
Outlines

Communications on
Distributed Architectures

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais

October, 11th 2010

Outlines

Goals of this lecture

Understand how communication libraries can efficiently use
high speed networks

Understand the difficulties to write efficient parallel programs
targeting several architectures.

Outlines
Part I: High Performance Networking
Part II: Portability and Efficiency

High Performance Networking

1 Current high speed network characteristics
(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

2 Classical techniques for efficient communications
Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

3 Some low-level interfaces
BIP and MX/Myrinet
SiSCI/SCI
VIA

4 Summary

Outlines
Part I: High Performance Networking
Part II: Portability and Efficiency

Portability and Efficiency

5 Optimizing communications
Optimizing communication methods
An experimental project: the Madeleine interface

6 Asynchronous communications
MPI example
Mixing threads and communications

7 Hierarchical plate-forms and efficient scheduling
Programming on current SMP machines
BubbleSched: guiding scheduling through bubbles

8 Conclusion
High-performance parallel programming is difficult

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Part I

High Performance Networking

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

Outlines

1 Current high speed network characteristics
(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

2 Classical techniques for efficient communications

3 Some low-level interfaces

4 Summary

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

High Speed Networks

High Speed Networks are used in clusters
low distance
very interesting performance

low latency: about 1µs
high bandwidth: about 10 Gb/s and more

specific light protocols
static routing of messages
no required packet fragmentation
sometimes, no packet required

Myrinet, Quadrics, SCI, . . .

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

(Fast|Giga)-Ethernet

Interconnect:
Hub or switch

Wires:
Copper or optical
fiber

Latency:
about 10µs

Bandwidth:
From 100 Mb/s to
10 Gb/s (100 Gb/s,
june 2010)

Remark:
compatible with
traditional Ethernet

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

Myrinet

Myricom corporate
Interconnect:

Switch
PCI card with:

a processor: LANai
SRAM memory: about 4 MB

Latency:
about 1 or 2µs

Bandwidth:
10 Gb/s

Remark:
static, wormhole routing
can you RJ45 cables

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

SCI

Scalable Coherent Interface
IEEE norm (1993)
Dolphin corporate

Uses remote memory access:
Address space remotely mapped

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

InfiniBand

Several manufacturers (Cisco, HP, Intel, IBM, etc.)
Interconnect:

Optical links
Serial, point-to-point connections
Switched fabric (possibility of several paths)

Bandwidth
single line of 2, 4, 8, 14 or 25 Mb/s
possibility of bonding 4 or 12 lines

Latency:
about 100 or 200 ns for hardware only
about 1 or 2µs for some hardware with its driver

Remark:
can interconnect buildings
RDMA operations available

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current hardware

Quadrics

One manufacturer (Quadrics)
Interconnect:

Bi-directional serial links
Switched fabric (possibility of several paths)

Bandwidth
1 to 2 Gb/s on each direction

Latency:
about 1.3µs in MPI

Remark:
selected by Bull for the fastest supercomputer in Europe:
Tera100 at CEA
global operations (reduction, barrier) available in hardware

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Outlines

1 Current high speed network characteristics

2 Classical techniques for efficient communications
Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

3 Some low-level interfaces

4 Summary

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Interacting with the network card: PIO mode

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Interacting with the network card: DMA mode

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

Goals
Reduce the communication time

Copy time cannot be neglected
but it can be partially recovered with pipelining

Reduce the processor use
currently, memcpy are executed by processor instructions

Idea
The network card directly read/write data from/to the
application memory

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications for emission

PIO mode transfers
No problem for zero-copy

DMA mode transfers
Non contiguous data in physical memory
Headers added in the protocol

linked DMA
limits on the number of non contiguous segments

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications for reception

A network card cannot “freeze” the received message on the
physical media

If the receiver posted a “recv” operation before the message
arrives

zero-copy OK if the card can filter received messages
else, zero-copy allowed with bounded-sized messages
with optimistic heuristics

If the receiver is not ready
A handshake protocol must be setup for big messages
Small messages can be stored in an internal buffer

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Using a Handshake Protocol

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

A few more considerations

The receiving side plays an important role
Flow-control is mandatory
Zero-copy transfers

the sender has to ensure that the receiver is ready
a handshake (REQ+ACK) can be used

Communications in user-space introduce some difficulties
Direct access to the NIC

most technologies impose “pinned” memory pages

Network drivers have limitations

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Communication Protocol Selection

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Communication Protocol Selection

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Operating System Bypass

Initialization
traditional system
calls
only at session
beginning

Transfers
direct from user
space
no system call
“less” interrupts

Humm. . . And what
about security ?

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

Problem
Zero-copy mechanism uses DMA that requires physical
addresses
Mapping between virtual and physical address is only
known by:

the processor (MMU)
the OS (pages table)

We need that
the library knows this mapping
this mapping is not modified during the communication

ex: swap decided by the OS, copy-on-write, etc.

No way to ensure this in user space !

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

First solution
Pages “recorded” in the kernel to avoid swapping
Management of a cache for virtual/physical addresses
mapping

in user space or on the network card

Diversion of system calls that can modify the address
space

Second solution
Management of a cache for virtual/physical addresses
mapping on the network card
OS patch so that the network card is “advertised” when a
modification occurs
Solution chosen by MX/Myrinet and Elan/Quadrics

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Direct consequences

Latency measure can vary whether the memory region
used

Some pages are “recorded” within the network card
Ideal case are ping-pong exchanges

The same pages are reused hundred of times

Worst case are applications using lots of different data
regions. . .

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

BIP and MX/Myrinet
SiSCI/SCI
VIA

Outlines

1 Current high speed network characteristics

2 Classical techniques for efficient communications

3 Some low-level interfaces
BIP and MX/Myrinet
SiSCI/SCI
VIA

4 Summary

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

BIP and MX/Myrinet
SiSCI/SCI
VIA

BIP/Myrinet

Basic Interface for Parallelism
L. Prylli and B. Tourancheau

Dedicated to Myrinet networks
Characteristics

Asynchronous communication
No error detection
No flow control

Small messages are copied into a fixed buffer at reception
Big messages are lost if the receiver is not ready

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

BIP and MX/Myrinet
SiSCI/SCI
VIA

MX/Myrinet

Myrinet eXpress
Official driver from Myricom

Very simplistic interface to allow easy implementation of
MPI

Flow control
Reliable communications
Non contiguous messages
Multiplexing

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

BIP and MX/Myrinet
SiSCI/SCI
VIA

SiSCI/SCI

Driver for SCI cards
Programming model

Remote memory access
Explicit: RDMA
Implicit: memory projections

Performance
Explicit use of some operation required:

memory “flush”
SCI_memcpy
RDMA

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

BIP and MX/Myrinet
SiSCI/SCI
VIA

VIA

Virtual Interface Architecture
A new standard

Lots of industrials
Microsoft, Intel, Compaq, etc.

Use for InfiniBand networks
Characteristics

Virtual interfaces objects
Queues of descriptors (for sending and receiving)

Explicit memory recording
Remote reads/writes

RDMA

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Outlines

1 Current high speed network characteristics

2 Classical techniques for efficient communications

3 Some low-level interfaces

4 Summary

Current high speed network characteristics
Classical techniques for efficient communications

Some low-level interfaces
Summary

Summary

Efficient hardware
very low latency and high bandwidth
complex hardware to be programmed efficiently

onboard CPU, onboard MMU for DMA, etc.

Very specific programming interfaces

dedicated to specific technologies (but VIA)
different programming models
quasi no portability

It is not reasonable to program a scientific application directly
with such programming interfaces

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Part II

Portability and Efficiency

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Outlines

5 Optimizing communications
Optimizing communication methods
An experimental project: the Madeleine interface

6 Asynchronous communications

7 Hierarchical plate-forms and efficient scheduling

8 Conclusion

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Optimizing communication methods

Low-level libraries sometimes prefer using the processor in
order to guaranty low latencies

Depending on the message size
PIO for small messages
Pipelined copies with DMA for medium messages
Zero-copy + DMA for large messages

Example: limit medium/large is set to 32 KB for MX
sending messages from 0 to 32 KB cannot overlap
computations

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Choosing the Optimal Strategy

It depends on
The underlying network with driver performance

latency
PIO and DMA performance
Gather/Scatter feature
Remote DMA feature
etc.

Multiple network cards ?

But also on
memory copy performance
I/O bus performance

Efficient AND portable is not easy

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

An experimental project: the Madeleine interface

Goals
Rich interface to exchange complex message while keeping the
portability

Characteristics
incremental building of messages with internal
dependencies specifications

the application specify dependencies and constraints
(semantics)
the middle-ware automatically choice the best strategy

multi-protocols communications
several networks can be used together

thread-aware library

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Message building

Sender
begin_send(dest)

pack(&len, sizeof(int))

,
r_express)

pack(data, len)

,
r_cheaper)

pack(data2, len,
r_cheaper)

end_send()

Receiver
begin_recv()

unpack(&len, sizeof(int))

,
r_express)

data = malloc(len)
unpack(data, len)

,
r_cheaper)

data2 = malloc(len)
unpack(data2, len,

r_cheaper)

end_recv()

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Message building

Sender
begin_send(dest)

pack(&len, sizeof(int)

)

,
r_express)

pack(data, len

)

,
r_cheaper)

pack(data2, len,
r_cheaper)

end_send()

Receiver
begin_recv()

unpack(&len, sizeof(int)

)

,
r_express)

data = malloc(len)
unpack(data, len

)

,
r_cheaper)

data2 = malloc(len)
unpack(data2, len,

r_cheaper)

end_recv()

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Message building

Sender
begin_send(dest)

pack(&len, sizeof(int)

)

,
r_express)

pack(data, len

)

,
r_cheaper)

pack(data2, len,
r_cheaper)

end_send()

Receiver
begin_recv()

unpack(&len, sizeof(int)

)

,
r_express)

data = malloc(len)
unpack(data, len

)

,
r_cheaper)

data2 = malloc(len)
unpack(data2, len,

r_cheaper)

end_recv()

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

How to implement optimizations ?

Using parameters and historic

sender and receiver always take the same (deterministic)
decisions
only data are sent

Using other information

allow unordered communication (especially for short
messages)

can required controls messages

allow dynamically new strategies (plug-ins)
use “near future”

allow small delays or application hints

Optimisations « Just-in-
Time »

Courtesy of Olivier Aumage

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Why such interfaces ?

Portability of the application
No need to rewrite the application when running on an other
kind of network

Efficiency
local optimizations (aggregation, etc.)
global optimizations (load-balancing on several networks,
etc.)

But non standard interface
rewrite some standard interfaces on top of this one

some efficiency is lost

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communication methods
An experimental project: the Madeleine interface

Still lots of work

What about
equity wrt. optimization ?
finding optimal strategies ?

still an open problem in many cases

convincing users to try theses new interfaces
managing fault-tolerance
allowing cluster interconnections (ie high-speed network
routing)
allowing connection and disconnections of nodes
etc.

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Outlines

5 Optimizing communications

6 Asynchronous communications
MPI example
Mixing threads and communications

7 Hierarchical plate-forms and efficient scheduling

8 Conclusion

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Message Passing Interface

Characteristics
Interface (not implementation)
Different implementations

MPICH
LAM-MPI
OpenMPI
and all closed-source MPI dedicated to specific hardware

MPI 2.0 begins to appear

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Several Ways to Exchange Messages with MPI

MPI_Send (standard)
At the end of the call, data can be reused immediately

MPI_Bsend (buffered)
The message is locally copied if it cannot be send
immediately

MPI_Rsend (ready)
The sender “promises” that the receiver is ready

MPI_Ssend (synchronous)
At the end of the call, the reception started
(similar to a synchronization barrier)

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Non Blocking Primitives

MPI_Isend / MPI_Irecv (immediate)

MPI_request r;

MPI_Isend(..., data, len, ..., &r)

// Calculus that does not modify
’data’
MPI_wait(&r, ...);

These primitives must be used as much as possible

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

About MPI Implementations

MPI is available on nearly all existing networks and
protocols!

Ethernet, Myrinet, SCI, Quadrics, Infiniband, IP, shared
memory, etc.

MPI implementation are really efficient
low latency (hard), large bandwidth (easy)
optimized version from hardware manufacturers (IBM, SGI)
implementations can be based on low-level interfaces

MPICH/Myrinet, MPICH/Quadrics

BUT these “good performance” are often measured with
ping-pong programs. . .

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Asynchronous communications with MPI

Problem
The process does other
things when the ACK
occurs

Solutions
Using threads within MPI
(MPICH/Madeleine)
Implementing part of the
protocol in the network
card (MPICH/GM)
Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Asynchronous communications with MPI

Problem
The process does other
things when the ACK
occurs

Solutions
Using threads within MPI
(MPICH/Madeleine)
Implementing part of the
protocol in the network
card (MPICH/GM)
Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Asynchronous communications with MPI

Recv
0 1 2

Isend

Calcul

req

Recv

Calculus

Wait

Isend

data

Recv

Calculus

Wait

Isend

data

req

ack

ack

req

Ignored message
No overlaping

Problem
The process does other
things when the ACK
occurs

Solutions
Using threads within MPI
(MPICH/Madeleine)
Implementing part of the
protocol in the network
card (MPICH/GM)
Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv();

req=MPI_Isend(next);
Work(); /* about 1s */
MPI_Wait(req);

if (mynode==0)
MPI_Recv();

expected time: ~ 1 s
observed time: ~ 4 s

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Asynchronous communications

Problems: asynchronous communications required
progression of asynchronous communications (MPI)
remote PUT/GET primitives
etc.

Solutions
Using threads
Implementing part of the protocol in the network card
(MPICH/GM)
Using remote memory reads

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Multithreading

A solution for asynchronous communications
computations can overlap communications
automatic parallelism

But disparity of implementations
kernel threads

blocking system calls, SMP
users threads

efficient, flexible

mixed model threads

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Difficulties of threads and communications

Different way to communicate
active polling

memory read, non blocking system calls
passive polling

blocking system calls, signals

Different usable methods
not always available
not always compatible

with the operating system
with the application

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

An experimental proposition: an I/O server

Requests centralization
a service for the application
allow optimizations

aggregation of requests

Portability of the application
uniform interface

effective strategies (polling, signals, system calls) are
hidden to the application

application without explicit strategy
independence from the execution plate-form

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

I/O server linked to the thread scheduler

Threads and polling

difficult to implement
the thread scheduler can help to get guarantee frequency
for polling

independent with respect to the number of threads in the
application

instead of

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Illustration of such an interface

Registration of events kinds
IO_handle=IO_register(params)

call-back functions registration
used by communication libraries at initialization time

Waiting for an event
IO_wait(IO_handle, arg)

blocking function for the current thread
the scheduler will use the call-backs

communications are still manged by communication
libraries

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Example with MPI

Registration
IO_t MPI_IO;
...
IO_register_t params = {
.blocking_syscall:=NULL,
.group=&group_MPI(),
.poll=&poll_MPI(),
.frequency=1

};

MPI_IO=
IO_register(¶ms);

...

Communication
MPI_Request request;
IO_MPI_param_t param;
...
MPI_Irecv(buf, size,

..., &request);
param.request=&request;
IO_wait(MPI_IO, ¶m);
...

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

A

MPI call

threads scheduler
User level

Application

library

MPI

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

Callback functions:

Frequency
- poll
- group

init_server()

A

MPI call

threads scheduler
User level

Application

library

MPI

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

Req2

ev_wait()

ev_wait()

B
C

Req1

A

MPI call

threads scheduler
User level

Application

library

MPI

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

Req2

B
C

Req1

21

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

Req2

B
C

Req1

21

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Running the scrutation server

}

{

poll
}

{

group

B
C

Req1

1

requests
Aggregated

A

MPI call

threads scheduler
User level

Application

library

MPI

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

MPI example
Mixing threads and communications

Key points

High level communication libraries needs multithreading
allow independent communication progression
allow asynchronous operations (puts/gets)

Threads libraries must be designed with services for
communication libraries

allow efficient polling
allow selection of communication strategy

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Outlines

5 Optimizing communications

6 Asynchronous communications

7 Hierarchical plate-forms and efficient scheduling
Programming on current SMP machines
BubbleSched: guiding scheduling through bubbles

8 Conclusion

10

Towards more and more
hierarchical computers

● SMT

(HyperThreading)

● Multi-Core
● SMP
● Non-Uniform Memory

Access (NUMA)

P P P P

P P P P

P P P P

P P P P

M

M

M

M

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

11

Hagrid, octo-dual-core

M

MM

M

M

M M

M

R� seau, disque, etc.

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15
● AMD Opteron
● NUMA factor

1.1-1.5

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

12

Aragog, dual-quad-core

M

P1 P5 P3 P7

P0 P2P4 P6

● Intel
● Hierarchical cache levels

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

13

How to run applications
on such machines?

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

14

How to program
parallel machines?

● By hand
– Tasks, POSIX threads, explicit context switch

● High-level languages
– Processes, task description, OpenMP, HPF,

UPC, ...

● Technically speaking, threads

● How to schedule them efficiently?

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

15

How to schedule efficiently?

● Performance
– Affinities between threads and memory taken into

account

● Flexibility
– Execution easily guided by applications

● Portability
– Applications adapted to any new machine

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

16

Predetermined approaches

● Two phases
– Preliminary computation of

● Data placement [Marather, Mueller, 06]
● Thread scheduling

– Execution
● Strictly follows the pre-computation

● Example: PaStiX [Hénon, Ramet, Roman, 00]

✔Excellent performances

✗ Not always sufficient or possible: strongly
irregular problems...

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

17

Opportunistic approaches

● Various greedy algorithms
– Single / several [Markatos, Leblanc, 94] /

a hierarchy of task lists [Wang, Wang, Chang, 00]

● Used in nowaday's operating systems
– Linux, BSD, Solaris, Windows, ...

✔Good portability

✗ Uneven performances
– No affinity information...

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

18

Negotiated approaches

● Language extensions
– OpenMP, HPF, UPC, ...

✔Portability (adapts itself to the machine)

✗ Limited expressivity (e.g. no NUMA support)

● Operating System extensions
– NSG, liblgroup, libnuma, ...

✔Freedom for programmers

✗ Static placement, requires rewriting placement
strategies according to the architecture

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

19

Issues

● Negotiated approach seems promising, but
– Which scheduling strategy?

● Depends on the application

– Which information to take into account?
● Affinities between threads?
● Memory occupation?

– Where does the runtime play a role?

● But there is hope!
– Programmers and compilers do have some clues to give

– Missing piece: structures

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

20

BubbleSched
Guiding scheduling through bubbles

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

21

Idea:
Structure to better schedule

Bridging the gap between programmers and
architectures

● Grab the structure of the parallelism
– Express relations between threads, memory, I/O, ...

● Model the architecture in a generic way
– Express the structure of the computation power

● Scheduling is mapping
– As it should just be!

– Completely algorithmic

– Allows all kinds of scheduling approaches

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

22

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

23

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

24

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

25

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

26

Runqueues to model
hierarchical machines

MP P M PP

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

28

Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

29

Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

Some can be stronger

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

30

Examples of thread and
bubble repartitions

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

38

Implemented schedulers

● Full-featured schedulers
– Gang scheduling

– Spread
● Favor load balancing

– Affinity
● Favor affinities (Broquedis)
● Memory aware (Jeuland)

● Reuse and compose
– Work stealing

– Combined schedulers (time, space, etc.)

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

60

Conclusion
A new scheduling approach

Structure & conquer!
● Bubbles = simple yet powerful abstractions

– Recursive decomposition schemes
● Divide & Conquer
● OpenMP

● Implement scheduling strategies for hierarchical
machines
– A lot of technical work is saved

● Significant benefits
– 20-40%

Courtesy of Samuel Thibault

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

High-performance parallel programming is difficult

Outlines

5 Optimizing communications

6 Asynchronous communications

7 Hierarchical plate-forms and efficient scheduling

8 Conclusion
High-performance parallel programming is difficult

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

High-performance parallel programming is difficult

High-performance parallel programming is difficult

Need of efficiency
lots of efficient hardware available (network, processors, etc.)
but lots of API

Need of portability
applications cannot be rewritten for each new hardware
use of standard interfaces (pthread, MPI, etc.)

On the way to the portability of the efficiency
very difficult to get: still lots of research
require very well designed interfaces allowing:

the application to describe its behavior (semantics)
the middle-ware to select the strategies
the middle-ware to optimize the strategies

Optimizing communications
Asynchronous communications

Hierarchical plate-forms and efficient scheduling
Conclusion

High-performance parallel programming is difficult

Three examples from research projects
Madeleine: an efficient and portable communication library

optimization of communication strategies
Marcel: an I/O server in a thread scheduler

efficient management of threads with communications
BubbleSched: a scheduler for hierarchical plate-forms

efficient scheduling on hierarchical machines

Three efficient middlewares for specific aspects

lots of criteria to optimize in real applications
scheduling, communication, memory, etc.

multi-criteria optimization is more than aggregation of
mono-criteria optimization
other high-level interface programming for parallel
applications ? (work-stealing, etc.)

	Outlines
	Part I: High Performance Networking
	Part II: Portability and Efficiency

	High Performance Networking
	Current high speed network characteristics
	(Fast|Giga)-Ethernet
	Legacy hardware
	Current hardware

	Classical techniques for efficient communications
	Interacting with the network card: PIO and DMA
	Zero-copy communications
	Handshake Protocol
	OS Bypass

	Some low-level interfaces
	BIP and MX/Myrinet
	SiSCI/SCI
	VIA

	Summary

	Portability and Efficiency
	Optimizing communications
	Optimizing communication methods
	An experimental project: the Madeleine interface

	Asynchronous communications
	MPI example
	Mixing threads and communications

	Hierarchical plate-forms and efficient scheduling
	Programming on current SMP machines
	BubbleSched: guiding scheduling through bubbles

	Conclusion
	High-performance parallel programming is difficult

