grouped on their keys (by sorting or hashing) and feed to the reduce program. Like the map program, the reduce program is an arbitrary computation in a general-purpose language. Hence, it can do anything it wants
with its records. For example, it might compute some additional function over other data fields in the record. Each reduce instance can write records to an output file, which forms part of the "answer" to a MapReduce
computation.

Key Grouping

Better to call reduce function once for same key. (E.g. in word counting, <bob, (1, 1, 1, 1, 1)> versus multiple calls to <bob, 1>, <bob, 1>, <bob, 1>

DPK: function of the combiner
E.g. word count. Will have many “the”, 1 key value pairs

Parallel Execution
Partition function hashes by key. E.g. hash(key) mod R.

Partition function ensures pairs with the same key are within the same reduce task???? But intermediate output on local
disk??

http://en.wikipedia.org/wiki/MapReduce
Partition function
The output of all of the maps is allocated to a particular reducer by the application's partition function. The partition function is given the key and the number of reducers and returns the index of the desired reduce.

A typical default is to hash the key and modulo the number of reducers.

[edit]
Comparison function
The input for each reduce is pulled from the machine where the map ran and sorted using the application's comparison function.

[edit]
Reduce function
The framework calls the application's reduce function once for each unique key in the sorted order. The reduce can iterate through the values that are associated with that key and output 0 or more values.

In the word count example, the reduce function takes the input values, sums them and generates a single output of the word and the final sum.

Task states
q idle, in-progress, completed

Handled via re-execution
q Detect failure via periodic heartbeats
q Re-execute completed + in-progress map tasks
▫ Why??? (Complete tasks on local disk)

q Re-execute in progress reduce tasks
q Task completion committed through master

Robust: lost 1600/1800 machines once à finished ok
Semantics in presence of failures: see paper

Fault Tolerance / Workers

Completed map tasks are re-executed on a failure be-
cause their output is stored on the local disk(s) of the
failed machine and is therefore inaccessible. Completed
reduce tasks do not need to be re-executed since their
output is stored in a global file system.

Completed
map
tasks
are
re-executed
on
a
failure
be-
cause their output is stored on the local disk(s) of the
failed machine and is therefore inaccessible. Completed
reduce tasks do not need to be re-executed since their
output is stored in a global file system.

Master Failure

§ Could handle, … ?
§ But don't yet

q (master failure unlikely)
q Could use VM mechanism to hide

master failure

Slow workers significantly delay completion time
q Other jobs consuming resources on machine
q Bad disks w/ soft errors transfer data slowly
q Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup tasks
q Whichever one finishes first "wins"

Dramatically shortens job completion time

Refinement:

Refinement
Skipping Bad Records

§ Map/Reduce functions sometimes fail for
particular inputs
q Best solution is to debug & fix

▫ Not always possible ~ third-party source libraries
q On segmentation fault:

▫ Send UDP packet to master from signal handler
▫ Include sequence number of record being

processed
q If master sees two failures for same record:

▫ Next worker is told to skip the record

§ Sorting guarantees
q within each reduce partition

§ Compression of intermediate data
§ Combiner

q Useful for saving network bandwidth

§ Local execution for debugging/testing
§ User-defined counters

Other Refinements

http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html

locality:
store files on FGS in 64MB blocks

We guarantee that within a given partition, the interme-
diate key/value pairs are processed in increasing key or-
der. This ordering guarantee makes it easy to generate
a sorted output file per partition, which is useful when
the output file format needs to support efficient random
access lookups by key, or users of the output find it con-
venient to have the data sorted.

combine - reduces on local disk of map task before sending info over network. E.g. word count task with repetitive works

The MapReduce library provides a counter facility to
count occurrences of various events. For example, user
code may want to count total number of words processed
or the number of German documents indexed, etc.

 Tests run on cluster of 1800 machines:
q 4 GB of memory
q Dual-processor 2 GHz Xeons with Hyperthreading
q Dual 160 GB IDE disks
q Gigabit Ethernet per machine
q Bisection bandwidth approximately 100 Gbps

 Two benchmarks:
 MR_GrepScan 1010 100-byte records to extract records

 matching a rare pattern (92K matching records)

Performance

Jump to: navigation, search

If the network is segmented into two equal parts, this is the bandwidth between the two parts.[1] Typically, this refers to the worst-case segmentation,
but being of equal parts is critical to the definition, as it refers to an actual bisection of the network.

Bisection bandwidth. The bidirectional capacity of a network between two equal-sized partitions of nodes. The cut across the network is taken at the
narrowest point in each bisection.

MR_Grep

Locality optimization helps:
§ Input stored on FS in 64GB chunks

q Workers are spawned near corresponding chucks
§ 1800 machines read 1 TB at peak ~31 GB/s
§ W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs

Rate at which
input is scanned

Time

Start up overhead high as
MR assigns tasks to workers.
Must send program to all
workers, and open 1000 input
files

y-axis: rate at which input is scanned

startup overhead high due as MR assigned tasks to workers

This includes about a minute of startup over-
head. The overhead is due to the propagation of the pro-
gram to all worker machines, and delays interacting with
GFS to open the set of 1000 input files and to get the
information needed for the locality optimization.

Network bandwidth is a relatively scarce resource in our
computing environment. We conserve network band-
width by taking advantage of the fact that the input data
(managed by GFS [8]) is stored on the local disks of the
machines that make up our cluster. GFS divides each
file into 64 MB blocks, and stores several copies of each
block (typically 3 copies) on different machines. The
MapReduce master takes the location information of the
input files into account and attempts to schedule a map
task on a machine that contains a replica of the corre-
sponding input data. Failing that, it attempts to schedule
a map task near a replica of that taskʼs input data (e.g., on
a worker machine that is on the same network switch as
the machine containing the data). When running large
MapReduce operations on a significant fraction of the
workers in a cluster, most input data is read locally and
consumes no network bandwidth.

MR_Sort

§ sort program sorts 1010 100-byte records (approximately 1 terabyte of data)

§ map: extract 10-byte sorting key. emit key and line as value

§ reduce: built-in identity function

§ input data split into 64-MB pieces (M=15000)

§ output data in 4000 files (R=4000)

§ Partition function uses initial bytes of key to place in one of R chunks
q Local sort done for each R chunk by MR before the “reduce”

q Map task send intermediate output to local disk before shuffling to
form partition

51

map-reduce-review.pdf
The MapReduce sort has been written in roughly 50 lines
of code which is impressive given the complexity of the
parallelization of the computation. MapReduce already
processes keys in a sorted order, so most of the work has
already been done in the MapReduce infrastructure. As
with NOW Sort, there are 100 byte records and 10 byte
keys. The keys are then separated from the records. In
order to partition inputs across the workers, the modulo
function is used by looking at the top few bits (dpk: highest bits) and finding
the remainder (of those highest bits) when divided by the number of mappers. In
this case, a reducer is not really needed since the data is
already sorted by the end of the map phase. The reducer
then is simply the identity function.
Both the NOW sort and the MapReduce sort get the in-
put data from the local disk initially. Also, both methods
assume an initial even distribution of keys across all the
nodes. As NOWSort reads the keys, it sends each key to
the correct machine with the appropriate bucket (which
could be remote). However, MapReduce sends to the lo-
cal disk first before the shuffle phase begins. The final
phase for both methods is simply a local sort of the data.
NOWSort finishes by writing the output data to the local
disk. MapReduce on the other hand uses GFS to store out-
put data, so one replica is produced. This means that two
writes are needed at the end which decreases performance
but is more robust to failure.
2

Ourpartitioningfunctionforthisbenchmarkhasbuilt-
inknowledgeof thedistributionof keys. Inageneral
sortingprogram, wewouldaddapre-passMapReduce
operationthat wouldcollect asampleof thekeysand
usethedistributionofthesampledkeystocomputesplit-
pointsforthefinalsortingpass.

there is a final sorting pass

 Normal No backup tasks 200 processes killed

MR_Sort

§ Backup tasks reduce job completion time a lot!
§ System deals well with failures

IO bw < grep since desired pattern uncommon
sort spends half of time writing output to local disks

Rate data send from
map tasks to reduce
tasks

First hump: 1700 reduce
tasks. 1 per host out of 1700 hosts

Second hump: remaining reduce tasks

Delay between first shuffling and start
of writing due to sorting of intermediate
data

Figure3(a)showstheprogressofanormalexecution
of thesort program. Thetop-left graphshowstherate
at whichinputisread. Theratepeaksat about13GB/s
anddiesofffairlyquicklysinceall maptasksfinishbe-
fore200secondshaveelapsed. Notethat theinput rate
islessthanforgrep. Thisisbecausethesort maptasks
spendabouthalftheirtimeandI/Obandwidthwritingin-
termediateoutputtotheirlocaldisks. Thecorresponding
intermediateoutputforgrephadnegligiblesize.

Afewthingstonote: theinputrateishigherthanthe
shufflerateandtheoutput ratebecauseof our locality
optimization–most dataisreadfromalocal diskand
bypassesourrelativelybandwidthconstrainednetwork.
Theshufflerateishigher thantheoutput ratebecause
theoutputphasewritestwocopiesofthesorteddata(we
maketworeplicasoftheoutputforreliabilityandavail-
abilityreasons). Wewritetworeplicasbecausethat is
themechanismfor reliabilityandavailabilityprovided
byour underlyingfilesystem. Networkbandwidthre-
quirementsforwritingdatawouldbereducediftheun-
derlyingfilesystemusederasurecoding[14]ratherthan
replication.

The MapReduce sort has been written in roughly 50 lines
of code which is impressive given the complexity of the
parallelization of the computation. MapReduce already
processes keys in a sorted order, so most of the work has
already been done in the MapReduce infrastructure. As
with NOW Sort, there are 100 byte records and 10 byte
keys. The keys are then separated from the records. In
order to partition inputs across the workers, the modulo
function is used by looking at the top few bits and finding
the remainder when divided by the number of mappers. In
this case, a reducer is not really needed since the data is
already sorted by the end of the map phase. The reducer
then is simply the identity function.
Both the NOW sort and the MapReduce sort get the in-
put data from the local disk initially. Also, both methods
assume an initial even distribution of keys across all the
nodes. As NOWSort reads the keys, it sends each key to
the correct machine with the appropriate bucket (which
could be remote). However, MapReduce sends to the lo-
cal disk first before the shuffle phase begins. The final
phase for both methods is simply a local sort of the data.
NOWSort finishes by writing the output data to the local
disk. MapReduce on the other hand uses GFS to store out-
put data, so one replica is produced. This means that two
writes are needed at the end which decreases performance
but is more robust to failure.
2

at whichinputisread. Theratepeaksat about13GB/s
anddiesofffairlyquicklysinceall maptasksfinishbe-
fore200secondshaveelapsed. Notethat theinput rate
islessthanforgrep. Thisisbecausethesort maptasks
spendabouthalftheirtimeandI/Obandwidthwritingin-
termediateoutputtotheirlocaldisks. Thecorresponding
intermediateoutputforgrephadnegligiblesize.

Themiddle-left graphshows therateat whichdata
issent over thenetworkfromthemaptaskstothere-
duce tasks. This shufflingstarts as soonas the first
maptaskcompletes. Thefirst humpinthegraphisfor

thefirst batchof approximately1700reducetasks(the
entireMapReducewasassignedabout 1700machines,
andeachmachineexecutesat most onereducetaskat a
time). Roughly300secondsintothecomputation,some
of thesefirst batchof reducetasksfinishandwestart
shufflingdatafortheremainingreducetasks. All ofthe
shufflingisdoneabout600secondsintothecomputation.
Thebottom-leftgraphshowstherateat whichsorted
dataiswrittentothefinaloutputfilesbythereducetasks.
Thereisadelaybetweentheendofthefirstshufflingpe-
riodandthestart ofthewritingperiodbecausethema-
chinesarebusysortingtheintermediatedata. Thewrites
continueat arateofabout 2-4GB/sforawhile. All of
thewritesfinishabout850secondsintothecomputation.
Includingstartupoverhead,theentirecomputationtakes
891seconds. Thisissimilartothecurrentbestreported
resultof1057secondsfortheTeraSortbenchmark[18].

thefirst batchof approximately1700reducetasks(the
entireMapReducewasassignedabout 1700machines,
andeachmachineexecutesat most onereducetaskat a
time). Roughly300secondsintothecomputation,some
of thesefirst batchof reducetasksfinishandwestart
shufflingdatafortheremainingreducetasks. All ofthe
shufflingisdoneabout600secondsintothecomputation.
Thebottom-leftgraphshowstherateat whichsorted
dataiswrittentothefinaloutputfilesbythereducetasks.
Thereisadelaybetweentheendofthefirstshufflingpe-
riodandthestart ofthewritingperiodbecausethema-
chinesarebusysortingtheintermediatedata. Thewrites
continueat arateofabout 2-4GB/sforawhile. All of
thewritesfinishabout850secondsintothecomputation.
Includingstartupoverhead,theentirecomputationtakes
891seconds. Thisissimilartothecurrentbestreported
resultof1057secondsfortheTeraSortbenchmark[18].

 Number of jobs 29,423
 Average job completion time 634 secs
 Machine days used 79,186 days

 Input data read 3,288 TB
 Intermediate data produced 758 TB
 Output data written 193 TB

 Average worker machines per job 157
 Average worker deaths per job 1.2
 Average map tasks per job 3,351
 Average reduce tasks per job 55

Usage in Aug 2004

Conclusions
§ MapReduce proven to be useful abstraction

§ Greatly simplifies large-scale computations

§ Fun to use:
q focus on problem,
q let library deal w/ messy details

A major step backwards
§ http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-

back.html

§ A giant step backward in the programming paradigm for large-scale data
intensive applications

§ A sub-optimal implementation, in that it uses brute force instead of
indexing (hash / B-trees)

§ Not novel at all -- it represents a specific implementation of well known
techniques developed nearly 25 years ago

§ Missing most of the features that are routinely included in current DBMS

§ Incompatible with all of the tools DBMS users have come to depend on

55

• Use free compute, storage and network
resources in Internet and Intranet
environments

• Reuse existing (power, resource)
infrastructure

• Motivation

• High return on investment

• Savings often a factor 5 or 10 compared
to dedicated cluster

• Access to huge computational power and
storage resources

Desktop Grids

State of the Art

• 400 TeraFlops/sec, over one million hosts

State of the artState of the art

Tightly-coupled,Tightly-coupled,

multiple applications,multiple applications,

with time constraintswith time constraints

Loosely-coupled, Loosely-coupled,

single application,single application,

without time constraintswithout time constraints

The future looks promising with the rapid improvement of commodity components. Gigabit switches, fiber optic
networks, multi-core processors.

Challenges
• Volatility

• Resources are shared

• Mouse/keyboard activity, user processes

• Nondeterministic failures

• Often 50% failure rates

• Heterogeneity

• Accessibility

• Resources are behind NAT’s, firewalls

• Security

Use of resources across organizational domains through virtual organization

Outline

• BOINC

• XtremWeb

• Prediction

BOINC
• Background

• Led by David Anderson, UC Berkeley

• SETI@home

• Single astronomy application

• Too many resources

• Goals of BOINC

• Ability to share resources among multiple
projects

• User autonomy

• Usability

OOO install condor
globus: have to setup certificate authority, compile, permissions

BOINC Architecture
DATABASE

DISPATCHER

WORKER

DATA REPOSITORY

FILE

SYSTEM

GENERATOR

INTERNET

INPUT FILE

DOWNLOAD

AND OUTPUT

UPLOAD

BOINC SERVER

WORK UNIT

REQUEST,

DOWNLOAD

PROJECT

BOOKKEEPING

WORKERWORKER

data repository is just an http server that provides upload and download access to files

worker request includes description of the host and amount of work requested

input files (executable and input files) are downloaded from the data server
output files are uploaded to the data server

As described earlier, a workunit represents the inputs to a computation. The steps in creating a workunit are:

 * Write XML 'template files' that describe the workunit and its corresponding results. Generally the same templates will be used for a large number work of workunits.
 * Create the workunit's input file(s) and place them in the download directory.
 * Invoke a BOINC function or script that creates a database record for the workunit.

Once this is done, BOINC takes over: it creates one or more results for the workunit, distributes them to client hosts, collects the output files, finds a canonical result, assimilates the canonical result, and deletes files.

is validator on different machine as the data repository

worker responsible for controlling when application can run

separation of data and accounting
how is data replicated between the data server and the scheduling server

BOINC Architecture

WORKER

INTERNET

DATABASE

DISPATCHER

DATA REPOSITORY

FILE

SYSTEM

GENERATOR BOINC SERVER

PROJECT

BOOKKEEPING

DATABASE

DISPATCHER

DATA REPOSITORY

FILE

SYSTEM

GENERATOR BOINC SERVER

PROJECT

BOOKKEEPING

DATABASE

DISPATCHER

DATA REPOSITORY

FILE

SYSTEM

GENERATOR BOINC SERVER

PROJECT

BOOKKEEPING

use boinc for grid4all

• Scheduling done at the worker level (as their is no communication among the servers)

OOO replace einstein with LHC

BOINC Worker
Scheduling Problem

• Workers have resource share (CPU)
allocation per project

• Work units per project have a deadline

• Goal: meet deadline and also resource share
allocations

• Which project to schedule next on worker?

BOINC Scheduling Approach

• Use weighted round robin until a project
risks missing deadline

• If so, switch to earliest deadline first
scheduling

• N.B.: scheduling depends on many different
parameters (e.g., availability of the resources,
resource hardware, user preferences, task
deadlines, resource shares, estimates of task
completion time, number and characteristics
of projects)

OOO scheduling approach
check number of parameters

XtremWeb

• Led by Gilles Fedak (fedak@lri.fr), INRIA
Futurs

• Goals

• Support symmetric needs of users

• Allow any node to play any role (client,
worker)

• Fault tolerance

• Usability

BOINC assumed that the needs of users are asymmetric

true
where has xtremweb been used

XtremWeb Architecture

CLIENT WORKER

DISPATCHER

INTERNET

TASK SUBMISSION TASK REQUEST,

DOWNLOAD,

UPLOAD

SCHEDULER

PROJECT

BOOKEEPING

DATABASE

FILE

SYSTEM

XTREMWEB SERVER

CLIENTWORKER

difference between XW and BOINC, is that worker does not have choice about which application to participate in.

OOO multiple clients
coordination among schedulers: none
worker communication is done via xml-rpc (using http as the transport protocol) or java rmi
how does dispatcher choose tasks from applications: round robin

client, server, dispatcher, application executed determined by worker
what does user have to implement
relationship between file and database
replication allowed?
how to authenticate
differences bewteen boinc

Artur Andrzejak Zuse-Institute Berlin (ZIB)

Derrick Kondo INRIA

David P. Anderson UC Berkeley

 Ensuring Collective Availability in
Volatile Resource Pools via

Forecasting

Motivation
• Goal: can we deploy serious services / apps over

unreliable resources?
• How unreliable?

– mostly non-dedicated PC's (used for other purposes)
– e.g. volunteer computing Grids such as SETI@home
– no control over availability, frequent churn

• What are "serious" services / apps?
– large scale service deployment

• examples: Amazon's EC2, TeraGrid, EGEE
– complex applications

• examples: DAG/message-passing applications
– high availability: around 99.999

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale
computing easier for developers.

Amazon EC2ʼs simple web service interface allows you to obtain and configure capacity with minimal friction. It provides you with complete control of
your computing resources and lets you run on Amazonʼs proven computing environment. Amazon EC2 reduces the time required to obtain and boot new
server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change. Amazon EC2 changes
the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure
resilient applications and isolate themselves from common failure scenarios.

How to do this?
• Difficult to get (many) hosts with high avail
• Instead, we strive for collective availability:

– def.: guarantee that with high probability, in a group of
R ≥ N hosts, at least N remain available over time T

R = 6, N = 3 4 ≥ N survived, col. availability achieved

Time T

mean is .62%

Our Focus
• We use statistical and prediction methods to

answer the question:
– Given a pool of non-dedicated hosts and a request for N

hosts, how to select them such that the collective
availability is maximized?

• i.e. at least N among R hosts "survive" interval T

• Then deployment:

Initial
group

Usage
over T

Which
failed?

Prediction
of next phase

Replacement
from pool

Usage
over T

...x x
x

Initial
prediction

Availability Prediction
• We propose efficient and domain-adjusted

predictions of availability for individual hosts
– efficient:

• fast pre-selection of predictable hosts
• use simple and fast classification algorithm

– domain-adjusted
• analyze the factors of predictability and adjust our methods

to them

• Then we use these individual predictions to
achieve collective availability

domain-adujusted: use right features like time of day

Measurement Data
• Availability traces for over 48,000 hosts

participating in SETI@home
• Active in Dec 1st, 2007 to Feb 12th, 2008
• Availability recorded by a BOINC client

– depends whether the machine was idle
– The definition of idle depends on user settings

• Quantized to 1 hour intervals
– regarded as available only if uninterrupted avail for the

whole hour – quite conservative

• For availability characterization, see:
– Derrick Kondo, Artur Andrzejak, David P. Anderson: On Correlated

Availability in Internet-Distributed Systems, 9th IEEE/ACM
International Conference on Grid Computing (Grid 2008), Tsukuba,
Japan, September 29-October 1, 2008

Prediction Process

predictability is different from avialability. 1 hour

Filtering Hosts By Predictability
• We want to find out, for each host, whether its

availability predictions are likely to be accurate
• I.e. we want hosts with high predictability:

– def.: expected accuracy of predictions from a model
build on historical data

• To estimate it, we use indicators of predictability
– fast to compute (at least faster than a prediction model)
– use only training data

Predictability Computation
• To assess the accuracy of predictability indicators, we have

to compute for each host the true accuracy of model-based
predictions

• To this end, we train a prediction model on the historical
availability data (4 weeks @ 1 hour), and then compute the
prediction error on the subsequent 2 weeks (1 hour =>
2*7*24 predictions)
– This is only the "laboratory" scenario, not done in real

deployment
– The predictability indicators should tell us, for which hosts it is

not worth to build model / do predictions

Predictability Indicators
• We have tested, among others:

– Average length of an uninterrupted availability
segment

– Size of the compressed availability trace
• traces with predictable patterns are likely to compress

better

– Prediction error tested on a part of the training data
(as a "control indicator")

– Number of availability state changes per week
(aveSwitches)

• Evaluation:
– correlation, scatter plots

OOO how to compress

And the winner is..
• Number of availability state changes per week: aveSwitches

Spearman's rank
correlation coefficient
indicator vs.
prediction error

Scatter plot
aveSwitches vs.
prediction error

Why are AveSwitches good?
• There are some "reasons" for data regularity →

high prediction accuracy
1. Periodic behavior, e.g. daily periodicities
2. Long runs of availability / non-availability
3. …

• We have studied which "reasons" are dominant:
– by using data preprocessing which "helps" either 1 or 2

• results show that "reason" 2 is dominant
• highest accuracy for a mixture of both "reasons"

Filtering by predictability
• We create two groups for further processing:

– low predictability, with aveSwitches ≥ 7.47
– high predictability, with aveSwitches < 7.47

Prediction Background
> Def. of classifier: a function which learns its output value from

examples

> Function inputs are called attributes, in our study:

> Functions of availability represented as 01 binary string

> Time (e.g. hour in day), history bits (sum of recent k history bits)

> Output is an element from some fixed set, in our study:

> {0,1} representing availability

learn

← predict

Attribute1 ... Attributen Output

Example 1 [23,10] ... [21,5] 0

Example k [11,10] ... [5,0] 1

Prediction [1,7] ... [13,7] ?

}
11-12

Time features include for each sample calendar information, such as hour in day, hour in week, day in week, day in month
The hist features (for each sample) the sums of the recent k “history bits” for k = 2, 5, 10, 50, 100.

To help a classifier, we enrich the original 01 data with features from the folowing groups. The time features include for each sample calendar information such as hour
in day, hour in week, day in week, day in month. The hist features are (for each sample) the sums of the recent k “history bits”for k = 2, 5, 10, 20, 50, 100.

Predictive models are implemented using classifiers

Prediction
• We have used a simple and fast classifier

– naive Bayes

• The classifier takes examples i.e. vectors of
measured avail + preprocessed data over 30 days

• Predicts for each hour over two weeks
– starting now, will the host be available in the next k

hours
• this is prediction interval length, pil

1 h 1 h 1 h 1 h 1 h

"now" prediction interval with pil = 4h

p(A|B) = p(A)p(B|A) / p (B)

What drives accuracy?
• Dependence upon

– prediction interval length, pil
– training interval length
– host ownership type (private, school, work)

OOO filter out all hosts with avail < 1 day (filter out hosts just testing BOINC)

Simulation Approach
• For each host in the high-predictability group

make prediction at t0 for pil time, and select
random R among those predicted as availiable

• R depends upon:
– N = the desired number of hosts (at least N should be

always available)
– the redundancy (R-N)/N

• Our simulations answer:
– given N and α, the desired availability level, what is the

necessary redundancy, i.e. necessary R?
– a little weaker: success rate: ratio (# experiments with

at least N hosts alive after time T) / (all experiments)

OOO number points
eric: OOO order by predictabiity
OOO remove 100% available hosts.
 (but need to consider host speed as well)

Necessary Redundancy
• High predictability group (pil=4)

Necessary Redundancy
• Low predictability group (pil=4)

Is this Redundancy too high?
• In high predictability group, we have required

redundancy of 35%
• However, we consider this dramatically low

– In comparison, SETI@home has 200% redundancy (also
used for result validation)

– In terms of absolute savings, that equates to 165
TeraFLOPS saved in a 1 PetaFLOPS system (such as
FOLDING@home) => significant power savings

• As a result, the BOINC consortium is interested in
potentially applying our prediction schema in
their job scheduling (preliminary talks)

Migration Overhead
• We also evaluated the overhead due to host

migration, service restart between slices of len T
• Threshold = a multiple of pil which describes the

total time (many T's) of running an app / service
• Turnover rate TR:

– let S be a set of hosts predicted to be available at t0

– for those we predict which ones become not available
after time pil, i.e. second prediction at t0+T

– TR is the fraction of hosts which change from avail to
non-avail

– essentially, the higher, the more migration needed

Turnover Rates
• about 2.5% for high predictability group
• about 12% for low predictability group

Summary
• Given that host redundancy is not an issue

("cheap" resources), high collective availability is
achievable
– even with low migration costs

• Predictability assessment and filtering is essential
– improves accuracy
– avoids many "wasted" predictions

• Future work:
– hardest part: a new "application architecture" /

programming model for collective availability
– masking failures by virtualization and VM migration

References
• This work has been accepted at:

– 19th IFIP/IEEE Conference on Distributed Systems:
Operations and Management (DSOM 2008) (part of
Manweek 2008), Samos Island, Greece, September
22-26, 2008

• Pdf available on request, please send e mail
(derrick.kondo [at] inria.fr)

Reverse Web-Link Graph
§ Map

q For each URL linking to target, …
q Output <target, source> pairs

§ Reduce
q Concatenate list of all source URLs
q Outputs: <target, list (source)> pairs

Inverted Index
§ Map ()

q emit <word, document ID>

§ Reduce
q emit <word, list (document ID)>

Job Processing

JobTracker

TaskTracker 0 TaskTracker 1 TaskTracker 2

TaskTracker 3 TaskTracker 4 TaskTracker 5

1. Client submits “grep” job, indicating code
and input files

2. JobTracker breaks input file into k chunks,
(in this case 6). Assigns work to ttrackers.

3. After map(), tasktrackers exchange map-
output to build reduce() keyspace

4. JobTracker breaks reduce() keyspace into m
chunks (in this case 6). Assigns work.

5. reduce() output may go to NDFS

“grep”

Task Granularity & Pipelining
§ Fine granularity tasks: map tasks >> machines

q Minimizes time for fault recovery
q Can pipeline shuffling with map execution
q Better dynamic load balancing

§ Often use 200,000 map & 5000 reduce tasks
§ Running on 2000 machines

Refinement:
§ Master scheduling policy:

q Asks GFS for locations of replicas of input file blocks
q Map tasks typically split into 64MB (GFS block size)
q Map tasks scheduled so GFS input block replica are on

same machine or same rack

§ Effect
q Thousands of machines read input at local disk speed

▫ Without this, rack switches limit read rate

EC2 SOAP/Query API

Images:
RegisterImage
DescribeImages
DeregisterImage

Instances:
RunInstances
DescribeInstances
TerminateInstances
GetConsoleOutput
RebootInstances

Keypairs:
CreateKeyPair
DescribeKeyPairs
DeleteKeyPair

Image Attributes:
ModifyImageAttribute
DescribeImageAttribute
ResetImageAttribute

Security Groups:
CreateSecurityGroup
DescribeSecurityGroups
DeleteSecurityGroup
AuthorizeSecurityGroupIngress
RevokeSecurityGroupIngress

CloudFront

108

Rewrote Google's production indexing
System using MapReduce

q Set of 10, 14, 17, 21, 24 MapReduce
operations

q New code is simpler, easier to understand
▫ 3800 lines C++ à 700

q MapReduce handles failures, slow machines
q Easy to make indexing faster

Experience

Related Work
§ Programming model inspired by functional

language primitives
§ Partitioning/shuffling similar to many large-scale

sorting systems
q NOW-Sort ['97]

§ Re-execution for fault tolerance
q BAD-FS ['04] and TACC ['97]

§ Locality optimization has parallels with Active
Disks/Diamond work
q Active Disks ['01], Diamond ['04]

§ Backup tasks similar to Eager Scheduling in
Charlotte system
q Charlotte ['96]

§ Dynamic load balancing solves similar problem as

Cloud versus the Grid
§ Geographically distributed
§ Across multiple administrative domains
§ App’s need high-level programming

abstractions (e.g. workflow)

111

§ Assumptions defined by Globus

Steps
§ Get Amazon account

q http://www.amazonaws.com
§ Boot instance of AMI image
§ Log in with ssh
§ Start Apache

112

