
Parallel
Algorithms

A. Legrand

Parallel Algorithms

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

October 2, 2011

1 / 235

arnaud.legrand@imag.fr

Parallel
Algorithms

A. Legrand

Outline

Part I Network Models

Part II Communications on a Ring

Part III Speedup and Efficiency

Part IV Algorithms on a Ring

Part V Algorithm on an Heterogeneous Ring

Part VI Algorithms on an Grid

2 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Part I

Network Models

3 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Motivation

I Scientific computing : large needs in computation or storage re-
sources.

I Need to use systems with “several processors”:

I Parallel computers with shared/dis-
tributed memory

I Clusters

I Heterogeneous clusters

I Clusters of clusters

I Network of workstations

I The Grid

I Desktop Grids

I When modeling platform, communications modeling seems to be
the most controversial part.

I Two kinds of people produce communication models: those who
are concerned with scheduling and those who are concerned with
performance evaluation.

I All these models are imperfect and intractable.

4 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

1 Point to Point Communication Models
Hockney
LogP and Friends
TCP

2 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

3 Remind This is a Model, Hence Imperfect

4 Topology
A Few Examples
Virtual Topologies

5 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

UET-UCT

Unit Execution Time - Unit Communication Time.

Hem. . . This one is mainly used by scheduling theoreticians to prove
that their problem is hard and to know whether there is some hope to
prove some clever result or not.

Some people have introduced a model whith cost of ε for local com-
munications and 1 for communications with the outside.

6 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

“Hockney” Model

Hockney [Hoc94] proposed the following model for performance eval-
uation of the Paragon. A message of size m from Pi to Pj requires:

ti,j(m) = Li,j + m/Bi,j

In scheduling, there are three types of “corresponding” models:

I Communications are not “splitable” and each communication k is
associated to a communication time tk (accounting for message
size, latency, bandwidth, middleware, . . .).

I Communications are “splitable” but latency is considered to be
negligible (linear divisible model):

ti,j(m) = m/Bi,j

I Communications are “splitable” and latency cannot be neglected
(linear divisible model):

ti,j(m) = Li,j + m/Bi,j

7 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

LogP

The LogP model [CKP+96] is defined by 4 parameters:
I L is the network latency
I o is the middleware overhead (message splitting and packing,

buffer management, connection, . . .) for a message of size w
I g is the gap (the minimum time between two packets communi-

cation) between two messages of size w
I P is the number of processors/modules

g gg g

o oo

o oo o

g gg g
L

o
Sender
Card

Receiver
Card

Network

I Sending m bytes with packets of size w :

2o + L +
⌈
m
w

⌉
·max(o, g)

I Occupation on the sender and on the receiver:

o + L +
(⌈

m
w

⌉
− 1
)
·max(o, g)

8 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

LogP

The LogP model [CKP+96] is defined by 4 parameters:
I L is the network latency
I o is the middleware overhead (message splitting and packing,

buffer management, connection, . . .) for a message of size w
I g is the gap (the minimum time between two packets communi-

cation) between two messages of size w
I P is the number of processors/modules

o

gg gg g

o oo

o oo o

g gg g
L

o
Sender
Card

Receiver
Card

Network

I Sending m bytes with packets of size w :

2o + L +
⌈
m
w

⌉
·max(o, g)

I Occupation on the sender and on the receiver:

o + L +
(⌈

m
w

⌉
− 1
)
·max(o, g)

8 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

LogGP & pLogP

The previous model works fine for short messages. However, many par-
allel machines have special support for long messages, hence a higher
bandwidth. LogGP [AISS97] is an extension of LogP:
G captures the bandwidth for long messages:

short messages 2o + L +
⌈
m
w

⌉
·max(o, g)

long messages 2o + L + (m − 1)G

There is no fundamental difference. . .

OK, it works for small and large messages. Does it work for average-
size messages ? pLogP [KBV00] is an extension of LogP when L, o
and g depends on the message size m. They also have introduced
a distinction between os and or . This is more and more precise but
concurency is still not taken into account.

9 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Bandwidth as a Function of Message Size

With the Hockney model: m
L+m/B .

 0

 200

 400

 600

 800

 1000

16Mo4Mo1Mo256Ko64Ko16Ko4Ko2Ko1Ko 256 128 64 32 16 8 4 2 1

B
a

n
d

e
 p

a
s
s
a

n
te

 [
M

b
it
s
/s

]

Taille des messages

Mpich 1.2.6 sans optimisation
Mpich 1.2.6 avec optimisation

MPICH, TCP with Gigabit Ethernet

10 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Bandwidth as a Function of Message Size

With the Hockney model: m
L+m/B .

 0

 200

 400

 600

 800

 1000

16Mo4Mo1Mo256Ko64Ko16Ko4Ko2Ko1Ko 256 128 64 32 16 8 4 2 1

B
a

n
d

e
 p

a
s
s
a

n
te

 [
M

b
it
s
/s

]

Taille des messages

Mpich 1.2.6 sans optimisation
Mpich 1.2.6 avec optimisation

MPICH, TCP with Gigabit Ethernet

10 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

What About TCP-based Networks?

The previous models work fine for parallel machines. Most networks
use TCP that has fancy flow-control mechanism and slow start. Is it
valid to use affine model for such networks?
The answer seems to be yes but latency and bandwidth parameters
have to be carefully measured [LQDB05].

I Probing for m = 1b and m = 1Mb leads to bad results.

I The whole middleware layers should be benchmarked (theoretical
latency is useless because of middleware, theoretical bandwidth is
useless because of middleware and latency).

The slow-start does not seem to be too harmful.
Most people forget that the round-trip time has a huge impact on the
bandwidth.

11 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

1 Point to Point Communication Models
Hockney
LogP and Friends
TCP

2 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

3 Remind This is a Model, Hence Imperfect

4 Topology
A Few Examples
Virtual Topologies

12 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Multi-ports

I A given processor can communicate with as many other processors
as he wishes without any degradation.

I This model is widely used by scheduling theoreticians (think about
all DAG with commmunications scheduling problems) to prove
that their problem is hard and to know whether there is some
hope to prove some clever result or not.
This model is borderline, especially when allowing duplication,
when one communicates with everybody at the same time, or
when trying to design algorithms with super tight approximation
ratios.

Frankly, such a model is totally unrealistic.

I Using MPI and synchronous communica-
tions, it may not be an issue. However, with
multi-core, multi-processor machines, it can-
not be ignored. . .

Multi-port

1 1

1

A

CB

(numbers in s)
13 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Bounded Multi-port

I Assume now that we have threads or multi-core processors.

We can write that sum of the throughputs of all communications
(incomming and outgoing). Such a model is OK for wide-area
communications [HP04].

I Remember, the bounds due to the round-trip-time must not be
forgotten!

Multi-port (β)

β/2 β/2

β/2

A

CB

(numbers in Mb/s)

14 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Single-port (Pure)

I A process can communicate with only one other process at a time.
This constraint is generally written as a constraint on the sum of
communication times and is thus rather easy to use in a scheduling
context (even though it complexifies problems).

I This model makes sense when using non-threaded versions of com-
munication libraries (e.g., MPI). As soon as you’re allowed to
use threads, bounded-multiport seems a more reasonnable option
(both for performance and scheduling complexity).

1-port (pure)

1/3

1/3

1/3

A

CB

(numbers in s)
15 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Single-port (Full-Duplex)

At a given time, a process can be engaged in at most one emission and
one reception. This constraint is generally written as two constraints:
one on the sum of incomming communication times and one on the
sum of outgoing communication times.

1-port (full duplex)

1/2

1/2

1/2

A

CB

(numbers in Mb/s)

16 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Single-port (Full-Duplex)

This model somehow makes sense when using networks like Myrinet
that have few multiplexing units and with protocols without control
flow [Mar07].

Even if it does not model well complex situations, such a model is not
harmfull.

17 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Fluid Modeling

When using TCP-based networks, it is generally reasonnable to use
flows to model bandwidth sharing [MR99, Low03].

∀l ∈ L,∑
r∈R s.t. l∈r

%r 6 cl

Income Maximization maximize
∑
r∈R

%r

Max-Min Fairness maximize min
r∈R

%r

ATM

Proportional Fairness maximize
∑
r∈R

log(%r)

TCP Vegas

Potential Delay Minimization minimize
∑
r∈R

1

%r

Some weird function minimize
∑
r∈R

arctan(%r)

TCP Reno

18 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Fluid Modeling

When using TCP-based networks, it is generally reasonnable to use
flows to model bandwidth sharing [MR99, Low03].

∀l ∈ L,∑
r∈R s.t. l∈r

%r 6 cl

Income Maximization maximize
∑
r∈R

%r

Max-Min Fairness maximize min
r∈R

%r ATM

Proportional Fairness maximize
∑
r∈R

log(%r)

TCP Vegas

Potential Delay Minimization minimize
∑
r∈R

1

%r

Some weird function minimize
∑
r∈R

arctan(%r)

TCP Reno

18 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Flows Extensions

I Note that this model is a multi-port model with capacity-constraints
(like in the previous bounded multi-port).

I When latencies are large, using multiple connections enables to
get more bandwidth. As a matter of fact, there is very few to
loose in using multiple connections. . .

I Therefore many people enforce a sometimes artificial (but less
intrusive) bound on the maximum number of connections per
link [Wag05, MYCR06].

19 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

1 Point to Point Communication Models
Hockney
LogP and Friends
TCP

2 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

3 Remind This is a Model, Hence Imperfect

4 Topology
A Few Examples
Virtual Topologies

20 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Remind This is a Model, Hence Imperfect

I The previous sharing models are nice but you generally do not
know other flows. . .

I Communications use the memory bus and hence interfere with
computations. Taking such interferences into account may be-
come more and more important with multi-core architectures.

I Interference between communications are sometimes. . . surprising.

Modeling is an art. You have to know your platform and your applica-
tion to know what is negligeable and what is important. Even if your
model is imperfect, you may still derive interesting results.

21 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

1 Point to Point Communication Models
Hockney
LogP and Friends
TCP

2 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

3 Remind This is a Model, Hence Imperfect

4 Topology
A Few Examples
Virtual Topologies

22 / 235

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Various Topologies Used in the Litterature

23 / 235

Beyond MPI_Comm_rank()?

 So far, MPI gives us a unique number for each
processor

 With this one can do anything
 But it’s pretty inconvenient because one can do

anything with it
 Typically, one likes to impose constraints about

which processor/process can talk to which other
processor/process

 With this constraint, one can then think of the
algorithm in simpler terms
 There are fewer options for communications between

processors
 So there are fewer choices to implementing an

algorithm

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

24 / 235

Virtual Topologies?

 MPI provides an abstraction over physical computers
 Each host has an IP address
 MPI hides this address with a convenient numbers
 There could be multiple such numbers mapped to the same

IP address
 All “numbers” can talk to each other

 A Virtual Topology provides an abstraction over MPI
 Each process has a number, which may be different from

the MPI number
 There are rules about which “numbers” a “number” can talk

to
 A virtual topology is defined by specifying the

neighbors of each process

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

25 / 235

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

26 / 235

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

27 / 235

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

MPI_Send(…, rank(my_parent(i,j)), …)

MPI_Recv(…, rank(my_left_child(i,j)), …)

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

28 / 235

Typical Topologies

 Common Topologies (see Section 3.1.2)
 Linear Array
 Ring
 2-D grid
 2-D torus
 One-level Tree
 Fully connected graph
 Arbitrary graph

 Two options for all topologies:
 Monodirectional links: more constrained but

simpler
 Bidirectional links: less constrained but

potential more complicated
 By “complicated” we typically mean more bug-prone

 We’ll look at Ring and Grid in detail

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

29 / 235

Main Assumption and Big
Question

 The main assumption is that once we’ve defined the virtual
topology we forget it’s virtual and write parallel algorithms
assuming it’s physical
 We assume communications on different (virtual) links do not

interfere with each other
 We assume that computations on different (virtual) processors

do not interfere with each other
 The big question: How well do these assumptions hold?

 The question being mostly about the network
 Two possible “bad” cases
 Case #1: the assumptions do not hold and there are

interferences
 We’ll most likely achieve bad performance
 Our performance models will be broken and reasoning about

performance improvements will be difficult
 Case #2: the assumptions do hold but we leave a lot of the

network resources unutilized
 We could perhaps do better with another virtual topology

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

30 / 235

Which Virtual Topology to
Pick

 We will see that some topologies are really well
suited to certain algorithms

 The question is whether they are well-suite to the
underlying architecture

 The goal is to strike a good compromise
 Not too bad given the algorithm
 Not too bad given the platform

 Fortunately, many platforms these days use
switches, which support naturally many virtual
topologies
 Because they support concurrent communications

between disjoint pairs of processors
 As part of a programming assignment, you will

explore whether some virtual topology makes
sense on our cluster

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

31 / 235

Topologies and Data
Distribution

 One of the common steps when writing a
parallel algorithm is to distribute some
data (array, data structure, etc.) among
the processors in the topology
 Typically, one does data distribution in a way

that matches the topology
 E.g., if the data is 3-D, then it’s nice to have a

3-D virtual topology
 One question that arises then is: how is

the data distributed across the topology?
 In the next set of slides we look at our first

topology: a ring

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

32 / 235

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Part II

Communications on a Ring

33 / 235

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

5 Assumptions

6 Broadcast

7 Scatter

8 All-to-All

9 Broadcast: Going Faster

34 / 235

Ring Topology (Section 3.3)
 Each processor is identified by a

rank
 MY_NUM()

 There is a way to find the total
number of processors
 NUM_PROCS()

 Each processor can send a
message to its successor
 SEND(addr, L)

 And receive a message from its
predecessor
 RECV(addr, L)

 We’ll just use the above pseudo-
code rather than MPI

 Note that this is much simpler than
the example tree topology we saw
in the previous set of slides

P0

P1

P2

P3

Pp-1

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

35 / 235

Virtual vs. Physical Topology
 Now that we have chosen to consider a Ring

topology we “pretend” our physical topology is a
ring topology

 We can always implement a virtual ring topology
(see previous set of slides)
 And read Section 4.6

 So we can write many “ring algorithms”
 It may be that a better virtual topology is better

suited to our physical topology
 But the ring topology makes for very simple

programs and is known to be reasonably good in
practice

 So it’s a good candidate for our first look at
parallel algorithms

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

36 / 235

Cost of communication (Sect.
3.2.1)

 It is actually difficult to precisely model the cost
of communication
 E.g., MPI implementations do various optimizations

given the message sizes
 We will be using a simple model

Time = L + m/B
L: start-up cost or latency

 B: bandwidth (b = 1/B)
 m: message size

 We assume that if a message of length m is sent
from P0 to Pq, then the communication cost is q(L
+ m b)

 There are many assumptions in our model, some
not very realistic, but we’ll discuss them later

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

37 / 235

Assumptions about
Communications

 Several Options
 Both Send() and Recv() are blocking

 Called “rendez-vous”
 Very old-fashioned systems

 Recv() is blocking, but Send() is not
 Pretty standard
 MPI supports it

 Both Recv() and Send() are non-blocking
 Pretty standard as well
 MPI supports it

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

38 / 235

Assumptions about
Concurrency

 One question that’s important is: can the processor
do multiple things at the same time?

 Typically we will assume that the processor can
send, receive, and compute at the same time
 Call MPI_IRecv() Call MPI_ISend()
 Compute something

 This of course implies that the three operations are
independent
 E.g., you don’t want to send the result of the computation
 E.g., you don’t want to send what you’re receiving

(forwarding)
 When writing parallel algorithms (in pseudo-code),

we’ll simply indicate concurrent activities with a ||
sign

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

39 / 235

Collective Communications

 To write a parallel algorithm, we will need
collective operations
 Broadcasts, etc.

 Now MPI provide those, and they likely:
 Do not use the ring logical topology
 Utilize the physical resources well

 Let’s still go through the exercise of
writing some collective communication
algorithms

 We will see that for some algorithms we
really want to do these communications
“by hand” on our virtual topology rather
than using the MPI collective
communications!!

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

40 / 235

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

5 Assumptions

6 Broadcast

7 Scatter

8 All-to-All

9 Broadcast: Going Faster

41 / 235

Broadcast (Section 3.3.1)

 We want to write a program that has Pk
send the same message of length m to all
other processors

Broadcast(k,addr,m)
 On the ring, we just send to the next

processor, and so on, with no parallel
communications whatsoever

 This is of course not the way one should
implement a broadcast in practice if the
physical topology is not merely a ring
 MPI uses some type of tree topology

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

42 / 235

Broadcast (Section 3.3.1)

Brodcast(k,addr,m)
 q = MY_NUM()
 p = NUM_PROCS()
 if (q == k)
 SEND(addr,m)
 else
 if (q == k­1 mod p)
 RECV(addr,m)
 else
 RECV(addr,m)
 SEND(addr,m)
 endif
 endif

 Assumes a blocking
receive

 Sending may be
non-blocking

 The broadcast time
is

 (p-1)(L+m b)

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

43 / 235

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

5 Assumptions

6 Broadcast

7 Scatter

8 All-to-All

9 Broadcast: Going Faster

44 / 235

Scatter (Section 3.2.2)

 Processor k sends a different message to
all other processors (and to itself)
 Pk stores the message destined to Pq at

address addr[q], including a message at
addr[k]

 At the end of the execution, each
processor holds the message it had
received in msg

 The principle is just to pipeline
communication by starting to send the
message destined to Pk-1, the most distant
processor

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

45 / 235

Scatter (Section 3.3.2)

Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p­2

 SEND(addr[k+p­1­i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k­1­q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

Swapping of send buffer
and receive buffer (pointer)

Sending and
Receiving
in Parallel, with a
non blocking Send

Same execution time as the broadcast

(p-1)(L + m b)

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

46 / 235

Scatter (Section 3.3.2)
Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p­2

 SEND(addr[k+p­1­i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k­1­q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

k = 2, p = 4

Proc q=2
send addr[2+4-1-0 % 4 = 1]
send addr[2+4-1-1 % 4 = 0]
send addr[2+4-1-2 % 4 = 3]
msg = addr[2]

Proc q=3
recv (addr[1])
// loop 2-1-3 % 4 = 2 times
send (addr[1]) || recv (addr[0])
send (addr[0]) || recv (addr[3])

msg = addr[3]

Proc q=0
recv (addr[1])
 // loop 2-1-2 % 4 = 1 time
send (addr[1]) || recv (addr[0])

msg = addr[0]

Proc q=1
 // loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]

0
1

2

3

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

47 / 235

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

5 Assumptions

6 Broadcast

7 Scatter

8 All-to-All

9 Broadcast: Going Faster

48 / 235

All-to-all (Section 3.3.3)
All2All(my_addr, addr, m)
 q = MY_NUM()
 p = NUM_PROCS()
 addr[q] ← my_addr
 for i = 1 to p­1
 SEND(addr[q­i+1 mod p],m)
 || RECV(addr[q­i mod p],m)

Same execution time as the scatter

(p-1)(L + m b)

0
1

2 2

1
0

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

49 / 235

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

5 Assumptions

6 Broadcast

7 Scatter

8 All-to-All

9 Broadcast: Going Faster

50 / 235

A faster broadcast?
 How can we improve performance?
 One can cut the message in many small

pieces, say in r pieces where m is divisible by
r.

 The root processor just sends r messages
 The performance is as follows

 Consider the last processor to get the last piece of the
message

 There need to be p-1 steps for the first piece to arrive,
which takes (p-1)(L + m b / r)

 Then the remaining r-1 pieces arrive one after another,
which takes (r-1)(L + m b / r)

 For a total of: (p - 2 + r) (L + mb / r)

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

51 / 235

A faster broadcast?

 The question is, what is the value of r that minimizes
 (p - 2 + r) (L + m b / r) ?

 One can view the above expression as (c+ar)(d+b/r),
with four constants a, b, c, d

 The non-constant part of the expression is then ad.r +
cb/r, which must be minimized

 It is known that this value is minimized for
 sqrt(cb / ad)

and we have

ropt = sqrt(m(p-2) b / L)
 with the optimal time
 (sqrt((p-2) L) + sqrt(m b))2

 which tends to mb when m is large, which is independent
of p!

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

52 / 235

Well-known Network Principle

 We have seen that if we cut a (large) message in
many (small) messages, then we can send the
message over multiple hops (in our case p-1)
almost as fast as we can send it over a single hop

 This is a fundamental principle of IP networks
 We cut messages into IP frames
 Send them over many routers
 But really go as fast as the slowest router

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

53 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Part III

Speedup and Efficiency

54 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Outline

10 Speedup

11 Amdahl’s Law

55 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Speedup

I We need a metric to quantify the impact of your performance
enhancement

I Speedup: ratio of “old” time to “new” time
I new time = 1h
I speedup = 2h / 1h = 2

I Sometimes one talks about a “slowdown” in case the “enhance-
ment” is not beneficial

I Happens more often than one thinks

56 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Parallel Performance

I The notion of speedup is completely generic
I By using a rice cooker I’ve achieved a 1.20 speedup for rice cooking

I For parallel programs one defines the Parallel Speedup (we’ll just
say “speedup”):

I Parallel program takes time T1 on 1 processor
I Parallel program takes time Tp on p processors
I Parallel Speedup: S(p) = T1

Tp

I In the ideal case, if my sequential program takes 2 hours on 1
processor, it takes 1 hour on 2 processors: called linear speedup

57 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes

Algorithm with optimization problems, throwing many processors at
it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire applica-
tion data resides in cache (vs. RAM) or in RAM (vs. Disk)

58 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes
Algorithm with optimization problems, throwing many processors at

it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire applica-
tion data resides in cache (vs. RAM) or in RAM (vs. Disk)

58 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes
Algorithm with optimization problems, throwing many processors at

it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire applica-
tion data resides in cache (vs. RAM) or in RAM (vs. Disk)

58 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Outline

10 Speedup

11 Amdahl’s Law

59 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Bad News: Amdahl’s Law

Consider a program whose execution consists of two phases

1 One sequential phase : Tseq = (1− f)T1

2 One phase that can be perfectly parallelized (linear speedup)
Tpar = fT1

Therefore: Tp = Tseq + Tpar/p = (1− f)T1 + fT1/p.

Amdahl’s Law:

Sp =
1

1− f + f
p

f = 20%
f = 50%
f = 80%

f = 10%

0

1

2

3

4

5

10 20 30 40 50 60

S
p

ee
d

u
p

Number of processors

60 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Lessons from Amdahl’s Law

I It’s a law of diminishing return

I If a significant fraction of the code (in terms of time spent in it)
is not parallelizable, then parallelization is not going to be good

I It sounds obvious, but people new to high performance computing
often forget how bad Amdahl’s law can be

I Luckily, many applications can be almost entirely parallelized and
f is small

61 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Parallel Efficiency

I Efficiency is defined as Eff (p) = S(p)/p

I Typically < 1, unless linear or superlinear speedup

I Used to measure how well the processors are utilized
I If increasing the number of processors by a factor 10 increases the

speedup by a factor 2, perhaps it’s not worth it: efficiency drops
by a factor 5

I Important when purchasing a parallel machine for instance: if due
to the application’s behavior efficiency is low, forget buying a large
cluster

62 / 235

Parallel
Algorithms

A. Legrand

Speedup

Amdahl’s Law

Scalability

I Measure of the “effort” needed to maintain efficiency while adding
processors

I Efficiency also depends on the problem size: Eff (n, p)

I Isoefficiency: At which rate does the problem size need to be
increase to maintain efficiency

I nc(p) such that Eff (nc(p), p) = c
I By making a problem ridiculously large, on can typically achieve

good efficiency
I Problem: is it how the machine/code will be used?

63 / 235

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Part IV

Algorithms on a Ring

64 / 235

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

12 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

13 Matrix Multiplication

14 Stencil Application
Principle
Greedy Version
Reducing the Granularity

15 LU Factorization
Gaussian Elimination
LU

65 / 235

Parallel Matrix-Vector product

 y = A x
 Let n be the size of the matrix

 int a[n][n];
 int x[n];

 for i = 0 to n­1 {
 y[i] = 0;
 for j = 0 to n­1
 y[i] = y[i] + a[i,j] * x[j];
 }

a[N][N]

x[N]

y[N]

 How do we do this in
parallel?

Section 4.1 in the book

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

66 / 235

Parallel Matrix-Vector product

a[N][N]

x[N]

y[N]

 How do we do this in parallel?
 For example:

 Computations of elements of
vector y are independent

 Each of these computations
requires one row of matrix a and
vector x

 In shared-memory:

#pragma omp parallel for private(i,j)
for i = 0 to n­1 {

 y[i] = 0;
 for j = 0 to n­1

 y[i] = y[i] + a[i,j] * x[j];
 }

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

67 / 235

Parallel Matrix-Vector Product

 In distributed memory, one possibility is that
each process has a full copy of matrix a and of
vector x

 Each processor declares a vector y of size n/p
 We assume that p divides n

 Therefore, the code can just be
 load(a); load(x)
 p = NUM_PROCS(); r = MY_RANK();
 for (i=r*n/p; i<(r+1)*n/p; i++) {
 for (j=0;j<n;j++)
 y[i­r*n/p] = a[i][j] * x[j];
 }
 It’s embarrassingly parallel
 What about the result?

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

68 / 235

What about the result?

 After the processes complete the computation, each
process has a piece of the result

 One probably wants to, say, write the result to a file
 Requires synchronization so that the I/O is done correctly

 For example
. . .

if (r != 0) {

 recv(&token,1);

}

open(file, “append”);

for (j=0; j<n/p ; j++)

 write(file, y[j]);

send(&token,1);

close(file)

barrier(); // optional

 Could also use a “gather” so that the entire vector is
returned to processor 0
 vector y fits in the memory of a single node

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

69 / 235

What if matrix a is too big?

 Matrix a may not fit in memory
 Which is a motivation to use distributed memory

implementations
 In this case, each processor can store only a

piece of matrix a
 For the matrix-vector multiply, each processor

can just store n/p rows of the matrix
 Conceptually: A[n][n]
 But the program declares a[n/p][n]

 This raises the (annoying) issue of global indices
versus local indices

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

70 / 235

Global vs. Local indices

 When an array is split among processes
 global index (I,J) that references an element of the matrix
 local index (i,j) that references an element of the local array

that stores a piece of the matrix
 Translation between global and local indices

 think of the algorithm in terms of global indices
 implement it in terms of local indices

Global: A[5][3]
Local: a[1][3] on process P1

a[i,j] = A[(n/p)*rank + i][j]P1

P0

P2

N

n / p

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

71 / 235

Global Index Computation

 Real-world parallel code often implements actual
translation functions
 GlobalToLocal()
 LocalToGlobal()

 This may be a good idea in your code, although
for the ring topology the computation is pretty
easy, and writing functions may be overkill

 We’ll see more complex topologies with more
complex associated data distributions and then
it’s probably better to implement such functions

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

72 / 235

Distributions of arrays

 At this point we have
 2-D array a distributed
 1-D array y distributed
 1-D array x replicated

 Having distributed arrays makes it possible to
partition work among processes
 But it makes the code more complex due to

global/local indices translations
 It may require synchronization to load/save the

array elements to file

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

73 / 235

All vector distributed?

 So far we have array x replicated
 It is usual to try to have all arrays involved in the

same computation be distributed in the same
way
 makes it easier to read the code without constantly

keeping track of what’s distributed and what’s not
 e.g., “local indices for array y are different from the global

ones, but local indices for array x are the same as the
global ones” will lead to bugs

 What one would like it for each process to have
 N/n rows of matrix A in an array a[n/p][n]
 N/n components of vector x in an array x[n/p]
 N/n components of vector y in an array y[n/p]

 Turns out there is an elegant solution to do this

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

74 / 235

Principle of the Algorithm

A00 A01 A02 A03 A04 A05 A06 A07

A10 A11 A12 A13 A14 A15 A16 A17
P0

x0

x1

A20 A21 A22 A23 A24 A25 A26 A27

A30 A31 A32 A33 A34 A35 A36 A37
P1

x2

x3

A40 A41 A42 A43 A44 A45 A46 A47

A50 A51 A52 A53 A54 A55 A56 A57
P2

x4

x5

A60 A61 A62 A63 A64 A65 A66 A67

A70 A71 A72 A73 A74 A75 A76 A77
P3

x6

x7

Initial data distribution
for:
 n = 8
 p = 4
 n/p = 2

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

75 / 235

Principle of the Algorithm

A00 A01 ● ● ● ● ● ●
A10 A11 ● ● ● ● ● ●P0

x0

x1

● ● A22 A23 ● ● ● ●
● ● A32 A33 ● ● ● ● P1

x2

x3

● ● ● ● A44 A45 ● ●
● ● ● ● A54 A55 ● ● P2

x4

x5

● ● ● ● ● ● A66 A67

● ● ● ● ● ● A76 A77
P3

x6

x7

Step 0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

76 / 235

Principle of the Algorithm

● ● ● ● ● ● A06 A07

● ● ● ● ● ● A16 A17
P0

x6

x7

A20 A21 ● ● ● ● ● ●
A30 A31 ● ● ● ● ● ● P1

x0

x1

P2

x2

x3

P3

x4

x5

Step 1

● ● A42 A43 ● ● ● ●
● ● A52 A53 ● ● ● ●

● ● ● ● A64 A65 ● ●
● ● ● ● A74 A75 ● ●

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

77 / 235

Principle of the Algorithm

● ● ● ● ● ● A26 A27

● ● ● ● ● ● A36 A37

P0

x4

x5

A40 A41 ● ● ● ● ● ●
A50 A51 ● ● ● ● ● ●

P1

x6

x7

P2

x0

x1

P3

x2

x3

Step 2

● ● A62 A63 ● ● ● ●
● ● A72 A73 ● ● ● ●

● ● ● ● A04 A05 ● ●
● ● ● ● A14 A15 ● ●

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

78 / 235

Principle of the Algorithm

● ● ● ● ● ● A46 A47

● ● ● ● ● ● A56 A57

P0

x2

x3

A60 A61 ● ● ● ● ● ●
A70 A71 ● ● ● ● ● ●

P1

x4

x5

P2

x6

x7

P3

x0

x1

Step 3

● ● A02 A03 ● ● ● ●
● ● A12 A13 ● ● ● ●

● ● ● ● A24 A25 ● ●
● ● ● ● A34 A35 ● ●

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

79 / 235

Principle of the Algorithm

● ● ● ● ● ● A66 A67

● ● ● ● ● ● A76 A77

P0

x0

x1

A00 A01 ● ● ● ● ● ●
A10 A11 ● ● ● ● ● ●

P1

x2

x3

P2

x4

x5

P3

x6

x7

Final state

● ● A22 A23 ● ● ● ●
● ● A32 A33 ● ● ● ●

● ● ● ● A44 A45 ● ●
● ● ● ● A54 A55 ● ●

The final exchange of
vector x is not strictly
necessary, but one may
want to have it
distributed as the end of
the computation like it
was distributed at the
beginning.

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

80 / 235

Algorithm

float A[n/p][n], x[n/p], y[n/p];

r ← n/p
tempS ← x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 RECV(tempR,r)
 for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i] + a[i,(rank ­ step mod p) * n/p + j] * tempS[j]
 tempS ↔ tempR
}

 Uses two buffers
 tempS for sending and tempR to receiving

 In our example, process of rank 2 at step 3 would work with
the 2x2 matrix block starting at column ((2 - 3) mod 4)*8/4
= 3 * 8 / 4 = 6;

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

81 / 235

A few General Principles
 Large data needs to be distributed among

processes (running on different nodes of a cluster
for instance)
 causes many arithmetic expressions for index

computation
 People who do this for a leaving always end up writing

local_to_global() and global_to_local() functions
 Data may need to be loaded/written before/after

the computation
 requires some type of synchronization among processes

 Typically a good idea to have all data structures
distributed similarly to avoid confusion about
which indices are global and which ones are local
 In our case, all indices are local

 In the end the code looks much more complex
than the equivalent OpenMP implementation

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

82 / 235

Performance

 There are p identical steps
 During each step each processor performs

three activities: computation, receive, and
sending
 Computation: r2 w

 w: time to perform one += * operation
 Receiving: L + r b
 Sending: L + r b

T(p) = p (r2w + 2L + 2rb)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

83 / 235

Asymptotic Performance

 T(p) = p(r2w + 2L + 2rb)
 Speedup(p) = n2w / p (r2w + 2L + 2rb)

 = n2w / (n2w/p + 2pL + 2nb)
 Eff(p) = n2w / (n2w+ 2p2L + 2pnb)
 For p fixed, when n is large, Eff(p) ~ 1

 Conclusion: the algorithm is
asymptotically optimal

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

84 / 235

Performance (2)

 Note that an algorithm that initially broadcasts the
entire vector to all processors and then have every
processor compute independently would be in time

(p-1)(L + n b) + pr2 w
 Could use the pipelined broadcast

 which:
 has the same asymptotic performance
 is a simpler algorithm
 wastes only a tiny little bit of memory
 is arguably much less elegant

 It is important to think of simple solutions and see
what works best given expected matrix size, etc.

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

85 / 235

Back to the Algorithm

float A[n/p][n], x[n/p], y[n/p];
r ← n/p
tempS ← x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 RECV(tempR,r)
 for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i] + a[i,(rank ­ step mod p) * n/p + j] * tempS[j]
 tempS ↔ tempR
}
 In the above code, at each iteration, the SEND, the RECV,

and the computation can all be done in parallel
 Therefore, one can overlap communication and

computation by using non-blocking SEND and RECV if
available

 MPI provides MPI_ISend() and MPI_IRecv() for this purpose

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

86 / 235

Nore Concurrent Algorithm

 Notation for concurrent activities:

float A[n/p][n], x[n/p], y[n/p];
tempS ← x /* My piece of the vector (n/p elements) */
r ← n/p
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 || RECV(tempR,r)
 || for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i]+a[i,(rank­step mod p)*n/p+j]*tempS[j]
 tempS ↔ tempR
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

87 / 235

Better Performance

 There are p identical steps
 During each step each processor performs

three activities: computation, receive, and
sending
 Computation: r2w
 Receiving: L + rb
 Sending: L + rb

T(p) = p max(r2w , L + rb)

Same asymptotic performance as above, but
better performance for smaller values of n

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

88 / 235

Hybrid parallelism

 We have said many times that multi-core
architectures are about to become the standard

 When building a cluster, the nodes you will buy will
be multi-core

 Question: how to exploit the multiple cores?
 Or in our case how to exploit the multiple

processors in each node
 Option #1: Run multiple processes per node

 Causes more overhead and more
communication

 In fact will cause network communication among
processes within a node!

 MPI will not know that processes are co-
located

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

89 / 235

OpenMP MPI Program

 Option #2: Run a single multi-threaded process
per node
 Much lower overhead, fast communication

within a node
 Done by combining MPI with OpenMP!

 Just write your MPI program
 Add OpenMP pragmas around loops
 Let’s look back at our Matrix-Vector multiplication

example

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

90 / 235

Hybrid Parallelism
float A[n/p][n], x[n/p], y[n/p];
tempS ← x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 || RECV(tempR,r)
 || #pragma omp parallel for private(i,j)
 for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i] + a[i,(rank ­ step mod p)*n/p+j]*
 tempS[j]
 tempS ↔ tempR
}

 This is called Hybrid Parallelism
 Communication via the network among nodes
 Communication via the shared memory within nodes

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

91 / 235

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

12 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

13 Matrix Multiplication

14 Stencil Application
Principle
Greedy Version
Reducing the Granularity

15 LU Factorization
Gaussian Elimination
LU

92 / 235

Matrix Multiplication on the
Ring

 See Section 4.2
 Turns out one can do matrix multiplication in a

way very similar to matrix-vector multiplication
 A matrix multiplication is just the computation

of n2 scalar products, not just n
 We have three matrices, A, B, and C
 We want to compute C = A*B
 We distribute the matrices to that each processor

“owns” a block row of each matrix
 Easy to do if row-major is used because all

matrix elements owned by a processor are
contiguous in memory

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

93 / 235

Data Distribution

r

n

A C

B

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

94 / 235

First Step

r

n

A1,0
+=

A1,1xB1,0

B1,0

A1,1
+=

A1,1xB1,1

B1,1 B1,2 B1,3

+=
A1,1xB1,3

+=
A1,1xB1,2

A1,3A1,2

p=4

let’s look at
processor P1

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

95 / 235

Shifting of block rows of B

r

n

Aq,0 Aq,1 Aq,3Aq,2

p=4

let’s look at
processor Pq

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

96 / 235

Second step

r

n

A1,0

B0,0

A1,1

B0,1 B0,2 B0,3

A1,3A1,2

p=4

let’s look at
processor P1

+=
A1,0xB0,0

+=
A1,0xB0,1

+=
A1,0xB0,3

+=
A1,0xB0,2

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

97 / 235

Algorithm

 In the end, every Ci,j block has the correct value: Ai,0B0,j + Ai,1B1,j +
...

 Basically, this is the same algorithm as for matrix-vector
multiplication, replacing the partial scalar products by submatrix
products (gets tricky with loops and indices)

float A[N/p][N], B[N/p][N], C[N/p][N];

r ← N/p

tempS ← B

q ← MY_RANK()

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,l*r+j] ← C[i,l*r+j] + A[i,r((q ­ step)%p)+k] * tempS[k,l*r+j]

 tempS ↔ tempR

}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

98 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=0
i=0
j=0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

99 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=0
i=0
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

100 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=0
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

101 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=1
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

102 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

103 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=1
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

104 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=2
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

105 / 235

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank ­ step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=3
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

106 / 235

Performance

 Performance Analysis is straightforward
 p steps and each step takes time:

max (nr2 w, L + nrb)
 p rxr matrix products = pr3 = nr2 operations

 Hence, the running time is:
T(p) = p max (nr2 w , L + nrb)

 Note that a naive algorithm computing n
Matrix-vector products in sequence using
our previous algorithm would take time
T(p) = p max(nr2 w , nL + nrb)

 We just saved network latencies!

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

107 / 235

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

12 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

13 Matrix Multiplication

14 Stencil Application
Principle
Greedy Version
Reducing the Granularity

15 LU Factorization
Gaussian Elimination
LU

108 / 235

Stencil Application (Section
4.3)

 We’ve talked about stencil applications in the
context of shared-memory programs

 We found that we had to cut the matrix in “small”
blocks
 On a ring the same basic idea applies, but let’s do it step-

by-step

0 1

1 2

2 3

3 4

4 5

5 6

2 3

3 4

4 5

5 6

6 7

7 8

4 5

5 6

6 7

7 8

8 9

9 10

6

7

8

9

10

11

6 7 8 9 10 11 12

t+1

t+1 t

new = update(old,W,N)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

109 / 235

Stencil Application

 Let us, for now, consider that the domain is of size nxn and
that we have p=n processors
 Classic way to first approach a problem

 Each processor is responsible for computing one row of the
domain (at each iteration)

 Each processor holds one row of the domain and has the
following declaration:

var A: array[0..n-1] of real
 One first simple idea is to have each processor send each

cell value to its neighbor as soon as that cell value is
computed

 Basic principle: do communication as early as possible to
get your “neighbors” started as early as possible
 Remember that one of the goals of a parallel program is to

reduce idle time on the processors
 We call this algorithm the Greedy algorithm, and seek an

evaluation of its performance

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

110 / 235

The Greedy Algorithm
q = MY_NUM()
p = NUM_PROCS
if (q == 0) then
 A[0] = Update(A[0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[0] = Update(A[0],nil,v)

endif
for j = 1 to n-1

if (q == 0) then
A[j] = Update(A[j], A[j-1], nil)
Send(A[j],1)

elsif (q == p-1) then
Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

else
Send(A[j-1], 1) || Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

endif
endfor

First element of the row

Other elements

note the use of “nil”
for borders and corners

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

111 / 235

Greedy Algorithm

 This is all well and good, but typically we have n > p
 Assuming that p divides n, each processor will hold n/p

rows
 Good for load balancing

 The goal of a greedy algorithm is always to allow
processors to start computing as early as possible

 This suggests a cyclic allocation of rows among processors

 P1 can start computing after P0 has computed its first cell

P0
P1
P2
P0
P1
P2
P0
P1
P2

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

112 / 235

Greedy Algorithm

 Each processor holds n/p rows of the domain
 Thus it declares:

var A[0..n/p-1,n] of real
 Which is a contiguous array of rows, with these

rows not contiguous in the domain
 Therefore we have a non-trivial mapping

between global indices and local indices, but
we’ll see that they don’t appear in the code

 Let us rewrite the algorithm

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

113 / 235

The Greedy Algorithm
p = MY_NUM()
q = NUM_PROCS
For i = 0 to n/p -1

if (q == 0) and (i == 0) then
 A[0,0] = Update(A[0,0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[i,0] = Update(A[i,0],nil,v)

endif
for j = 1 to n-1

if (q == 0) and (i == 0) then
A[i,j] = Update(A[i,j], A[i,j-1], nil)
Send(A[i,j],1)

elsif (q == p-1) and (i = n/p-1) then
Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j], v)

else
Send(A[i,j-1], 1) || Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j-1], v)

endif
endfor

endfor

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

114 / 235

Performance Analysis

 Let T(n,p) denote the computation time of the algorithm for
a nxn domain and with p processors

 A each step a processor does at most three things
 Receive a cell
 Send a cell
 Update a cell

 The algorithm is “clever” because at each step k, the
sending of messages from step k is overlapped with the
receiving of messages at step k+1

 Therefore, the time needed to compute one algorithm step
is the sum of
 Time to send/receive a cell: L + b
 Time to perform a cell update: w

 So, if we can count the number of steps, we can simply
multiply and get the overall execution time

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

115 / 235

Performance Analysis
 It takes p-1 steps before processor Pp-1 can start computing

its first cell
 Thereafter, this processor can compute one cell at every step
 The processor holds n*n/p cells
 Therefore, the whole program takes: p-1+n*n/p steps
 And the overall execution time:

T(n,p) = (p - 1 + n2/p) (w + L + b)
 The sequential time is: n2w
 The Speedup, S(n,p) = n2w / T(n,p)
 When n gets large, T(n,p) ~ n2/p (w + L + b)
 Therefore, Eff(n,p) ~ w / (w + L + b)
 This could be WAY below one

 In practice, and often, L + b >> w
 Therefore, this greedy algorithm is probably not a good idea

at all!

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

116 / 235

Granularity

 How do we improve on performance?
 What really kills performance is that we have to

do so much communication
 Many bytes of data
 Many individual messages

 So we we want is to augment the granularity of
the algorithm
 Our “tasks” are not going to be “update one

cell” but instead “update multiple cells”
 This will allow us to reduce both the amount of

data communicated and the number of messages
exchanged

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

117 / 235

Reducing the Granularity

 A simple approach: have a processor compute k
cells in sequence before sending them

 This is in conflict with the “get processors to
compute as early as possible” principle we based
our initial greedy algorithm on
 So we will reduce communication cost, but will

increase idle time
 Let use assume that k divides n
 Each row now consists of n/k segments

 If k does not divide n we have left over cells
and it complicates the program and the
performance analysis and as usual doesn’t
change the asymptotic performance analysis

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

118 / 235

Reducing the Granularity

0 1 2 3P0

1 2 3 4P1

2 3 4 5P2

3 4 5 6P3

k

 The algorithm computes segment after segment
 The time before P1 can start computing is the

time for P0 to compute a whole segment
 Therefore, it will take longer until Pp-1 can start

computing

4 5 6P0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

119 / 235

Reducing the Granularity
More

 So far, we’ve allocated non-contiguous rows of
the domain to each processor

 But we can reduce communication by allocating
processors groups of contiguous rows
 If two contiguous rows are on the same

processors, there is no communication
involved to update the cells of the second row

 Let us use say that we allocate blocks of rows of
size r to each processor
 We assume that r*p divides n

 Processor Pi holds rows j such that
i = floor(j/r) mod p

 This is really a “block cyclic” allocation

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

120 / 235

Reducing the Granularity

0 1 2 3P0

1 2 3 4P1

2 3 4 5P2

3 4 5 6P3

k

r

4 5 6 7P0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

121 / 235

Idle Time?

 One question is: does any processor stay idle?
 Processor P0 computes all values in its first block

of rows in n/k algorithm steps
 After that, processor P0 must wait for cell values

from processor Pp-1

 But Pp-1 cannot start computing before p steps
 Therefore:

 If p >= n/k, P0 is idle

 If p < n/k, P1 is not idle

 If p < n/k, then processors had better be able to
buffer received cells while they are still
computing
 Possible increase in memory consumption

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

122 / 235

Performance Analysis

 It is actually very simple
 At each step a processor is involved at most in

 Receiving k cells from its predecessor
 Sending k cells to its successor
 Updating k*r cells

 Since sending and receiving are overlapped, the
time to perform a step is L + k b + k r w

 Question: How many steps?
 Answer: It takes p-1 steps before Pp-1 can start

doing any thing. Pp-1 holds n2/(pkr) blocks
 Execution time:

T(n,p,r,k) = (p-1 + n2/(pkr)) (L + kb + k r w)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

123 / 235

Performance Analysis

 Our naïve greedy algorithm had asymptotic efficiency equal
to w / (w + L + b)

 This algorithm does better: Assympt. Eff = w / (w + L/rk +
b/r)
 Divide n2w by p T(n,p,r,k)
 And make n large

 In the formula for the efficiency we clearly see the effect of
the granularity increase

 Asymptotic efficiency is higher
 But not equal to 1
 Therefore, this is a “difficult” application to parallelize

 We can try to do the best we can by increasing r and k, but it’s
never going to be perfect

 One can compute the optimal values of r and k using
numerical solving
 See the book for details

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

124 / 235

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

12 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

13 Matrix Multiplication

14 Stencil Application
Principle
Greedy Version
Reducing the Granularity

15 LU Factorization
Gaussian Elimination
LU

125 / 235

Solving Linear Systems of Eq.

 Method for solving Linear Systems
 The need to solve linear systems arises in an estimated 75% of all scientific

computing problems [Dahlquist 1974]
 Gaussian Elimination is perhaps the most well-known

method
 based on the fact that the solution of a linear system is

invariant under scaling and under row additions
 One can multiply a row of the matrix by a constant as long as one

multiplies the corresponding element of the right-hand side by the
same constant

 One can add a row of the matrix to another one as long as one
adds the corresponding elements of the right-hand side

 Idea: scale and add equations so as to transform matrix A in
an upper triangular matrix:

?
?

?
?
?

x =

equation n-i has i unknowns, with

?

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

126 / 235

Gaussian Elimination

-121

2-21

111

2

4

0

x =

-210

1-30

111

2

4

0

x =

-500

1-30

111

1
0

4

0

x =

Subtract row 1 from rows 2 and 3

Multiple row 3 by 3 and add row 2

-5x3 = 10 x3 = -2
-3x2 + x3 = 4 x2 = -2
x1 + x2 + x3 = 0 x1 = 4

Solving equations in
reverse order (backsolving)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

127 / 235

Gaussian Elimination

 The algorithm goes through the matrix from the
top-left corner to the bottom-right corner

 the ith step eliminates non-zero sub-diagonal
elements in column i, substracting the ith row
scaled by aji/aii from row j, for j=i+1,..,n.

i

0

values already computed

values yet to be
updated

pivot row i

to
 b

e
 z

e
ro

e
d

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

128 / 235

Sequential Gaussian
Elimination

Simple sequential algorithm

// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n­1
 // for each row j below row i
 for j = i+1 to n
 // add a multiple of row i to row j
 for k = i to n
 A(j,k) = A(j,k) ­ (A(j,i)/A(i,i)) * A(i,k)

 Several “tricks” that do not change the spirit of the
algorithm but make implementation easier and/or more
efficient
 Right-hand side is typically kept in column n+1 of the matrix

and one speaks of an augmented matrix
 Compute the A(i,j)/A(i,i) term outside of the loop

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

129 / 235

Pivoting: Motivation

 A few pathological cases

 Division by small numbers → round-off error in computer
arithmetic

 Consider the following system
0.0001x1 + x2 = 1.000

x1 + x2 = 2.000

 exact solution: x1=1.00010 and x2 = 0.99990

 say we round off after 3 digits after the decimal point
 Multiply the first equation by 104 and subtract it from the second

equation
 (1 - 1)x1 + (1 - 104)x2 = 2 - 104

 But, in finite precision with only 3 digits:
 1 - 104 = -0.9999 E+4 ~ -0.999 E+4
 2 - 104 = -0.9998 E+4 ~ -0.999 E+4

 Therefore, x2 = 1 and x1 = 0 (from the first equation)

 Very far from the real solution!

11

10

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

130 / 235

Partial Pivoting

 One can just swap rows
x1 + x2 = 2.000

0.0001x1 + x2 = 1.000
 Multiple the first equation my 0.0001 and subtract it from the second

equation gives:
(1 - 0.0001)x2 = 1 - 0.0001
0.9999 x2 = 0.9999 => x2 = 1

and then x1 = 1
 Final solution is closer to the real solution. (Magical?)
 Partial Pivoting

 For numerical stability, one doesn’t go in order, but pick the next row in rows i to
n that has the largest element in row i

 This row is swapped with row i (along with elements of the right hand side)
before the subtractions

 the swap is not done in memory but rather one keeps an indirection array
 Total Pivoting

 Look for the greatest element ANYWHERE in the matrix
 Swap columns
 Swap rows

 Numerical stability is really a difficult field

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

131 / 235

Parallel Gaussian
Elimination?

 Assume that we have one processor per matrix element

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the
element from the pivot row

Independent
computations

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

132 / 235

LU Factorization (Section 4.4)
 Gaussian Elimination is simple but

 What if we have to solve many Ax = b systems for different values of b?
 This happens a LOT in real applications

 Another method is the “LU Factorization”
 Ax = b
 Say we could rewrite A = L U, where L is a lower triangular matrix, and U is

an upper triangular matrix O(n3)
 Then Ax = b is written L U x = b
 Solve L y = b O(n2)
 Solve U x = y O(n2)

?
?
?
?
?
?

x =
?
?
?
?
?
?

x =

equation i has i unknowns equation n-i has i unknowns

triangular system solves are easy

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

133 / 235

LU Factorization: Principle
 It works just like the Gaussian Elimination, but instead of zeroing

out elements, one “saves” scaling coefficients.

 Magically, A = L x U !
 Should be done with pivoting as well

322

134

-
1

21

322

5-
5

0

-
1

21
gaussian

elimination

save the
scaling
factor

322

5-
5

4

-
1

21 gaussian
elimination

+
save the
scaling
factor

5-
2

2

5-
5

4

-
1

21

gaussian
elimination

+
save the
scaling
factor

32/52

5-54

-121

12/52

014

001

L =
300

5-50

-121

U =

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

134 / 235

LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy but make

the code look complicated without changing the overall principle

stores the scaling factors

k

k

LU­sequential(A,n) {
 for k = 0 to n­2 {
 // preparing column k
 for i = k+1 to n­1
 aik ← ­aik / akk

 for j = k+1 to n­1
 // Task Tkj: update of column j
 for i=k+1 to n­1
 aij ← aij + aik * akj

 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

135 / 235

LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy

but make the code look complicated without changing the
overall principle

LU­sequential(A,n) {
 for k = 0 to n­2 {
 // preparing column k
 for i = k+1 to n­1
 aik ← ­aik / akk

 for j = k+1 to n­1
 // Task Tkj: update of column j
 for i=k+1 to n­1
 aij ← aij + aik * akj

 }
}

k

i
j

k

update

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

136 / 235

Parallel LU on a ring

 Since the algorithm operates by columns from left to right,
we should distribute columns to processors

 Principle of the algorithm
 At each step, the processor that owns column k does the

“prepare” task and then broadcasts the bottom part of column
k to all others

 Annoying if the matrix is stored in row-major fashion
 Remember that one is free to store the matrix in anyway one

wants, as long as it’s coherent and that the right output is
generated

 After the broadcast, the other processors can then update
their data.

 Assume there is a function alloc(k) that returns the rank of
the processor that owns column k
 Basically so that we don’t clutter our program with too many

global-to-local index translations
 In fact, we will first write everything in terms of global

indices, as to avoid all annoying index arithmetic

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

137 / 235

LU-broadcast algorithm

LU­broadcast(A,n) {
 q ← MY_NUM()
 p ← NUM_PROCS()
 for k = 0 to n­2 {
 if (alloc(k) == q)
 // preparing column k
 for i = k+1 to n­1
 buffer[i­k­1] ← aik ← ­aik / akk

 broadcast(alloc(k),buffer,n­k­1)
 for j = k+1 to n­1
 if (alloc(j) == q)
 // update of column j
 for i=k+1 to n­1
 aij ← aij + buffer[i­k­1] * akj

 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

138 / 235

Dealing with local indices

 Assume that p divides n
 Each processor needs to store r=n/p columns and

its local indices go from 0 to r-1
 After step k, only columns with indices greater

than k will be used
 Simple idea: use a local index, l, that everyone

initializes to 0
 At step k, processor alloc(k) increases its local

index so that next time it will point to its next
local column

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

139 / 235

LU-broadcast algorithm

...
 double a[n­1][r­1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n­2 {
 if (alloc(k) == q)
 for i = k+1 to n­1
 buffer[i­k­1] ← a[i,k] ← ­a[i,l] / a[k,l]
 l ← l+1
 broadcast(alloc(k),buffer,n­k­1)
 for j = l to r­1
 for i=k+1 to n­1
 a[i,j] ← a[i,j] + buffer[i­k­1] * a[k,j]
 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

140 / 235

What about the Alloc
function?

 One thing we have left completely unspecified is
how to write the alloc function: how are columns
distributed among processors

 There are two complications:
 The amount of data to process varies throughout the

algorithm’s execution
 At step k, columns k+1 to n-1 are updated
 Fewer and fewer columns to update

 The amount of computation varies among columns
 e.g., column n-1 is updated more often than column 2
 Holding columns on the right of the matrix leads to much

more work
 There is a strong need for load balancing

 All processes should do the same amount of work

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

141 / 235

Bad load balancing
P1 P2 P3 P4

already
done

already
done working

on it

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

142 / 235

Good Load Balancing?

working
on it

already
done

already
done

Cyclic distribution

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

143 / 235

Proof that load balancing is
good

 The computation consists of two types of operations
 column preparations
 matrix element updates

 There are many more updates than preparations, so we really
care about good balancing of the preparations

 Consider column j
 Let’s count the number of updates performed by the processor

holding column j
 Column j is updated at steps k=0, ..., j-1
 At step k, elements i=k+1, ..., n-1 are updates

 indices start at 0
 Therefore, at step k, the update of column j entails n-k-1 updates
 The total number of updates for column j in the execution is:

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

144 / 235

Proof that load balancing is
good

 Consider processor Pi, which holds columns lp+i for l=0, ... , n/p -1
 Processor Pi needs to perform this many updates:

 Turns out this can be computed
 separate terms
 use formulas for sums of integers and sums of squares

 What it all boils down to is:

 This does not depend on i !!
 Therefore it is (asymptotically) the same for all Pi processors
 Therefore we have (asymptotically) perfect load balancing!

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

145 / 235

Load-balanced program

...
 double a[n­1][r­1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n­2 {
 if (k mod p == q)
 for i = k+1 to n­1
 buffer[i­k­1] ← a[i,k] ← ­a[i,l] / a[k,l]
 l ← l+1
 broadcast(alloc(k),buffer,n­k­1)
 for j = l to r­1
 for i=k+1 to n­1
 a[i,j] ← a[i,j] + buffer[i­k­1] * a[k,j]
 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

146 / 235

Performance Analysis

 How long does this code take to run?
 This is not an easy question because there are

many tasks and many communications
 A little bit of analysis shows that the execution

time is the sum of three terms
 n-1 communications: n L + (n2/2) b + O(1)
 n-1 column preparations: (n2/2) w’ + O(1)
 column updates: (n3/3p) w + O(n2)

 Therefore, the execution time is ~ (n3/3p) w
 Note that the sequential time is: (n3 /3) w
 Therefore, we have perfect asymptotic efficiency!
 This is good, but isn’t always the best in practice
 How can we improve this algorithm?

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

147 / 235

Pipelining on the Ring

 So far, the algorithm we’ve used a simple
broadcast

 Nothing was specific to being on a ring of
processors and it’s portable
 in fact you could just write raw MPI that just looks like

our pseudo-code and have a very limited, inefficient for
small n, LU factorization that works only for some
number of processors

 But it’s not efficient
 The n-1 communication steps are not overlapped with

computations
 Therefore Amdahl’s law, etc.

 Turns out that on a ring, with a cyclic distribution
of the columns, one can interleave pieces of the
broadcast with the computation
 It almost looks like inserting the source code from the

broadcast code we saw at the very beginning
throughout the LU code

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

148 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Part V

A Complete Example on an Heterogeneous Ring

149 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

The Context: Distributed Heterogeneous Platforms

How to embed a ring in a complex network [LRRV04].
Sources of problems

I Heterogeneity of processors (computational power, memory, etc.)

I Heterogeneity of communications links.

I Irregularity of interconnection network.

150 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Targeted Applications: Iterative Algorithms

I A set of data (typically, a matrix)

I Structure of the algorithms:
1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

151 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Targeted Applications: Iterative Algorithms

I A set of data (typically, a matrix)

I Structure of the algorithms:
1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

151 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

The Questions

I Which processors should be used ?

I What amount of data should we give them ?

I How do we cut the set of data ?

152 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

153 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

153 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

153 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:
1 Borders and neighbors are easily defined

2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

153 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:
1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

153 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:
1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

153 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Notations

I Processors: P1, ..., Pp

I Processor Pi executes a unit task in a time wi

I Overall amount of work Dw ;
Share of Pi : αi .Dw processed in a time αi .Dw .wi

(αi > 0,
∑

j αj = 1)

I Cost of a unit-size communication from Pi to Pj : ci,j
I Cost of a sending from Pi to its successor in the ring: Dc .ci,succ(i)

154 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Communications: 1-Port Model (Full-Duplex)

A processor can:

I send at most one message at any time;

I receive at most one message at any time;

I send and receive a message simultaneously.

155 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

156 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

156 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

156 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

156 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Special Hypotheses

1 There exists a communication link between any two processors

2 All links have the same capacity
(∃c ,∀i , j ci,j = c)

157 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously

(∃τ, αi .Dw .wi = τ , so 1 =
∑

i
τ

Dw .wi
)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

158 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously

(∃τ, αi .Dw .wi = τ , so 1 =
∑

i
τ

Dw .wi
)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

158 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously(∃τ, αi .Dw .wi = τ , so 1 =

∑
i

τ
Dw .wi

)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

158 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously(∃τ, αi .Dw .wi = τ , so 1 =

∑
i

τ
Dw .wi

)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

158 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Special hypothesis

1 There exists a communication link between any two processors

159 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Study (1)

time

Dc .c1,5

Dc .c1,2

Dc .c2,1

Dc .c2,3

Dc .c3,2

Dc .c4,3

Dc .c4,5
Dc .c5,4

Dc .c5,1

α5.Dw .w5

P1 P2 P3 P4 P5

α4.Dw .w4
Dc .c3,4

α3.Dw .w3

α2.Dw .w2

α1.Dw .w1

processors

All processors end simultaneously

160 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Study (2)

I All processors end simultaneously

Tstep = αi .Dw .wi + Dc .(ci,succ(i) + ci,pred(i))

I

p∑
i=1

αi = 1 ⇒
p∑

i=1

Tstep − Dc .(ci,succ(i) + ci,pred(i))

Dw .wi
= 1. Thus

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

where wcumul = 1∑
i

1
wi

161 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Study (2)

I All processors end simultaneously

Tstep = αi .Dw .wi + Dc .(ci,succ(i) + ci,pred(i))

I

p∑
i=1

αi = 1 ⇒
p∑

i=1

Tstep − Dc .(ci,succ(i) + ci,pred(i))

Dw .wi
= 1. Thus

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

where wcumul = 1∑
i

1
wi

161 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j
wi

+
cj,i
wj

NP-complete problem

162 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j
wi

+
cj,i
wj

NP-complete problem

162 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j
wi

+
cj,i
wj

NP-complete problem

162 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)
wi

is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j
wi

+
cj,i
wj

NP-complete problem

162 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Linear Program

Minimize
∑p

i=1

∑p
j=1 di,j .xi,j ,

satisfying the (in)equations
(1)

∑p
j=1 xi,j = 1 1 6 i 6 p

(2)
∑p

i=1 xi,j = 1 1 6 j 6 p
(3) xi,j ∈ {0, 1} 1 6 i , j 6 p
(4) ui − uj + p.xi,j 6 p − 1 2 6 i , j 6 p, i 6= j
(5) ui integer, ui > 0 2 6 i 6 p

xi,j = 1 if, and only if, the edge from Pi to Pj is used

163 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

General Case: Linear program

Best ring made of q processors

Minimize T satisfying the (in)equations

(1) xi,j ∈ {0, 1} 1 6 i , j 6 p
(2)

∑p
i=1 xi,j 6 1 1 6 j 6 p

(3)
∑p

i=1

∑p
j=1 xi,j = q

(4)
∑p

i=1 xi,j =
∑p

i=1 xj,i 1 6 j 6 p

(5)
∑p

i=1 αi = 1
(6) αi 6

∑p
j=1 xi,j 1 6 i 6 p

(7) αi .wi +
Dc
Dw

∑p
j=1(xi,jci,j + xj,icj,i) 6 T 1 6 i 6 p

(8)
∑p

i=1 yi = 1
(9) − p.yi − p.yj + ui − uj + q.xi,j 6 q − 1 1 6 i , j 6 p, i 6= j
(10) yi ∈ {0, 1} 1 6 i 6 p
(11) ui integer, ui > 0 1 6 i 6 p

164 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Linear Programming

I Problems with rational variables: can be solved in polynomial time
(in the size of the problem).

I Problems with integer variables: solved in exponential time in the
worst case.

I No relaxation in rationals seems possible here. . .

165 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)

No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors. . .

2 Greedy heuristic: initially we take the best pair of processors; for
a given ring we try to insert any unused processor in between any
pair of neighbor processors in the ring. . .

166 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors. . .

2 Greedy heuristic: initially we take the best pair of processors; for
a given ring we try to insert any unused processor in between any
pair of neighbor processors in the ring. . .

166 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors. . .

2 Greedy heuristic: initially we take the best pair of processors; for
a given ring we try to insert any unused processor in between any
pair of neighbor processors in the ring. . .

166 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

167 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

167 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

167 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

167 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Notations

I A set of communications links: e1, ..., en
I Bandwidth of link em: bem

I There is a path Si from Pi to Psucc(i) in the network

I Si uses a fraction si,m of the bandwidth bem of link em

I Pi needs a time Dc .
1

minem∈Si si,m
to send to its successor a mes-

sage of size Dc

I Constraints on the bandwidth of em:
∑

16i6p

si,m 6 bem

I Symmetrically, there is a path Pi from Pi to Ppred(i) in the network,
which uses a fraction pi,m of the bandwidth bem of link em

168 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

I 7 processors and 8 bidirectional communications links

I We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)

169 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

I 7 processors and 8 bidirectional communications links

I We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)

169 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

170 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.

From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.
From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

170 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

170 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

170 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Bandwidth Sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b)

.

From P1 to P5 we use the link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a 6 ba

Lien b: s1,b + s4,b + p2,b + p5,b 6 bb

Lien c: s2,c 6 bc

Lien d : s2,d + s3,d + p3,d + p4,d 6 bd

Lien e: s3,e + p3,e + p4,e 6 be

Lien f : s4,f + p3,f + p5,f 6 bf

Lien g : s4,g + p2,g + p5,g 6 bg

Lien h: s5,h + p1,h + p2,h 6 bh

171 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Bandwidth Sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b)

.

From P1 to P5 we use the link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a 6 ba

Lien b: s1,b + s4,b + p2,b + p5,b 6 bb

Lien c: s2,c 6 bc

Lien d : s2,d + s3,d + p3,d + p4,d 6 bd

Lien e: s3,e + p3,e + p4,e 6 be

Lien f : s4,f + p3,f + p5,f 6 bf

Lien g : s4,g + p2,g + p5,g 6 bg

Lien h: s5,h + p1,h + p2,h 6 bh

171 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Final Quadratic System

Minimize max16i65 (αi .Dw .wi + Dc .(ci,i−1 + ci,i+1)) under the constraints

∑5
i=1 αi = 1

s1,a 6 ba s1,b + s4,b + p2,b + p5,b 6 bb s2,c 6 bc
s2,d + s3,d + p3,d + p4,d 6 bd s3,e + p3,e + p4,e 6 be s4,f + p3,f + p5,f 6 bf
s4,g + p2,g + p5,g 6 bg s5,h + p1,h + p2,h 6 bh
s1,a.c1,2 > 1 s1,b.c1,2 > 1 p1,h.c1,5 > 1
s2,c .c2,3 > 1 s2,d .c2,3 > 1 p2,b.c2,1 > 1
p2,g .c2,1 > 1 p2,h.c2,1 > 1 s3,d .c3,4 > 1
s3,e .c3,4 > 1 p3,d .c3,2 > 1 p3,e .c3,2 > 1
p3,f .c3,2 > 1 s4,f .c4,5 > 1 s4,b.c4,5 > 1
s4,g .c4,5 > 1 p4,e .c4,3 > 1 p4,d .c4,3 > 1
s5,h.c5,1 > 1 p5,g .c5,4 > 1 p5,b.c5,4 > 1
p5,f .c5,4 > 1

172 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Conclusion

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

I Complete graph: closed-form expression;

I General graph: quadratic system.

173 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Conclusion

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

I Complete graph: closed-form expression;

I General graph: quadratic system.

173 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

We adapt our greedy heuristic:

1 Initially: best pair of processors
2 For each processor Pk (not already included in the ring)

I For each pair (Pi ,Pj) of neighbors in the ring
1 We build the graph of the unused bandwidths

(Without considering the paths between Pi and Pj)
2 We compute the shortest paths (in terms of bandwidth) between

Pk and Pi and Pj

3 We evaluate the solution

3 We keep the best solution found at step 2 and we start again

+ refinements (max-min fairness, quadratic solving).

174 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Is This Meaningful ?

I No guarantee, neither theoretical, nor practical

I Simple solution:
1 we build the complete graph whose edges are labeled with the

bandwidths of the best communication paths
2 we apply the heuristic for complete graphs
3 we allocate the bandwidths

175 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Example: an Actual Platform (Lyon)

moby canaria

mryi0 popc0 sci0

Hub

Switch

sci3

sci2

sci4

sci5
sci6

sci1
myri1

myri2

Hub

router backbone
routlhpc

Topology

P0 P1 P2 P3 P4 P5 P6 P7 P8

0.0206 0.0206 0.0206 0.0206 0.0291 0.0206 0.0087 0.0206 0.0206

P9 P10 P11 P12 P13 P14 P15 P16

0.0206 0.0206 0.0206 0.0291 0.0451 0 0 0

Processors processing times (in seconds par megaflop)

176 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Results

First heuristic building the ring without taking link sharing into ac-
count

Second heuristic taking into account link sharing (and with quadratic
programing)

Ratio Dc/Dw H1 H2 Gain

0.64 0.008738 (1) 0.008738 (1) 0%
0.064 0.018837 (13) 0.006639 (14) 64.75%

0.0064 0.003819 (13) 0.001975 (14) 48.28%

Ratio Dc/Dw H1 H2 Gain

0.64 0.005825 (1) 0.005825 (1) 0 %
0.064 0.027919 (8) 0.004865 (6) 82.57%

0.0064 0.007218 (13) 0.001608 (8) 77.72%

Table: Tstep/Dw for each heuristic on Lyon’s and Strasbourg’s platforms (the
numbers in parentheses show the size of the rings built).

177 / 235

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Conclusion

Even though this is a very basic application, it illustrates many diffi-
culties encountered when:

I Processors have different characteristics

I Communications links have different characteristics

I There is an irregular interconnection network with complex band-
width sharing issues.

We need to use a realistic model of networks... Even though a more
realistic model leads to a much more complicated problem, this is worth
the effort as derived solutions are more efficient in practice.

178 / 235

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Part VI

Algorithms on a Grid

179 / 235

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Outline

16 Communications

17 Matrix Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Snyder
Data Distribution

180 / 235

2-D Grid (Chapter 5)

 Consider p=q2 processors
 We can think of them arranged in a square grid

 A rectangular grid is also possible, but we’ll
stick to square grids for most of our algorithms

 Each processor is identified as Pi,j

 i: processor row
 J: processor column

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

181 / 235

2-D Torus

 Wrap-around links from edge to edge
 Each processor belongs to 2 different rings

 Will make it possible to reuse algorithms we develop for
the ring topology

 Mono-directional links OR Bi-directional links
 Depending on what we need the algorithm to do and on

what makes sense for the physical platform

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

182 / 235

Concurrency of Comm. and
Comp.

 When developing performance models we will
assume that a processor can do all three activities in
parallel
 Compute
 Send
 Receive

 What about the bi-directional assumption?
 Two models

 Half-duplex: two messages on the same link
going in opposite directions contend for the
link’s bandwidth

 Full-duplex: it’s as if we had two links in
between each neighbor processors

 The validity of the assumption depends on the
platform

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

183 / 235

Multiple concurrent
communications?

 Now that we have 4 (logical) links at each
processor, we need to decide how many
concurrent communications can happen at the
same time
 There could be 4 sends and 4 receives in the

bi-directional link model
 If we assume that 4 sends and 4 receives can

happened concurrently without loss of
performance, we have a multi-port model

 If we only allow 1 send and 1 receive to occur
concurrently we have a single-port model

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

184 / 235

So what?

 We have many options:
 Grid or torus
 Mono- or bi-directional
 Single-or multi-port
 Half- or full-duplex

 We’ll mostly use the torus, bi-directional, full-
duplex assumption

 We’ll discuss the multi-port and the single-port
assumptions

 As usual, it’s straightforward to modify the
performance analyses to match with whichever
assumption makes sense for the physical
platform

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

185 / 235

How realistic is a grid
topology?

 Some parallel computers are built as
physical grids (2-D or 3-D)
 Example: IBM’s Blue Gene/L

 If the platform uses a switch with all-to-all
communication links, then a grid is
actually not a bad assumption
 Although the full-duplex or multi-port

assumptions may not hold
 We will see that even if the physical

platform is a shared single medium (e.g.,
a non-switched Ethernet), it’s sometimes
preferable to think of it as a grid when
developing algorithms!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

186 / 235

Communication on a Grid

 As usual we won’t write MPI here, but
some pseudo code

 A processor can call two functions to
known where it is in the grid:
 My_Proc_Row()
 My_Proc_Col()

 A processor can find out how many
processors there are in total by:
 Num_Procs()
 Recall that here we assume we have a square

grid
 In programming assignment we may need to

use a rectangular grid

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

187 / 235

Communication on the Grid

 We have two point-to-point functions
 Send(dest, addr, L)
 Recv(src, addr, L)

 We will see that it’s convenient to have
broadcast algorithms within processor
rows or processor columns
 BroadcastRow(i, j, srcaddr, dstaddr, L)
 BroadcastCol(i, j, srcaddr, dstaddr, L)

 We assume that a a call to these functions by
a processor not on the relevant processor row
or column simply returns immediately

 How do we implement these broadcasts?

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

188 / 235

Row and Col Broadcasts?

 If we have a torus
 If we have mono-directional links, then we can reuse the

broadcast that we developed on a ring of processors
 Either pipelined or not

 It we have bi-directional links AND a multi-port model,
we can improved performance by going both-ways
simultaneously on the ring

 We’ll see that the asymptotic performance is not changed
 If we have a grid

 If links are bi-directional then messages can be sent
both ways from the source processor

 Either concurrently or not depending on whether we have a
one-port or multi-port model

 If links are mono-directional, then we can’t implement
the broadcasts at all

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

189 / 235

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Outline

16 Communications

17 Matrix Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Snyder
Data Distribution

190 / 235

Matrix Multiplication on a
Grid

 Matrix multiplication on a Grid has been studied a
lot because
 Multiplying huge matrices fast is always

important in many, many fields
 Each year there is at least a new paper on

the topic
 It’s a really good way to look at and learn

many different issues with a grid topology
 Let’s look at the natural matrix distribution

scheme induced by a grid/torus

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

191 / 235

2-D Matrix Distribution

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,2

P1,2

P2,2

P2,0 P2,1 P2,2 P2,2

 We denote by ai,j an

element of the matrix
 We denote by Ai,j (or Aij)

the block of the matrix
allocated to Pi,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

192 / 235

How do Matrices Get Distributed? (Sec.
4.7)

 Data distribution can be completely ad-hoc
 But what about when developing a library that will be used by others?
 There are two main options:
 Centralized

 when calling a function (e.g., matrix multiplication)
 the input data is available on a single “master” machine (perhaps in a file)
 the input data must then be distributed among workers
 the output data must be undistributed and returned to the “master” machine (perhaps in a file)

 More natural/easy for the user
 Allows for the library to make data distribution decisions transparently to the user
 Prohibitively expensive if one does sequences of operations

 and one almost always does so
 Distributed

 when calling a function (e.g., matrix multiplication)
 Assume that the input is already distributed
 Leave the output distributed

 May lead to having to “redistribute” data in between calls so that distributions match,
which is harder for the user and may be costly as well

 For instance one may want to change the block size between calls, or go from a non-cyclic to a
cyclic distribution

 Most current software adopt the distributed approach
 more work for the user
 more flexibility and control

 We’ll always assume that the data is magically already distributed by the user

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

193 / 235

Four Matrix Multiplication
Algorithms

 We’ll look at four algorithms
 Outer-Product
 Cannon
 Fox
 Snyder

 The first one is used in practice
 The other three are more “historical” but are

really interesting to discuss
 We’ll have a somewhat hand-wavy discussion

here, rather than look at very detailed code

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

194 / 235

The Outer-Product Algorithm

 Consider the “natural” sequential matrix multiplication
algorithm

for i=0 to n-1
for j=0 to n-1

for k=0 to n-1
ci,j += ai,k * bk,j

 This algorithm is a sequence of inner-products (also called
scalar products)

 We have seen that we can switch loops around
 Let’s consider this version

for k=0 to n-1
for i=0 to n-1

for j=0 to n-1
ci,j += ai,k * bk,j

 This algorithm is a sequence of outer-products!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

195 / 235

The Outer-Product Algorithm

for k=0 to n-1
 for i=0 to n-1
 for j=0 to n-1
 ci,j += ai,k * bk,j

C += x

K=0 B

A C += x

K=1 B

A

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

196 / 235

The outer-product algorithm
 Why do we care about switching the loops around to view the matrix

multiplication as a sequence of outer products?
 Because it makes it possible to design a very simple parallel algorithm on

a grid of processors!
 First step: view the algorithm in terms of the blocks assigned to the

processors

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

for k=0 to q-1
 for i=0 to q-1
 for j=0 to q-1
 Ci,j += Ai,k * Bk,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

197 / 235

The Outer-Product Algorithm

 At step k, processor Pi,j needs Ai,k and Bk,j

 If k = j, then the processor already has the
needed block of A

 Otherwise, it needs to get it from Pi,k

 If k = I, then the processor already has the
needed block of B

 Otherwise, it needs to get it from Pk,j

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B3

3

B3

2

B3

1

B3

0

B2

3

B2

2

B2

1

B2

0

B1

3

B1

2

B1

1

B1

0

B0

3

B0

2

B0

1

B0

0

for k=0 to q-1
 for i=0 to q-1
 for j=0 to q-1
 Ci,j += Ai,k * Bk,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

198 / 235

The Outer-Product Algorithm

 Based on the previous statements, we can now
see how the algorithm works

 At step k
 Processor Pi,k broadcasts its block of matrix A

to all processors in processor row i
 True for all i

 Processor Pk,j broadcasts its block of matrix B
to all processor in processor column j

 True for all j
 There are q-1 steps

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

199 / 235

The Outer Product Algorithm

P33P32A31P30

P23P22A21P20

P13P12A11P10

P03P02A01P00

P33P32P31P30

P23P22P21P20

B13B12B11B10

P03P02P01P00

Step k=1 of the algorithm

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

200 / 235

The Outer-Product Algorithm
// m = n/q
var A, B, C: array[0..m-1, 0..m-1] of real
var bufferA, bufferB: array[0..m-1, 0..m-1] of real
var myrow, mycol
myrow = My_Proc_Row()
mycol = My_Proc_Col()
for k = 0 to q-1

// Broadcast A along rows
for i = 0 to q-1

BroadcastRow(i,k,A,bufferA,m*m)
// Broadcast B along columns
for j=0 to q-1

BroadcastCol(k,j,B,bufferB,m*m)
// Multiply Matrix blocks (assuming a convenient MatrixMultiplyAdd()
function)
if (myrow == k) and (mycol == k)

MatrixMultiplyAdd(C,A,B,m)
else if (myrow == k)

MatrixMultiplyAdd(C,bufferA,B,m)
else if (mycol == k)

MatrixMultiplyAdd(C, A, bufferB, m)
else

MatrixMultiplyAdd(C, bufferA, bufferB, m)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

201 / 235

Performance Analysis

 The performance analysis is straightforward
 With a one-port model:

 The matrix multiplication at step k can occur in parallel with
the broadcasts at step k+1

 Both broadcasts happen in sequence
 Therefore, the execution time is equal to:

T(m,q) = 2 Tbcast + (q-1) max (2 Tbcast, m3 w) + m3 w
 w: elementary += * operation
 Tbcast: time necessary for the broadcast

 With a multi-port model:
 Both broadcasts can happen at the same time

T(m,q) = Tbcast + (q-1) max (Tbcast, m3 w) + m3 w
 The time for a broadcast, using the pipelined broadcast:

Tbcast = (sqrt((q-2)L) + sqrt(m2 b))2

 When n gets large: T(m,q) ~ q m3 = n3 / q2
 Thus, asymptotic parallel efficiency is 1!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

202 / 235

So what?

 On a ring platform we had already given an
asymptotically optimal matrix multiplication
algorithm on a ring in an earlier set of slides

 So what’s the big deal about another
asymptotically optimal algorithm?

 Once again, when n is huge, indeed we don’t
care

 But communication costs are often non-negligible
and do matter
 When n is “moderate”
 When w/b is low

 It turns out, that the grid topology is
advantageous for reducing communication costs!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

203 / 235

Ring vs. Grid

 When we discussed the ring, we found that the
communication cost of the matrix multiplication algorithm
was: n2 b
 A each step, the algorithm sends n2/p matrix elements among

neighboring processors
 There are p steps

 For the algorithm on a grid:
 Each step involves 2 broadcasts of n2/p matrix elements

 Assuming a one-port model, not to give an “unfair” advantage to
the grid topology

 Using a pipelined broadcast, this can be done in approximately
the same time as sending n2/p matrix elements between
neighboring processors on each ring (unless n is really small)

 Therefore, at each step, the algorithm on a grid spends twice
as much time communicating as the algorithm on a ring

 But it does sqrt(p) fewer steps!
 Conclusion: the algorithm on a grid spends at least sqrt(p)

less time in communication than the algorithm on a ring

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

204 / 235

Grid vs. Ring

 Why was the algorithm on a Grid much better?
 Reason: More communication links can be used

in parallel
 Point-to-point communication replaced by broadcasts
 Horizontal and vertical communications may be

concurrent
 More network links used at each step

 Of course, this advantage isn’t really an
advantage if the underlying physical platform
does not really look like a grid

 But, it turns out that the 2-D distribution is
inherently superior to the 1-D distribution, no
matter what the underlying platform is!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

205 / 235

Grid vs. Ring
 On a ring

 The algorithm communicates p matrix block rows that each
contain n2/p elements, p times

 Total number of elements communicated: pn2

 On a grid
 Each step, 2sqrt(p) blocks of n2/p elements are sent, each to

sqrt(p)-1 processors, sqrt(p) times
 Total number of elements communicated: 2sqrt(p)n2

 Conclusion: the algorithm with a grid in mind
inherently sends less data around than the algorithm
on a ring

 Using a 2-D data distribution would be better than
using a 1-D data distribution even if the underlying
platform were a non-switched Ethernet for instance!
 Which is really 1 network link, and one may argue is closer to

a ring (p comm links) than a grid (p2 comm links)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

206 / 235

Conclusion

 Writing algorithms on a grid topology is a little bit
more complicated than in a ring topology

 But there is often a payoff in practice and grid
topologies are very popular

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

207 / 235

2-D Matrix Distribution

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,2

P1,2

P2,2

P2,0 P2,1 P2,2 P2,2

 We denote by ai,j an

element of the matrix
 We denote by Ai,j (or Aij)

the block of the matrix
allocated to Pi,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

208 / 235

The Cannon Algorithm

 This is a very old algorithm
 From the time of systolic arrays
 Adapted to a 2-D grid

 The algorithm starts with a
redistribution of matrices A and B
 Called “preskewing”

 Then the matrices are multiplied
 Then the matrices are re-

redistributed to match the initial
distribution
 Called “postskewing”

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

209 / 235

Cannon’s Preskewing

 Matrix A: each block row of matrix A is
shifted so that each processor in the first
processor column holds a diagonal block
of the matrix

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A32A31A30A33

A21A20A23A22

A14A13A12A11

A03A02A01A00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

210 / 235

Cannon’s Preskewing

 Matrix B: each block column of matrix B is
shifted so that each processor in the first
processor row holds a diagonal block of
the matrix

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

211 / 235

Cannon’s Computation

 The algorithm proceeds in q steps
 At each step each processor

performs the multiplication of its
block of A and B and adds the result
to its block of C

 Then blocks of A are shifted to the
left and blocks of B are shifted
upward
 Blocks of C never move

 Let’s see it on a picture

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

212 / 235

Cannon’s Steps

A32A31A30A33

A21A20A23A22

A10A13A12A11

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00

local
computation
on proc (0,0)

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

Shifts

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

local
computation
on proc (0,0)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

213 / 235

The Algorithm

Participate in preskewing of A
Partitipate in preskweing of B
For k = 1 to q
 Local C = C + A*B
 Vertical shift of B
 Horizontal shift of A
Participate in postskewing of A
Partitipate in postskewing of B

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

214 / 235

Performance Analysis

 Let’s do a simple performance analysis
with a 4-port model
 The 1-port model is typically more complicated

 Symbols
 n: size of the matrix
 qxq: size of the processor grid
 m = n / q
 L: communication start-up cost
 w: time to do a basic computation (+= . * .)
 b: time to communicate a matrix element

 T(m,q) = Tpreskew + Tcompute +
Tpostskew

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

215 / 235

Pre/Post-skewing times

 Let’s consider the horizontal shift
 Each row must be shifted so that the diagonal block ends

up on the first column
 On a mono-directional ring:

 The last row needs to be shifted (q-1) times
 All rows can be shifted in parallel
 Total time needed: (q-1) (L + m2 b)

 On a bi-directional ring, a row can be shifted left or right,
depending on which way is shortest!
 A row is shifted at most floor(q/2) times
 All rows can be shifted in parallel
 Total time needed: floor(q/2) (L + m2 b)

 Because of the 4-port assumption, preskewing of A and B
can occur in parallel (horizontal and vertical shifts do not
interfere)

 Therefore: Tpreskew = Tpostskew = floor(q/2) (L+m2b)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

216 / 235

Time for each step

 At each step, each processor computes an
mxm matrix multiplication
 Compute time: m3 w

 At each step, each processor
sends/receives a mxm block in its
processor row and its processor column
 Both can occur simultaneously with a 4-port

model
 Takes time L+ m2b

 Therefore, the total time for the q steps is:
Tcompute = q max (L + m2b, m3w)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

217 / 235

Cannon Performance Model

 T(m,n) =2* floor(q/2) (L + m2b) +
 q max(m3w, L + m2b)

 This performance model is easily
adapted
 If one assumes mono-directional links,

then the “floor(q/2)” above becomes
“(q-1)”

 If one assumes 1-port, there is a factor 2
added in front of communication terms

 If one assumes no overlap of
communication and computation at a
processor, the “max” above becomes a
sum

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

218 / 235

The Fox Algorithm

 This algorithm was originally developed to
run on a hypercube topology
 But in fact it uses a grid, embedded in the

hypercube
 This algorithm requires no pre- or post-

skewing
 It relies on horizontal broadcasts of the

diagonals of matrix A and on vertical shifts
of matrix B

 Sometimes called the “multiply-broadcast-
roll” algorithm

 Let’s see it on a picture
 Although it’s a bit awkward to draw because of

the broadcasts

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

219 / 235

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00
Broadcast of
A’s 1st diag.
(stored in a
Separate
 buffer)

Local
computation

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

220 / 235

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Shift of B

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Broadcast of
A’s 2nd diag.
(stored in a
Separate
 buffer)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

221 / 235

Fox’s Algorithm

// No initial data movement
for k = 1 to q in parallel
 Broadcast A’s kth diagonal
 Local C = C + A*B
 Vertical shift of B
// No final data movement

 Again note that there is an additional array to
store incoming diagonal block

 This is the array we use in the A*B multiplication

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

222 / 235

Performance Analysis

 You’ll have to do it in a homework
assignment
 Write pseudo-code of the algorithm in

more details
 Write the performance analysis

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

223 / 235

Snyder’s Algorithm (1992)

 More complex than Cannon’s or

Fox’s

 First transposes matrix B

 Uses reduction operations (sums) on

the rows of matrix C

 Shifts matrix B

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

224 / 235

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Transpose B

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

225 / 235

Execution Steps...

Shift B

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

Global
sum
on the rows
of C

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Local
computation

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

226 / 235

Execution Steps...

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Shift B

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02
Global
sum
on the rows
of C

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

Local
computation

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

227 / 235

The Algorithm

var A,B,C: array[0..m-1][0..m-1] of real
var bufferC: array[0..m-1][0..m-1] of real
Transpose B
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shifts of B
For k = 1 to q-1

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shift of B

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

Transpose B

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

228 / 235

Performance Analysis

 The performance analysis isn’t
fundamentally different than what
we’ve done so far

 But it’s a bit cumbersome
 See the textbook

 in particular the description of the
matrix transposition (see also Exercise
5.1)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

229 / 235

Which Data Distribution?

 So far we’ve seen:
 Block Distributions
 1-D Distributions
 2-D Distributions
 Cyclic Distributions

 One may wonder what a good choice
is for a data distribution?

 Many people argue that a good
“Swiss Army knife” is the “2-D block
cyclic distribution

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

230 / 235

The 2-D block cyclic
distribution

 Goal: try to have all the advantages
of both the horizontal and the
vertical 1-D block cyclic distribution
 Works whichever way the computation

“progresses”
 left-to-right, top-to-bottom, wavefront, etc.

 Consider a number of processors p =
r * c
 arranged in a rxc matrix

 Consider a 2-D matrix of size NxN
 Consider a block size b (which

divides N)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

231 / 235

The 2-D block cyclic
distribution

b

b

N

P0 P1 P2

P5P4P3

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

232 / 235

The 2-D block cyclic
distribution

P2

P5

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

233 / 235

The 2-D block cyclic
distribution

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1P1P0

 Slight load imbalance
 Becomes negligible with

many blocks
 Index computations had

better be implemented in
separate functions

 Also: functions that tell a
process who its neighbors
are

 Overall, requires a whole
infrastructure, but many
think you can’t go wrong
with this distribution

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

234 / 235

Conclusion

 All the algorithms we have seen in the
semester can be implemented on a 2-D
block cyclic distribution

 The code ends up much more complicated
 But one may expect several benefits “for

free”
 The ScaLAPAK library recommends to use

the 2-D block cyclic distribution
 Although its routines support all other

distributions

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

235 / 235

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman.
LogGP: Incorporating long messages into the LogP model for par-
allel computation.
Journal of Parallel and Distributed Computing, 44(1):71–79, 1997.

D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken.
LogP: a practical model of parallel computation.
Communication of the ACM, 39(11):78–85, 1996.

R. W. Hockney.
The communication challenge for mpp : Intel paragon and meiko
cs-2.
Parallel Computing, 20:389–398, 1994.

B. Hong and V.K. Prasanna.
Distributed adaptive task allocation in heterogeneous computing
environments to maximize throughput.

235 / 235

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

In International Parallel and Distributed Processing Symposium
IPDPS’2004. IEEE Computer Society Press, 2004.

T. Kielmann, H. E. Bal, and K. Verstoep.
Fast measurement of LogP parameters for message passing plat-
forms.
In Proceedings of the 15th IPDPS. Workshops on Parallel and
Distributed Processing, 2000.

Steven H. Low.
A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions on Networking, 2003.

Dong Lu, Yi Qiao, Peter A. Dinda, and Fabián E. Bustamante.
Characterizing and predicting tcp throughput on the wide area
network.
In Proceedings of the 25th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’05), 2005.

235 / 235

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Arnaud Legrand, Hélène Renard, Yves Robert, and Frédéric
Vivien.
Mapping and load-balancing iterative computations on heteroge-
neous clusters with shared links.
IEEE Trans. Parallel Distributed Systems, 15(6):546–558, 2004.

Maxime Martinasso.
Analyse et modélisation des communications concurrentes dans
les réseaux haute performance.
PhD thesis, Université Joseph Fourier de Grenoble, 2007.

Laurent Massoulié and James Roberts.
Bandwidth sharing: Objectives and algorithms.
In INFOCOM (3), pages 1395–1403, 1999.

Loris Marchal, Yang Yang, Henri Casanova, and Yves Robert.
Steady-state scheduling of multiple divisible load applications on
wide-area distributed computing platforms.

235 / 235

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Int. Journal of High Performance Computing Applications, (3),
2006.

Frédéric Wagner.
Redistribution de données à travers un réseau haut débit.
PhD thesis, Université Henri Poincaré Nancy 1, 2005.

235 / 235

	Network Models
	Point to Point Communication Models
	Hockney
	LogP and Friends
	TCP

	Modeling Concurency
	Multi-port
	Single-port (Pure and Full Duplex)
	Flows

	Remind This is a Model, Hence Imperfect
	Topology
	A Few Examples
	Virtual Topologies

	Communications on a Ring
	Assumptions
	Broadcast
	Scatter
	All-to-All
	Broadcast: Going Faster

	Speedup and Efficiency
	Speedup
	Amdahl's Law

	Algorithms on a Ring
	Matrix Vector Product
	Open MP Version
	First MPI Version
	Distributing Matrices
	Second MPI Version
	Third MPI Version
	Mixed Parallelism Version

	Matrix Multiplication
	Stencil Application
	Principle
	Greedy Version
	Reducing the Granularity

	LU Factorization
	Gaussian Elimination
	LU

	A Complete Example on an Heterogeneous Ring
	The Problem
	Fully Homogeneous Network
	Heterogeneous Network (Complete)
	Heterogeneous Network (General Case)

	Algorithms on a Grid
	Communications
	Matrix Multiplication
	Outer Product
	Grid Rocks!
	Cannon
	Fox
	Snyder
	Data Distribution

